Необходимо найти количество пар, произведение чисел которых кратно 34.
Число 34 можно разложить на 2 простых: 17 и 2.
Нужно подсчитать количество чисел по кратности при вводе:
Формула для нахождения чисел, кратных 34:
k(k-1)/2+k(N-k)+k2*k17,
где k(k-1)/2 — количество пар, где оба сомножителя делятся на 34,
k(N-k) — количество пар, где только один сомножитель делятся на 34,
k2*k17 — количество пар, которые не делятся на 34, но один сомножитель делится на 17, другой на 2.
Формула для нахождения чисел, НЕ кратных 34:
N(N-1)/2-(k(k-1)/2+k(N-k)+k2*k17),
где N(N-1)/2 — общее количество возможных пар.
Common multiples of two or more given numbers are the numbers which can exactly be divided by each of the given numbers.
Consider the following.
(i) Multiples of 3 are: 3, 6, 9, 12, 15, 18, 21, 24, …………etc.
Multiples of 4 are: 4, 8, 12, 16, 20, 24, 28, …………… etc.
Therefore, common multiples of 3 and 4 = 12, 24, ………..etc.
[It can easily be seen that each of the common multiples 12, 24, etc., is exactly divisible by both 3 and 4].
(ii) Multiples of 2 are: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, ………… etc.
Multiples of 5 are: 5, 10, 15, 20, 25, ………… etc.
Therefore, common multiples of 2 and 5 = 10, 20, ………..etc.
[It can easily be seen that each of the common multiples 10, 20, etc., is exactly divisible by both 2 and 5].
(iii) Multiples of 2 are: 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, ……etc.
Multiples of 3 are: 3, 6, 9, 12, 15, 18, 21, 24, ………… etc.
Multiples of 6 are = 6, 12, 18, 24, …………… etc.
Therefore, common multiples of 2, 3 and 6 = 6, 12, 18, 24, ………..etc.
[It can easily be seen that each of the common multiples 6, 12, 18, 24, etc., is exactly divisible by all three numbers 2, 3 and 6].
Questions and Answers on Common Multiples:
I. Find the common multiple of:
(i) 3 and 4
3 = 3, 6, 9, 12, 15, 18, 21, 24, 27, 30 ………….
4 = 4, 8, 12, 16, 20, 24, 28, 32, 36, 40 ………….
The common multiples of 3 and 4 are 12, 24, 36 ………….
(ii) 2 and 3
2 =
3 =
The common multiples of 2 and 3 are __________
(iii) 4 and 6
4 =
6 =
The common multiples of 4 and 6 are __________
(iv) 5 and 10
5 =
10 =
The common multiples of 5 and 10 are __________
(v) 7 and 8
7 =
8 =
The common multiples of 7 and 8 are __________
Answers:
I. (ii) 6, 12, 18, ……….
(iii) 12, 24, 36, ………..
(iv) 10, 20, 30, …………
(v) 56, 112, ………….
● Multiples.
To Find Lowest Common Multiple by using Division Method
Relationship between H.C.F. and L.C.M.
Worksheet on H.C.F. and L.C.M.
Word problems on H.C.F. and L.C.M.
Worksheet on word problems on H.C.F. and L.C.M.
5th Grade Numbers Page
Didn’t find what you were looking for? Or want to know more information
about Math Only Math.
Use this Google Search to find what you need.
Наименьшее общее кратное: как найти
Содержание:
- Наименьшее общее кратное — что это такое
- Вычисление НОК, правила в математике
- Как найти НОК через НОД
- Как найти НОК через разложение чисел
- Нахождение НОК трех и большего количества чисел
Наименьшее общее кратное — что это такое
Определение
Число, которое можно без остатка разделить на выбранные числа, является их общим кратным. Наименьшее из таких чисел — наименьшее общее кратное или сокращенно «нок».
Действия с дробями, имеющими различный знаменатель, можно значительно облегчить, если найти наименьшее общее кратное (НОК). Это такое число, например, кратное числу а, которое можно разделить на это а целиком, без остатка.
Пример
К числам, кратным 8, относятся 16, 24, 32, 40 и т.п. Кратными 9-ти являются 9, 18, 27, 36 и т.п.
Осторожно! Если преподаватель обнаружит плагиат в работе, не избежать крупных проблем (вплоть до отчисления). Если нет возможности написать самому, закажите тут.
Существует бесчисленное множество чисел, делящихся на а без остатка, т.е. кратных ему. В то же время, этого нельзя сказать о числе делителей. Так, делителями для 9-ти являются 9, 3, 1.
Если для двух или более натуральных чисел существует число, делящееся на оба без остатка, то оно является наименьшим общим кратным. А то из, них, которое самое маленькое, является нок.
Вычисление НОК, правила в математике
Для нахождения нок в математике существует несколько правил или алгоритмов. Самый простой вариант — вычисление НОК для двух чисел-участников. Способ легкий, но приемлем для маленьких натуральных чисел.
Нужно составить ряды чисел, кратных каждому из выбранных значений.
Пример
К (4) — 4, 8, 12, 16, 20, 24;
К (6) — 6, 12, 18, 24, 30.
Из рядов видно, что в обоих рядах встречаются числа 12 и 24. Это общие кратные. Однако 12 из них — меньшее число.
Поэтому НОК (4, 6) — 12.
Как найти НОК через НОД
Определение НОК можно провести с использованием НОД (наибольшего общего делителя).
В этом блоке изложения материала следует уточнить некоторые понятия.
Определение
Простым называется такое натуральное число, которое целиком можно разделить только само на себя либо на единицу.
Наименьшим простым числом является двойка. Она же — единственное четное натуральное простое число. Все остальные — нечетные.
Множество чисел делятся не только на 1 и на себя, но и на другие целые натуральные числа:
8 делится на 1, 2, 4, 8;
36 — на 1, 2, 3, 4, 6, 8 и т.д.
Эти числа — делители восьми и тридцати шести (делимых). Именно они могут разделить 8 и 36 без остатка. В обоих приведенных примерах делимые (8, 36) являются составными числами, поскольку имеют более двух делителей.
В приведенных рядах существуют одинаковые делители. Это 1, 2, 4, 8.
Самое большое число — 8. Оно и является наибольшим общим делителем.
Определение
Наибольший общий делитель (НОД) — число, на которое без остатка делится выбранная пара (либо больше) чисел.
Пример
НОД (9, 45)=9
НОД (12, 48)=12
Бывают пары чисел, которые из общих делителей имеют только единицу. Тогда они называются взаимно простыми: НОД (9, 8)=1, НОД (12, 10)=1.
На следующем примере показаны пары чисел со значениями их НОД и НОК.
Решение задачи по нахождению НОК через НОД сводится к следующей формуле:
НОК чисел a,b равняется частному произведения a и b на наибольший общий делитель чисел a и b (по-другому НОД (a, b).
Исходя из этого заключения получается, что НОК и НОД взаимосвязаны друг с другом. Наименьшее общее кратное можно легко найти через наибольший общий делитель для двух или более натуральных чисел.
Как найти НОК через разложение чисел
Кроме составления рядов значений, кратных каждому из двух выбранных натуральных чисел, для правильного определения НОК пользуются методом разложения на множители.
Найденные простые множители первого разложения сравниваются с аналогичными из второго разложения, после чего они перемножаются.
Пример
После разложения числа 9 на простые множители получается ряд:
1, 3, 9.
После разложения 12-ти получается ряд:
1, 2, 3, 4, 6, 12.
После разложения на множители числа 9 получаем: 3*3. После разложения на множители 12-ти получаем: 2*2*3. Объединяя множители обеих вариантов, получаем произведение: 3*3*2*2=36.
Наименьшее общее кратное чисел 9 и 12 — 36.
В качестве проверки произведем действия:
- 36/12=3
- 9/3=3
На практике записывают: НОК (9, 12)=36.
Такими действиями можно найти НОК более сложных чисел.
Пример
Найти НОК чисел 50 и 180.
Число 50 делится на 1, 2, 5, 10, 25, 50.
Число 180 на: 1, 5, 15, 30, 45, 90, 180.
Разложив на множители 50, получаем: 2, 5, 5.
Разложив 180, получаем: 2, 2, 3, 3, 5.
Из первого разложения выписываем: 2*5*5. Сравнивая со вторым разложением, описываем одну двойку и две тройки. После перемножения полученного ряда получается произведение: 2*5*5*2*3*3=900. Это и есть наименьшее общее кратное чисел 50 и 180.
Следовательно, НОК (50, 180)=900.
Существует еще один быстрый способ находить НОК. Он приемлем для вариантов, когда одно число нацело делится на другое. Например: НОК (15, 30)=30, НОК (20, 80)=80, НОК (16, 48)=48.
Для случаев, когда у двух чисел не имеется общих делителей, их можно просто перемножить и получить НОК. Например, НОК (7, 8)=56, НОК (4, 9)=36, НОК (7, 9)=63.
Нахождение НОК трех и большего количества чисел
Если предстоит найти НОК для большего, чем 2, количества чисел, их нужно разложить на простые множители. Например,
32=2*2*2*2*2;
40=2*2*2*5;
80=2*2*2*2*5
Сравнивая множители в каждом случае разложения натуральных чисел и выстраивая их в один ряд для умножения, получаем, что НОК (32, 40, 80) = 2*2*2*2*2*5 = 160.
В математике принято для нахождения НОК трех и более чисел применять следующую теорему:
Если имеется ряд чисел (а1, а2, а3…аk), можно найти НОК mk этих чисел производя последовательные вычисления: m2=НОК (а1, а2), m3=НОК (а2, а3)… mk=НОК (mk-1, аk)
Пример
Дано задание вычислить НОК для чисел 140 (a1), 9 (a2), 54 (а3), 250 (а4).
Тогда m2=НОК (a1, a2)=НОК (140, 9).
Для нахождения НОК (140, 9) производим действия. 140=15*9+5; 9=5*1+4.
Последующее разложение: 5=4*1+1, 4=4*1.
Следовательно, НОД (140, 9)=1. НОК (140, 9)=140*9/НОД (140, 9)=140*9/1=1260.
Ответ: m2=1260
По аналогии вычисляем m3 (=3780) и m4 (=94500). Это и есть ответ решения задачи по нахождению НОК чисел 140, 9, 54, 250.
Загрузить PDF
Загрузить PDF
Кратное число – это число, которое делится на данное число без остатка. Наименьшее общее кратное (НОК) группы чисел – это наименьшее число, которое делится без остатка на каждое число группы. Чтобы найти наименьшее общее кратное, нужно найти простые множители данных чисел. Также НОК можно вычислить с помощью ряда других методов, которые применимы к группам из двух и более чисел.
-
1
Посмотрите на данные числа. Описанный здесь метод лучше применять, когда даны два числа, каждое из которых меньше 10. Если даны большие числа, воспользуйтесь другим методом.
- Например, найдите наименьшее общее кратное чисел 5 и 8. Это небольшие числа, поэтому можно использовать данный метод.
-
2
Запишите ряд чисел, которые кратны первому числу. Кратное число – это число, которое делится на данное число без остатка.[1]
Кратные числа можно посмотреть в таблице умножения..- Например, числами, которые кратны 5, являются: 5, 10, 15, 20, 25, 30, 35, 40.
-
3
Запишите ряд чисел, которые кратны первому числу. Сделайте это под кратными числами первого числа, чтобы сравнить два ряда чисел.
- Например, числами, которые кратны 8, являются: 8, 16, 24, 32, 40, 48, 56, и 64.
-
4
Найдите наименьшее число, которое присутствует в обоих рядах кратных чисел. Возможно, вам придется написать длинные ряды кратных чисел, чтобы найти общее число. Наименьшее число, которое присутствует в обоих рядах кратных чисел, является наименьшим общим кратным.[2]
- Например, наименьшим числом, которое присутствует в рядах кратных чисел 5 и 8, является число 40. Поэтому 40 – это наименьшее общее кратное чисел 5 и 8.
Реклама
-
1
Посмотрите на данные числа. Описанный здесь метод лучше применять, когда даны два числа, каждое из которых больше 10. Если даны меньшие числа, воспользуйтесь другим методом.
- Например, найдите наименьшее общее кратное чисел 20 и 84. Каждое из чисел больше 10, поэтому можно использовать данный метод.
-
2
Разложите на простые множители первое число. То есть нужно найти такие простые числа, при перемножении которых получится данное число. Найдя простые множители, запишите их в виде равенства.
-
3
Разложите на простые множители второе число. Сделайте это так же, как вы раскладывали на множители первое число, то есть найдите такие простые числа, при перемножении которых получится данное число.
-
4
Запишите множители, общие для обоих чисел. Запишите такие множители в виде операции умножения. По мере записи каждого множителя зачеркивайте его в обоих выражениях (выражения, которые описывают разложения чисел на простые множители).
-
5
К операции умножения добавьте оставшиеся множители. Это множители, которые не зачеркнуты в обоих выражениях, то есть множители, не являющиеся общими для обоих чисел.[3]
-
6
Вычислите наименьшее общее кратное. Для этого перемножьте числа в записанной операции умножения.
- Например, . Таким образом, наименьшее общее кратное 20 и 84 равно 420.
Реклама
-
1
Нарисуйте сетку как для игры в крестики-нолики. Такая сетка представляет собой две параллельные прямые, которые пересекаются (под прямым углом) с другими двумя параллельными прямыми. Таким образом, получатся три строки и три столбца (сетка очень похожа на значок #). Первое число напишите в первой строке и втором столбце. Второе число напишите в первой строке и третьем столбце.[4]
- Например, найдите наименьшее общее кратное чисел 18 и 30. Число 18 напишите в первой строке и втором столбце, а число 30 напишите в первой строке и третьем столбце.
-
2
Найдите делитель, общий для обоих чисел. Запишите его в первой строке и первом столбце. Лучше искать простые делители, но это не является обязательным условием.
- Например, 18 и 30 – это четные числа, поэтому их общим делителем будет число 2. Таким образом, напишите 2 в первой строке и первом столбце.
-
3
Разделите каждое число на первый делитель. Каждое частное запишите под соответствующим числом. Частное – это результат деления двух чисел.
-
4
Найдите делитель, общий для обоих частных. Если такого делителя нет, пропустите два следующих шага. В противном случае делитель запишите во второй строке и первом столбце.
- Например, 9 и 15 делятся на 3, поэтому запишите 3 во второй строке и первом столбце.
-
5
Разделите каждое частное на второй делитель. Каждый результат деления запишите под соответствующим частным.
-
6
Если нужно, дополните сетку дополнительными ячейками. Повторяйте описанные действия до тех пор, пока у частных не будет общего делителя.
-
7
Обведите кружками числа в первом столбце и последней строке сетки. Затем выделенные числа запишите в виде операции умножения.[5]
- Например, числа 2 и 3 находятся в первом столбце, а числа 3 и 5 находятся в последней строке, поэтому операцию умножения запишите так: .
-
8
Найдите результат умножения чисел. Так вы вычислите наименьшее общее кратное двух данных чисел.[6]
- Например, . Таким образом, наименьшее общее кратное 18 и 30 равно 90.
Реклама
-
1
Запомните терминологию, связанную с операцией деления. Делимое – это число, которое делят. Делитель – это число, на которое делят. Частное – это результат деления двух чисел. Остаток – это число, оставшееся при делении двух чисел.[7]
- Например, в выражении ост. 3:
15 – это делимое
6 – это делитель
2 – это частное
3 – это остаток.
- Например, в выражении ост. 3:
-
2
Запишите выражение, которое описывает операцию деления с остатком. Выражение: .[8]
Это выражение будет использовано, чтобы записать алгоритм Евклида и найти наибольший общий делитель двух чисел.- Например, .
- Наибольший общий делитель (НОД) – это наибольшее число, на которое делятся все данные числа.[9]
- В этом методе сначала нужно найти наибольший общий делитель, а затем вычислить наименьшее общее кратное.
-
3
Большее из двух чисел рассматривайте в качестве делимого. Меньшее из двух чисел считайте делителем. Для этих чисел запишите выражение, которое описывает операцию деления с остатком.
- Например, найдите наименьшее общее кратное чисел 210 и 45. Запишите такое выражение: .
-
4
Первый делитель превратите в новое делимое. Остаток используйте в качестве нового делителя. Для этих чисел запишите выражение, которое описывает операцию деления с остатком.
- Например, .
-
5
Повторяйте описанные действия до тех пор, пока остаток не будет равен 0. Предыдущий делитель используйте в качестве нового делимого, а предыдущий остаток – как новый делитель; для этих чисел записывайте соответствующее выражение.[10]
- Например, . Так как остаток равен 0, дальше делить нельзя.
-
6
Посмотрите на последний делитель. Это наибольший общий делитель двух чисел.[11]
- Например, последним выражением было , поэтому последний делитель – это число 15. Таким образом, 15 – это наибольший общий делитель чисел 210 и 45.
-
7
Перемножьте два числа. Затем разделите произведение на наибольший общий делитель. Так вы вычислите наименьшее общее кратное двух чисел.[12]
[[[Image:Find the Least Common Multiple of Two Numbers Step 25.jpg|center]]Реклама
Советы
- Если нужно найти НОК трех и более чисел, упросите себе задачу. Например, чтобы вычислить НОК чисел 16, 20 и 32, сначала найдите наименьшее общее кратное чисел 16 и 20 (оно равно 80), а потом найдите НОК чисел 80 и 32, которое равно 160.
- НОК имеет множество применений. Например, чтобы сложить или вычесть дроби, они должны иметь одинаковый знаменатель. Если у дробей разные знаменатели, нужно преобразовать дроби так, чтобы привести их к общему знаменателю. А это проще сделать, если найти наименьший общий знаменатель, который равен наименьшему общему кратному чисел, которые находятся в знаменателях дробей.
Реклама
Об этой статье
Эту страницу просматривали 69 267 раз.
Была ли эта статья полезной?
Наименьшее о́бщее кратное (HOK) двух целых чисел — это наименьшее натуральное число, которое делится на оба без остатка, то есть кратно им обоим. К примеру, для чисел 6 и 4, наименьшим общим кратным будет 12.
Как найти НОК?
Способов найти НОК несколько. Мы рассмотрим один из часто используемых в математике — это нахождение НОК при помощи разложения чисел на простые множители. В общем случае алгоритм будет выглядеть следующим образом:
- разложить оба числа на простые множители;
- выбрать одну группу множителей;
- добавить к ним множители из второй группы, которые отсутствуют в выбранной;
- найти их произведение.
Примеры нахождения наименьшего общего кратного
Рассмотрим приведенный алгоритм на конкретных примерах:
Пример 1: найти НОК 4 и 6
1. Раскладываем 6 и 4 на простые множители:
2. Возьмем первую группу множителей: 2 · 3.
3. Смотрим вторую группу (2 · 2) и видим, что из двух двоек, одна присутствует в первом разложении. Таким образом, берем только одну двойку. Добавляем к первому разложению и получаем: 2 · 3 · 2
4. Вычисляем произведение: 2 · 3 · 2 = 12.
Ответ: НОК (6; 4) = 12
Пример 2: найти НОК 32 и 20
1. Раскладываем 32 и 20 на простые множители:
2. Возьмем первую группу множителей: 2 · 2 · 2 · 2 · 2.
3. Смотрим вторую группу (2 · 2 · 5) и видим, что из двух двоек и пятерки, обе двойки присутствуют в первом разложении. Таким образом, берем только пятерку. Добавляем к первому разложению и получаем: 2 · 3 · 2
4. Вычисляем произведение: 2 · 2 · 2 · 2 · 2 · 5 = 160.
Ответ: НОК (32; 20) = 160