Как найти перемещение по окружности зная радиус

I. Механика

Тестирование онлайн

Так как линейная скорость равномерно меняет направление, то движение по окружности нельзя назвать равномерным, оно является равноускоренным.

Угловая скорость

Выберем на окружности точку 1. Построим радиус. За единицу времени точка переместится в пункт 2. При этом радиус описывает угол. Угловая скорость численно равна углу поворота радиуса за единицу времени.

Период и частота

Период вращения T — это время, за которое тело совершает один оборот.

Частота вращение — это количество оборотов за одну секунду.

Частота и период взаимосвязаны соотношением

Связь с угловой скоростью

Линейная скорость

Каждая точка на окружности движется с некоторой скоростью. Эту скорость называют линейной. Направление вектора линейной скорости всегда совпадает с касательной к окружности. Например, искры из-под точильного станка двигаются, повторяя направление мгновенной скорости.

Рассмотрим точку на окружности, которая совершает один оборот, время, которое затрачено — это есть период T. Путь, который преодолевает точка — это есть длина окружности.

Центростремительное ускорение

При движении по окружности вектор ускорения всегда перпендикулярен вектору скорости, направлен в центр окружности.

Используя предыдущие формулы, можно вывести следующие соотношения

Точки, лежащие на одной прямой исходящей из центра окружности (например, это могут быть точки, которые лежат на спице колеса), будут иметь одинаковые угловые скорости, период и частоту. То есть они будут вращаться одинаково, но с разными линейными скоростями. Чем дальше точка от центра, тем быстрей она будет двигаться.

Закон сложения скоростей справедлив и для вращательного движения. Если движение тела или системы отсчета не является равномерным, то закон применяется для мгновенных скоростей. Например, скорость человека, идущего по краю вращающейся карусели, равна векторной сумме линейной скорости вращения края карусели и скорости движения человека.

Вращение Земли

Земля участвует в двух основных вращательных движениях: суточном (вокруг своей оси) и орбитальном (вокруг Солнца). Период вращения Земли вокруг Солнца составляет 1 год или 365 суток. Вокруг своей оси Земля вращается с запада на восток, период этого вращения составляет 1 сутки или 24 часа. Широтой называется угол между плоскостью экватора и направлением из центра Земли на точку ее поверхности.

Связь со вторым законом Ньютона

Согласно второму закону Ньютона причиной любого ускорения является сила. Если движущееся тело испытывает центростремительное ускорение, то природа сил, действием которых вызвано это ускорение, может быть различной. Например, если тело движется по окружности на привязанной к нему веревке, то действующей силой является сила упругости.

Если тело, лежащее на диске, вращается вместе с диском вокруг его оси, то такой силой является сила трения. Если сила прекратит свое действие, то далее тело будет двигаться по прямой

Как вывести формулу центростремительного ускорения

Рассмотрим перемещение точки на окружности из А в В. Линейная скорость равна vA и vB соответственно. Ускорение — изменение скорости за единицу времени. Найдем разницу векторов.

Разница векторов есть . Так как , получим

Движение по циклоиде*

В системе отсчета, связанной с колесом, точка равномерно вращается по окружности радиуса R со скоростью , которая изменяется только по направлению. Центростремительное ускорение точки направлено по радиусу к центру окружности.

Теперь перейдем в неподвижную систему, связанную с землей. Полное ускорение точки А останется прежним и по модулю, и по направлению, так как при переходе от одной инерциальной системы отсчета к другой ускорение не меняется. С точки зрения неподвижного наблюдателя траектория точки А — уже не окружность, а более сложная кривая (циклоида), вдоль которой точка движется неравномерно.

Мгновенная скорость определяется по формуле

Как найти перемещение зная радиус окружности

I. Механика

Тестирование онлайн

Так как линейная скорость равномерно меняет направление, то движение по окружности нельзя назвать равномерным, оно является равноускоренным.

Угловая скорость

Выберем на окружности точку 1. Построим радиус. За единицу времени точка переместится в пункт 2. При этом радиус описывает угол. Угловая скорость численно равна углу поворота радиуса за единицу времени.

Период и частота

Период вращения T — это время, за которое тело совершает один оборот.

Частота вращение — это количество оборотов за одну секунду.

Частота и период взаимосвязаны соотношением

Связь с угловой скоростью

Линейная скорость

Каждая точка на окружности движется с некоторой скоростью. Эту скорость называют линейной. Направление вектора линейной скорости всегда совпадает с касательной к окружности. Например, искры из-под точильного станка двигаются, повторяя направление мгновенной скорости.

Рассмотрим точку на окружности, которая совершает один оборот, время, которое затрачено — это есть период T. Путь, который преодолевает точка — это есть длина окружности.

Центростремительное ускорение

При движении по окружности вектор ускорения всегда перпендикулярен вектору скорости, направлен в центр окружности.

Используя предыдущие формулы, можно вывести следующие соотношения

Точки, лежащие на одной прямой исходящей из центра окружности (например, это могут быть точки, которые лежат на спице колеса), будут иметь одинаковые угловые скорости, период и частоту. То есть они будут вращаться одинаково, но с разными линейными скоростями. Чем дальше точка от центра, тем быстрей она будет двигаться.

Закон сложения скоростей справедлив и для вращательного движения. Если движение тела или системы отсчета не является равномерным, то закон применяется для мгновенных скоростей. Например, скорость человека, идущего по краю вращающейся карусели, равна векторной сумме линейной скорости вращения края карусели и скорости движения человека.

Вращение Земли

Земля участвует в двух основных вращательных движениях: суточном (вокруг своей оси) и орбитальном (вокруг Солнца). Период вращения Земли вокруг Солнца составляет 1 год или 365 суток. Вокруг своей оси Земля вращается с запада на восток, период этого вращения составляет 1 сутки или 24 часа. Широтой называется угол между плоскостью экватора и направлением из центра Земли на точку ее поверхности.

Связь со вторым законом Ньютона

Согласно второму закону Ньютона причиной любого ускорения является сила. Если движущееся тело испытывает центростремительное ускорение, то природа сил, действием которых вызвано это ускорение, может быть различной. Например, если тело движется по окружности на привязанной к нему веревке, то действующей силой является сила упругости.

Если тело, лежащее на диске, вращается вместе с диском вокруг его оси, то такой силой является сила трения. Если сила прекратит свое действие, то далее тело будет двигаться по прямой

Как вывести формулу центростремительного ускорения

Рассмотрим перемещение точки на окружности из А в В. Линейная скорость равна vA и vB соответственно. Ускорение — изменение скорости за единицу времени. Найдем разницу векторов.

Разница векторов есть . Так как , получим

Движение по циклоиде*

В системе отсчета, связанной с колесом, точка равномерно вращается по окружности радиуса R со скоростью , которая изменяется только по направлению. Центростремительное ускорение точки направлено по радиусу к центру окружности.

Теперь перейдем в неподвижную систему, связанную с землей. Полное ускорение точки А останется прежним и по модулю, и по направлению, так как при переходе от одной инерциальной системы отсчета к другой ускорение не меняется. С точки зрения неподвижного наблюдателя траектория точки А — уже не окружность, а более сложная кривая (циклоида), вдоль которой точка движется неравномерно.

Мгновенная скорость определяется по формуле

Движение по окружности

Движение по окружности — простейший случай криволинейного движения тела. Когда тело движется вокруг некоторой точки, наряду с вектором перемещения удобно ввести угловое перемещение ∆ φ (угол поворота относительно центра окружности), измеряемое в радианах.

Зная угловое перемещение, можно вычислить длину дуги окружности (путь), которую прошло тело.

Если угол поворота мал, то ∆ l ≈ ∆ s .

Угловая скорость

При криволинейном движении вводится понятие угловой скорости ω , то есть скорости изменения угла поворота.

Определение. Угловая скорость

Угловая скорость в данной точке траектории — предел отношения углового перемещения ∆ φ к промежутку времени ∆ t , за которое оно произошло. ∆ t → 0 .

ω = ∆ φ ∆ t , ∆ t → 0 .

Единица измерения угловой скорости — радиан в секунду ( р а д с ).

Существует связь между угловой и линейной скоростями тела при движении по окружности. Формула для нахождения угловой скорости:

Нормальное ускорение

При равномерном движении по окружности, скорости v и ω остаются неизменными. Меняется только направление вектора линейной скорости.

При этом равномерное движение по окружности на тело действует центростремительное, или нормальное ускорение, направленное по радиусу окружности к ее центру.

a n = ∆ v → ∆ t , ∆ t → 0

Модуль центростремительного ускорения можно вычислить по формуле:

a n = v 2 R = ω 2 R

Докажем эти соотношения.

Рассмотрим, как изменяется вектор v → за малый промежуток времени ∆ t . ∆ v → = v B → — v A → .

В точках А и В вектор скорости направлен по касательной к окружности, при этом модули скоростей в обеих точках одинаковы.

По определению ускорения:

a → = ∆ v → ∆ t , ∆ t → 0

Взглянем на рисунок:

Треугольники OAB и BCD подобны. Из этого следует, что O A A B = B C C D .

Если значение угла ∆ φ мало, расстояние A B = ∆ s ≈ v · ∆ t . Принимая во внимание, что O A = R и C D = ∆ v для рассмотренных выше подобных треугольников получим:

R v ∆ t = v ∆ v или ∆ v ∆ t = v 2 R

При ∆ φ → 0 , направление вектора ∆ v → = v B → — v A → приближается к направлению на центр окружности. Принимая, что ∆ t → 0 , получаем:

a → = a n → = ∆ v → ∆ t ; ∆ t → 0 ; a n → = v 2 R .

При равномерном движении по окружности модуль ускорения остается постоянным, а направление вектора изменяется со временем, сохраняя ориентацию на центр окружности. Именно поэтому это ускорение называется центростремительным: вектор в любой момент времени направлен к центру окружности.

Запись центростремительного ускорения в векторной форме выглядит следующим образом:

Здесь R → — радиус вектор точки на окружности с началом в ее центре.

Тангенциальное ускорение

В общем случае ускорение при движении по окружности состоит из двух компонентов — нормальное, и тангенциальное.

Рассмотрим случай, когда тело движется по окружности неравномерно. Введем понятие тангенциального (касательного) ускорения. Его направление совпадает с направлением линейной скорости тела и в каждой точке окружности направлено по касательной к ней.

a τ = ∆ v τ ∆ t ; ∆ t → 0

Здесь ∆ v τ = v 2 — v 1 — изменение модуля скорости за промежуток ∆ t

Направление полного ускорения определяется векторной суммой нормального и тангенциального ускорений.

Движение по окружности в плоскости можно описывать при помощи двух координат: x и y. В каждый момент времени скорость тела можно разложить на составляющие v x и v y .

Если движение равномерное, величины v x и v y а также соответствующие координаты будут изменяться во времени по гармоническому закону с периодом T = 2 π R v = 2 π ω

Движение по окружности с постоянной по модулю скоростью

теория по физике 🧲 кинематика

Криволинейное движение — движение, траекторией которого является кривая линия. Вектор скорости тела, движущегося по кривой линии, направлен по касательной к траектории. Любой участок криволинейного движения можно представить в виде движения по дуге окружности или по участку ломаной.

Движение по окружности с постоянной по модулю скоростью — частный и самый простой случай криволинейного движения. Это движение с переменным ускорением, которое называется центростремительным.

Особенности движения по окружности с постоянной по модулю скоростью:

  1. Траектория движения тела есть окружность.
  2. Вектор скорости всегда направлен по касательной к окружности.
  3. Направление скорости постоянно меняется под действием центростремительного ускорения.
  4. Центростремительное ускорение направлено к центру окружности и не вызывает изменения модуля скорости.

Период, частота и количество оборотов

Пусть тело двигается по окружности беспрерывно. Когда оно сделает один оборот, пройдет некоторое время. Когда тело сделает еще один оборот, пройдет еще столько же времени. Это время не будет меняться, потому что тело движется с постоянной по модулю скоростью. Такое время называют периодом.

Период — время одного полного оборота. Обозначается буквой T. Единица измерения — секунды (с).

t — время, в течение которого тело совершило N оборотов

За один и тот же промежуток времени тело может проходить лишь часть окружности или совершать несколько единиц, десятков, сотен или более оборотов. Все зависит от длины окружности и модуля скорости.

Частота — количество оборотов, совершенных в единицу времени. Обозначается буквой ν («ню»). Единица измерения — Гц.

N — количество оборотов, совершенных телом за время t.

Период и частота — это обратные величины, определяемые формулами:

Количество оборотов выражается следующей формулой:

Пример №1. Шарик на нити вращается по окружности. За 10 секунд он совершил 20 оборотов. Найти период и частоту вращения шарика.

Линейная и угловая скорости

Линейная скорость

Линейная скорость — это отношение пройденного пути ко времени, в течение которого этот путь был пройден. Обозначается буквой v. Единица измерения — м/с.

l — длина траектории, вдоль которой двигалось тело за время t

Линейную скорость можно выразить через период. За один период тело делает один оборот, то есть проходить путь, равный длине окружности. Поэтому его скорость равна:

R — радиус окружности, по которой движется тело

Если линейную скорость можно выразить через период, то ее можно выразить и через частоту — величину, обратную периоду. Тогда формула примет вид:

Выразив частоту через количество оборотов и время, в течение которого тело совершало эти обороты, получим:

Угловая скорость

Угловая скорость — это отношение угла поворота тела ко времени, в течение которого тело совершало этот поворот. Обозначается буквой ω. Единица измерения — радиан в секунду (рад./с).

ϕ — угол поворота тела. t — время, в течение которого тело повернулось на угол ϕ

Радиан — угол, соответствующий дуге, длина которой равна ее радиусу. Полный угол равен 2π радиан.

За один полный оборот тело поворачивается на 2π радиан. Поэтому угловую скорость можно выразить через период:

Выражая угловую скорость через частоту, получим:

Выразив частоту через количество оборотов, формула угловой скорости примет вид:

Сравним две формулы:

Преобразуем формулу линейной скорости и получим:

Отсюда получаем взаимосвязь между линейной и угловой скоростями:

  • У вращающихся прижатых друг к другу цилиндров линейные скорости точек их поверхности равны: v1 = v2.
  • У вращающихся шестерен линейные скорости точек их поверхности также равны: v1 = v2.
  • Все точки вращающегося твердого тела имеют одинаковые периоды, частоты и угловые скорости, но разные линейные скорости. T1 = T2, ν1 = ν2, ω1 = ω2. Но v1 ≠ v2.

Пример №2. Период обращения Земли вокруг Солнца равен одному году. Радиус орбиты Земли равен 150 млн. км. Чему примерно равна скорость движения Земли по орбите? Ответ округлить до целых.

В году 365 суток, в одних сутках 24 часа, в 1 часе 60 минут, в одной минуте 60 секунд. Перемножив все эти числа между собой, получим период в секундах.

За каждую секунду Земля проходит расстояние, равное примерно 30 км.

Центростремительное ускорение

Центростремительное ускорение — ускорение с постоянным модулем, но меняющимся направлением. Поэтому оно вызывает изменение направления вектора скорости, но не изменяет его модуль. Центростремительное ускорение обозначается как aц.с.. Единица измерения — метры на секунду в квадрате (м/с 2 ). Центростремительное ускорение можно выразить через линейную и угловую скорости, период, частоту и количество оборотов/время:

Пример №3. Рассчитать центростремительное ускорение льва, спящего на экваторе, в системе отсчета, две оси которой лежат в плоскости экватора и направлены на неподвижные звезды, а начало координат совпадает с центром Земли.

Спящий лев сделает один полный оборот тогда, когда Земля сделает один оборот вокруг своей оси. Земля делает это за время, равное 1 сутки. Поэтому период обращения равен 1 суткам. Количество секунд в сутках: 1 сутки = 24•60•60 секунд = 86400 секунд = 86,4∙10 3 секунд.

Радиус Земли равен 6400 км. В метрах это будет 6,4∙10 6 . Теперь у нас есть все, что нужно для вычисления центростремительного ускорения. Подставляем данные в формулу:

Алгоритм решения

  1. Записать исходные данные.
  2. Записать формулу для определения искомой величины.
  3. Подставить известные данные в формулу и произвести вычисления.

Решение

Записываем исходные данные:

  • Радиус окружности, по которой движется автомобиль: R = 100 м.
  • Скорость автомобиля во время движения по окружности: v = 20 м/с.

Формула, определяющая зависимость центростремительного ускорения от скорости движения тела:

Подставляем известные данные в формулу и вычисляем:

pазбирался: Алиса Никитина | обсудить разбор | оценить

Точка движется по окружности радиусом R с частотой обращения ν. Как нужно изменить частоту обращения, чтобы при увеличении радиуса окружности в 4 раза центростремительное ускорение точки осталось прежним?

а) увеличить в 2 раза б) уменьшить в 2 раза в) увеличить в 4 раза г) уменьшить в 4 раза

Алгоритм решения

  1. Записать исходные данные.
  2. Определить, что нужно найти.
  3. Записать формулу зависимости центростремительного ускорения от частоты.
  4. Преобразовать формулу зависимости центростремительного ускорения от частоты для каждого из случаев.
  5. Приравнять правые части формул и найти искомую величину.

Решение

Запишем исходные данные:

Центростремительное ускорение определяется формулой:

Запишем формулы центростремительного ускорения для 1 и 2 случаев соответственно:

Так как центростремительное ускорение в 1 и 2 случае одинаково, приравняем правые части уравнений:

Произведем сокращения и получим:

Это значит, чтобы центростремительное ускорение осталось неизменным после увеличения радиуса окружности в 4 раза, частота должна уменьшиться вдвое. Верный ответ: «б».

pазбирался: Алиса Никитина | обсудить разбор | оценить

Движение по окружности с постоянной по модулю скоростью

теория по физике 🧲 кинематика

Криволинейное движение — движение, траекторией которого является кривая линия. Вектор скорости тела, движущегося по кривой линии, направлен по касательной к траектории. Любой участок криволинейного движения можно представить в виде движения по дуге окружности или по участку ломаной.

Движение по окружности с постоянной по модулю скоростью — частный и самый простой случай криволинейного движения. Это движение с переменным ускорением, которое называется центростремительным.

Особенности движения по окружности с постоянной по модулю скоростью:

  1. Траектория движения тела есть окружность.
  2. Вектор скорости всегда направлен по касательной к окружности.
  3. Направление скорости постоянно меняется под действием центростремительного ускорения.
  4. Центростремительное ускорение направлено к центру окружности и не вызывает изменения модуля скорости.

Период, частота и количество оборотов

Пусть тело двигается по окружности беспрерывно. Когда оно сделает один оборот, пройдет некоторое время. Когда тело сделает еще один оборот, пройдет еще столько же времени. Это время не будет меняться, потому что тело движется с постоянной по модулю скоростью. Такое время называют периодом.

Период — время одного полного оборота. Обозначается буквой T. Единица измерения — секунды (с).

t — время, в течение которого тело совершило N оборотов

За один и тот же промежуток времени тело может проходить лишь часть окружности или совершать несколько единиц, десятков, сотен или более оборотов. Все зависит от длины окружности и модуля скорости.

Частота — количество оборотов, совершенных в единицу времени. Обозначается буквой ν («ню»). Единица измерения — Гц.

N — количество оборотов, совершенных телом за время t.

Период и частота — это обратные величины, определяемые формулами:

Количество оборотов выражается следующей формулой:

Пример №1. Шарик на нити вращается по окружности. За 10 секунд он совершил 20 оборотов. Найти период и частоту вращения шарика.

Линейная и угловая скорости

Линейная скорость

Линейная скорость — это отношение пройденного пути ко времени, в течение которого этот путь был пройден. Обозначается буквой v. Единица измерения — м/с.

l — длина траектории, вдоль которой двигалось тело за время t

Линейную скорость можно выразить через период. За один период тело делает один оборот, то есть проходить путь, равный длине окружности. Поэтому его скорость равна:

R — радиус окружности, по которой движется тело

Если линейную скорость можно выразить через период, то ее можно выразить и через частоту — величину, обратную периоду. Тогда формула примет вид:

Выразив частоту через количество оборотов и время, в течение которого тело совершало эти обороты, получим:

Угловая скорость

Угловая скорость — это отношение угла поворота тела ко времени, в течение которого тело совершало этот поворот. Обозначается буквой ω. Единица измерения — радиан в секунду (рад./с).

ϕ — угол поворота тела. t — время, в течение которого тело повернулось на угол ϕ

Радиан — угол, соответствующий дуге, длина которой равна ее радиусу. Полный угол равен 2π радиан.

За один полный оборот тело поворачивается на 2π радиан. Поэтому угловую скорость можно выразить через период:

Выражая угловую скорость через частоту, получим:

Выразив частоту через количество оборотов, формула угловой скорости примет вид:

Сравним две формулы:

Преобразуем формулу линейной скорости и получим:

Отсюда получаем взаимосвязь между линейной и угловой скоростями:

Полезные факты

  • У вращающихся прижатых друг к другу цилиндров линейные скорости точек их поверхности равны: v1 = v2.
  • У вращающихся шестерен линейные скорости точек их поверхности также равны: v1 = v2.
  • Все точки вращающегося твердого тела имеют одинаковые периоды, частоты и угловые скорости, но разные линейные скорости. T1 = T2, ν1 = ν2, ω1 = ω2. Но v1 ≠ v2.

Пример №2. Период обращения Земли вокруг Солнца равен одному году. Радиус орбиты Земли равен 150 млн. км. Чему примерно равна скорость движения Земли по орбите? Ответ округлить до целых.

В году 365 суток, в одних сутках 24 часа, в 1 часе 60 минут, в одной минуте 60 секунд. Перемножив все эти числа между собой, получим период в секундах.

За каждую секунду Земля проходит расстояние, равное примерно 30 км.

Центростремительное ускорение

Центростремительное ускорение — ускорение с постоянным модулем, но меняющимся направлением. Поэтому оно вызывает изменение направления вектора скорости, но не изменяет его модуль. Центростремительное ускорение обозначается как aц.с.. Единица измерения — метры на секунду в квадрате (м/с 2 ). Центростремительное ускорение можно выразить через линейную и угловую скорости, период, частоту и количество оборотов/время:

Пример №3. Рассчитать центростремительное ускорение льва, спящего на экваторе, в системе отсчета, две оси которой лежат в плоскости экватора и направлены на неподвижные звезды, а начало координат совпадает с центром Земли.

Спящий лев сделает один полный оборот тогда, когда Земля сделает один оборот вокруг своей оси. Земля делает это за время, равное 1 сутки. Поэтому период обращения равен 1 суткам. Количество секунд в сутках: 1 сутки = 24•60•60 секунд = 86400 секунд = 86,4∙10 3 секунд.

Радиус Земли равен 6400 км. В метрах это будет 6,4∙10 6 . Теперь у нас есть все, что нужно для вычисления центростремительного ускорения. Подставляем данные в формулу:

Алгоритм решения

  1. Записать исходные данные.
  2. Записать формулу для определения искомой величины.
  3. Подставить известные данные в формулу и произвести вычисления.

Решение

Записываем исходные данные:

  • Радиус окружности, по которой движется автомобиль: R = 100 м.
  • Скорость автомобиля во время движения по окружности: v = 20 м/с.

Формула, определяющая зависимость центростремительного ускорения от скорости движения тела:

Подставляем известные данные в формулу и вычисляем:

pазбирался: Алиса Никитина | обсудить разбор | оценить

Точка движется по окружности радиусом R с частотой обращения ν. Как нужно изменить частоту обращения, чтобы при увеличении радиуса окружности в 4 раза центростремительное ускорение точки осталось прежним?

а) увеличить в 2 раза б) уменьшить в 2 раза в) увеличить в 4 раза г) уменьшить в 4 раза

Алгоритм решения

  1. Записать исходные данные.
  2. Определить, что нужно найти.
  3. Записать формулу зависимости центростремительного ускорения от частоты.
  4. Преобразовать формулу зависимости центростремительного ускорения от частоты для каждого из случаев.
  5. Приравнять правые части формул и найти искомую величину.

Решение

Запишем исходные данные:

Центростремительное ускорение определяется формулой:

Запишем формулы центростремительного ускорения для 1 и 2 случаев соответственно:

Так как центростремительное ускорение в 1 и 2 случае одинаково, приравняем правые части уравнений:

Произведем сокращения и получим:

Это значит, чтобы центростремительное ускорение осталось неизменным после увеличения радиуса окружности в 4 раза, частота должна уменьшиться вдвое. Верный ответ: «б».

pазбирался: Алиса Никитина | обсудить разбор | оценить

источники:

http://b4.cooksy.ru/articles/kak-nayti-peremeschenie-znaya-radius-okruzhnosti

Движение по окружности с постоянной по модулю скоростью

I. Механика

Тестирование онлайн

Так как линейная скорость равномерно меняет направление, то движение по окружности нельзя назвать равномерным, оно является равноускоренным.

Угловая скорость

Выберем на окружности точку 1. Построим радиус. За единицу времени точка переместится в пункт 2. При этом радиус описывает угол. Угловая скорость численно равна углу поворота радиуса за единицу времени.

Период и частота

Период вращения T — это время, за которое тело совершает один оборот.

Частота вращение — это количество оборотов за одну секунду.

Частота и период взаимосвязаны соотношением

Связь с угловой скоростью

Линейная скорость

Каждая точка на окружности движется с некоторой скоростью. Эту скорость называют линейной. Направление вектора линейной скорости всегда совпадает с касательной к окружности. Например, искры из-под точильного станка двигаются, повторяя направление мгновенной скорости.

Рассмотрим точку на окружности, которая совершает один оборот, время, которое затрачено — это есть период T. Путь, который преодолевает точка — это есть длина окружности.

Центростремительное ускорение

При движении по окружности вектор ускорения всегда перпендикулярен вектору скорости, направлен в центр окружности.


Используя предыдущие формулы, можно вывести следующие соотношения

Точки, лежащие на одной прямой исходящей из центра окружности (например, это могут быть точки, которые лежат на спице колеса), будут иметь одинаковые угловые скорости, период и частоту. То есть они будут вращаться одинаково, но с разными линейными скоростями. Чем дальше точка от центра, тем быстрей она будет двигаться.

Закон сложения скоростей справедлив и для вращательного движения. Если движение тела или системы отсчета не является равномерным, то закон применяется для мгновенных скоростей. Например, скорость человека, идущего по краю вращающейся карусели, равна векторной сумме линейной скорости вращения края карусели и скорости движения человека.

Вращение Земли

Связь со вторым законом Ньютона

Как вывести формулу центростремительного ускорения

Движение по циклоиде*

Человек регулярно сталкивается с разными видами движения. Перемещение тела по окружности позволяет понять многие физические процессы. На основе закономерностей такого явления работают разнообразные механизмы. Рассчитать характеристики движения по окружности достаточно просто, если знать и уметь применять несколько основных формул.

Движение тела по окружности — какими законами описывается

Движением по окружности в теории называют вращение какой-либо материальной точки или тела относительно оси, неподвижной в выбранной системе отсчета и не проходящей через центр тела.

Тело может двигаться по окружности двумя способами:

  • равномерно;
  • неравномерно.

Равномерное движение тела характеризуется постоянной угловой скоростью. Для описания такого перемещения применяют следующие формулы:

  • угловая скорость: (omega =frac{2pi }{T})
  • скорость движения: (V =frac{2pi R}{T}=omega R)
  • угол поворота: (phi =2pi frac{t}{T}=omega t)
  • ускорение: (frac{2pi v}{T}=omega ^{2}R)

Неравномерное движение возможно при переменной угловой скорости тела. В данном случае применимы формулы:

  • тангенциальное ускорение: (a_{t}=frac{dv}{dt})
  • центростремительное ускорение: (a_{n}=frac{v^{2}}{R}=omega ^{2}R)

В представленных уравнениях используются такие параметры, как:

  • Т — период вращения;
  • t — время;
  • ω — угловая скорость;
  • R — радиус;
  • at — тангенциальное ускорение;
  • an — центростремительное или полное ускорение.

При отсутствии специальных оговорок, в процессе решения задач движение тела по окружности принимают за равномерное. Для расчета пройденного пути используют формулу:

(S=frac{v}{t})

где:

  • S является расстоянием, которое преодолело тело;
  • v представляет собой скорость движения тела;
  • t определяет время движения.

Таким образом, справедливы выражения:

(v=frac{S}{t})

(t =frac{v}{S})

Величины, которые применяют для решения задач, характеризуются положительными значениями:

S > 0, v > 0, t > 0

При решении задач принято все величины переводить в единицы измерения, согласно системе СИ.

Секретом заданий на движение тела по окружности является то, что обгоняющий будет преодолевать на 1 круг больше при первом обгоне. Данное расстояние считается на n кругов больше, если первый объект обогнал другого в n-ый раз.

Часы

Источник: phototass3.cdnvideo.ru

Задачи на движение по окружности от простых до сложных

Задачи на движение тела по окружности отличаются по степени сложности. Можно рассмотреть примеры простых заданий.

Задача 1

Длина круговой трассы составляет 8 километров. Из ее точки в один момент времени в одинаковом направлении выехали два автомобиля. Первый автомобиль развил скорость 114 км/ч и, спустя 20 минут после начала движения, обогнал второй автомобиль на один круг. Требуется определить скорость, с которой двигался второй автомобиль. Ответ необходимо представить в км/ч.

Решение

Известно, что старт произошел одновременно для обоих автомобилей. Через 20 минут после начала движения первое транспортное средство опережало второе на один круг. Таким образом, в течение 20 минут или 1/3 часа первый автомобиль преодолел на 1 круг больше, то есть на 8 км больше. За час первый автомобиль проехал на 8*3=24 км больше, чем второй. Скорость второго транспортного средства на 24 км/ч меньше по сравнению с первым, и равна 114-24=90 км/ч.

Ответ: второй автомобиль двигался со скоростью 90 км/ч.

Задача 2

Из пункта А круговой трассы выехал велосипедист, а спустя полчаса стартовал мотоциклист. Через 10 минут после начала пути водитель мотоцикла догнал велосипедиста в первый раз. Спустя еще 30 минут мотоциклист догнал велосипедиста повторно. Требуется определить, какова скорость мотоциклиста, в том случае, когда длина трассы составляет 30 км. Ответ необходимо представить в км/ч.

Решение

В первую очередь требуется перевести минуты в часы. Скорости мотоциклиста и велосипедиста можно обозначить х и у. В первый раз водитель мотоцикла обогнал велосипедиста, спустя 10 минут или 1/6 часа после начала движения. До этого момента велосипедист находился в движении 40 минут или 2/3 часа.

Можно упростить запись условий задачи:

велосипедист: v = х, t = 2/3, S = 2/3*х;

мотоциклист: v = у, t = 1/6, S = 1/6*у.

Велосипедист и мотоциклист преодолели одинаковый путь:

(frac{1}{6}y=frac{2}{3}x)

Спустя 30 минут или 1/2 часа после первого обгона мотоциклист выполнил второй обгон велосипедиста.

Таким образом:

велосипедист: v = х, t = 1/2, S = 1/2*х;

мотоциклист: v = у, t = 1/2, S = 1/2*у.

Требуется определить расстояния, которые преодолели гонщики. Мотоциклист обогнал велосипедиста, то есть проехал больше на один круг. Это является ключевым моментом в данной задаче. Один круг составляет 30 километров. Второе уравнение будет иметь вид:

(frac{1}{2}y-frac{1}{2}x=30)

Далее необходимо решить полученную систему:

у = 4х

у – х = 60

Таким образом, х = 20, у = 80.

Ответ: скорость мотоциклиста равна 80 км/ч.

Бывают задания на движение тела по окружности с повышенной степенью сложности. Как правило, подобные примеры при невозможности проведения экспериментов требуют сложных вычислений.

Задача 3

На часах со стрелками время 8 часов 00 минут. Требуется определить, через сколько минут минутная стрелка в четвертый раз догонит часовую стрелку.

Решение

Спустя один час минутная стрелка преодолевает один круг, а часовая проходит лишь 1/12 циферблата. Допустим, что скорости равны 1 круг в час и 1/12 круга в час соответственно. Начало движения приходится на 8.00. Необходимо определить время, в течение которого минутной стрелке в первый раз удастся догнать часовую.

Минутная стрелка преодолеет на 2/3 круга больше. Исходя из этого, можно записать уравнение:

(1*t-frac{1}{12}t=frac{2}{3})

Таким образом, спустя 8/11 часа стрелки совпадут. Предположим, что через время z стрелки совпадут повторно. Минутная стрелка преодолеет расстояние 1*z, а часовая 1/12*z. При этом минутной стрелкой будет пройдено на один круг больше. Можно записать уравнение:

(1*z-frac{1}{12}z=1)

Решение данного уравнения будет таким:

(z=frac{12}{11})

Таким образом, через 12/11 часа стрелки совпадут повторно. Спустя еще 12/11 часа они встретятся вновь и так далее. Поэтому при старте в 8.00 в четвертый раз минутная стрелка догонит часовую через:

(frac{8}{11}+3frac{12}{11}) часа

Ответ: минутная и часовая стрелки совпадут в четвертый раз через (frac{8}{11}+3frac{12}{11})часа.

Нередко при решении задач на движение по окружности требуется рассчитать среднюю скорость тела. Важно, что данная величина не совпадает со средним арифметическим скоростей. Средняя скорость определяется с помощью формулы:

(v=frac{S_{0}}{t_{0}})

где v является средней скоростью;

S0 представляет собой общий путь;

t0 определяет общее время.

При наличии двух участков пути средняя скорость рассчитывается по формуле:

(v=frac{S_{1}+S_{2}}{t_{1}+t_{2}})

Наиболее сложными задачами считаются примеры с пятизначными дискриминантами. Рассмотрим алгоритм действий в таком случае.

Гонки

Источник: kramar-motorsport.ru

Задача 4

Пара гонщиков участвует в соревновании. Путь, который требуется преодолеть, равен 60 кругам кольцевой трассы в 3 км. После одновременного старта первый гонщик пересек финиш раньше, чем второй на 10 минут. Требуется рассчитать среднюю скорость второго гонщика. Известно, что впервые первый участник обогнал второго на круг, спустя 15 минут после начала движения. Ответ требуется записать в км/ч.

Решение

Первый участник гонки, находясь в движении 15 минут, догнал второго гонщика на первом круге. Таким образом, в течение 15 минут он преодолел на 1 круг или на 3 км больше, чем второй. За час первый гонщик проехал 3*4=12 километров больше. При этом скорость его движения на 12 км/ч превышает скорость второго гонщика. 10 минут соответствует ¼ часа. Можно записать уравнение:

(frac{180}{x}-frac{180}{x+12}=frac{1}{6})

Далее необходимо преобразовать выражение к квадратному уравнению:

(x^{2}+12x-12960=0)

Таким образом, получен пятизначный дискриминант. Есть более простой вариант решения задачи. Можно записать уравнение:

(frac{180}{x}-frac{180}{x+12}=frac{1}{6})

В нем 180 можно поделить на 12. Заменим х=12z:

(frac{180}{12z}-frac{180}{12z+12}=frac{1}{6})

(frac{15}{z}-frac{15}{z+1}=frac{1}{6})

(frac{90}{z}-frac{90}{z+1}=1)

Данное равенство можно преобразить в квадратное уравнение. Целый положительный корень такого выражения z=9. Тогда получим:

(х=12z=108)

Ответ: средняя скорость второго гонщика равна 108 км/ч.

Нахождение линейной скорости при движении по окружности

Любая точка, находящаяся на окружности, перемещается с некоторой скоростью. Данная величина называется линейной скоростью. Вектор линейной скорости всегда совпадает по направлению с касательной к окружности. К примеру, стружка из точильного станка движется, повторяя направление мгновенной скорости.

Нахождение линейной скорости

Источник: msk.edu.ua

Можно рассмотреть какую-то точку на окружности, совершившую один оборот. При этом было затрачено время равное периоду Т. Расстояние или путь, пройденный точкой, представляет собой длину рассматриваемой окружности.

Линейная скорость

Источник: msk.edu.ua

Формулы

Источник: msk.edu.ua

Задачи на тему равномерное движение по окружности

Задача 1

Радиус выпуклого моста равен 90 м. Требуется определить скорость, с которой автомобиль должен пройти его середину, чтобы пассажир на мгновение ощутил невесомость.

Решение

Согласно условиям задачи:

R = 90 м

N = 0

Сила реакции опоры обладает нулевым значением, так как пассажир в состоянии невесомости не оказывает давление на сиденье автомобиля.

Сила реакции опоры

Источник: static-interneturok.cdnvideo.ru

Решение задачи необходимо представить в системе отсчета, которая связана с Землей. Человек совершает движение вместе с автомобилем. Ускорение при этом направлено вниз. На пассажира действует сила притяжения Земли, которая будет центростремительной:

(mg=mfrac{v^{2}}{R})

Таким образом:

(v=sqrt{frac{Rmg}{m}}=sqrt{Rg}=sqrt{90*10}=30) м/с

Ответ: скорость автомобиля составляет 30 м/с.

Задача 2

Масса девочки 40 кг. Она качается на качелях, длина подвеса которых составляет 4 м. Требуется определить силу, с которой девочка давит на сиденье при прохождении среднего положения со скоростью 5 м/с.

Задача 2

Источник: static-interneturok.cdnvideo.ru

Решение

На девочку действует сила тяжести (mvec{g}) и сила реакции опоры (vec{N}).

Качели находятся под действием силы давления  (vec{F_{g}}), которая направлена вниз. Согласно третьему закону Ньютона, данная сила соответствует взятой со знаком минус силе реакции опоры:

(vec{F_{g}}=-vec{N})

Таким образом, решением задачи является определение силы реакции опоры. Исходя из закона динамики:

(mvec{g}+vec{N}= mvec{a})

В проекции на ось Х:

(N-mg=mfrac{v^{2}}{R})

Из чего следует вывод:

(F_{g}=left|N right|=m(g+frac{v^{2}}{R}))

(F_{g}=40(10+frac{5^{2}}{4})=650) Н

Ответ: сила равна 650 Н.

Задача 3

Шарик привязали с помощью нити к подвесу. Он описывает в горизонтальной плоскости окружность, совершая движение с постоянной скоростью. Нить обладает длиной 0,6 м и составляет с вертикалью угол в 60 градусов. Необходимо рассчитать, какова скорость шарика.

Задача 3

Источник: static-interneturok.cdnvideo.ru

Решение

Сумма сил (mvec{g}) и натяжения (vec{F_{n}}), исходя из правила параллелограмма, соответствует результирующей силе, направленной в центр вращения (sum_{i}^{}{vec{F}_{i}}):

(sum_{i}^{}{vec{F}_{i}}= mvec{g}+vec{F_{n}}= mvec{a})

Силы в сумме определяются из прямоугольного треугольника с углом α равным 60 градусам. Исходя из того, что (vec{F_{n}}) является противолежащим катетом, получим:

(vec{F_{n}}=mg*tg α)

Таким образом:

(mg*tg α= mvec{a}= mfrac{v^{2}}{R})

(v^{2}=frac{mg*tan alpha *R}{m}=gR*tan alpha)

R включен в прямоугольный треугольник, в котором длина нити представляет собой гипотенузу. R является катетом, противолежащий углу α в 60 градусов.

(R=l*sin alpha)

Преобразив формулу квадрата скорости шарика с помощью подстановки выражения для радиуса, получим:

(v^{2}=gl*sin alpha *tan alpha )

(v=sqrt{gl*sin alpha *tan alpha }=sqrt{10*0.6*frac{sqrt{3}}{2}*sqrt{3}}=3) м/с

Ответ: скорость шарика составляет 3 м/с.

Задача 4

Необходимо определить максимальную скорость мотоцикла по горизонтальной плоскости, который описывает при этом дугу окружности с радиусом 100 м. Коэффициент трения резины о плоскость составляет 0,4.

Задача 4

Источник: static-interneturok.cdnvideo.ru

Решение

Во время поворота мотоцикл наклоняется к центру поворота. На транспортное средство оказывают действие:

  • сила тяжести (mvec{g});
  • сила реакции опоры (vec{N});
  • сила трения (vec{F_{tr}});
  • сила тяги (vec{F_{t}});
  • сила сопротивления (vec{F_{c}}).

Данные силы в сумме составляют:

(mvec{g}+vec{N}+vec{F_{tr}}+vec{F_{t}}+vec{F_{c}}= mvec{a})

Согласно выражениям:

(mvec{g}+vec{N}=0)

(vec{F_{t}}+vec{F_{c}}=0)

Получим:

(vec{F_{tr}}= mvec{a})

Сила трения составляет:

(F_{tr}= mu mg)

Таким образом:

(mu mg=ma= mfrac{v^{2}}{R})

(v=sqrt{frac{mu mgR}{m}}=sqrt{mu gR}=sqrt{0.4*10*100}=20) м/с

Ответ: максимальная скорость равна 20 м/с.

Задания

Источник: avatars.mds.yandex.net

Задачи разной сложности по теме движения тела по кружности часто встречаются не только в школьной программе, но и во время обучения в вузе. Знание основных закономерностей позволит быстро найти решение примера любой сложности. Если в процессе расчетов возникают трудности, всегда можно обратиться за помощью к сервису Феникс.Хелп.

Понятия и определения

Криволинейное движение — движение, траекторией которого является кривая линия. Вектор скорости тела, движущегося по кривой линии, направлен по касательной к траектории. Любой участок криволинейного движения можно представить в виде движения по дуге окружности или по участку ломаной.

Движение по окружности с постоянной по модулю скоростью — частный и самый простой случай криволинейного движения. Это движение с переменным ускорением, которое называется центростремительным.

Особенности движения по окружности с постоянной по модулю скоростью:

  1. Траектория движения тела есть окружность.
  2. Вектор скорости всегда направлен по касательной к окружности.
  3. Направление скорости постоянно меняется под действием центростремительного ускорения.
  4. Центростремительное ускорение направлено к центру окружности и не вызывает изменения модуля скорости.

Период, частота и количество оборотов

Пусть тело двигается по окружности беспрерывно. Когда оно сделает один оборот, пройдет некоторое время. Когда тело сделает еще один оборот, пройдет еще столько же времени. Это время не будет меняться, потому что тело движется с постоянной по модулю скоростью. Такое время называют периодом.

Период — время одного полного оборота. Обозначается буквой T. Единица измерения — секунды (с).

t — время, в течение которого тело совершило N оборотов

За один и тот же промежуток времени тело может проходить лишь часть окружности или совершать несколько единиц, десятков, сотен или более оборотов. Все зависит от длины окружности и модуля скорости.

Частота — количество оборотов, совершенных в единицу времени. Обозначается буквой ν («ню»). Единица измерения — Гц.

N — количество оборотов, совершенных телом за время t.

Период и частота — это обратные величины, определяемые формулами:

Количество оборотов выражается следующей формулой:

Пример №1. Шарик на нити вращается по окружности. За 10 секунд он совершил 20 оборотов. Найти период и частоту вращения шарика.

Линейная и угловая скорости

Линейная скорость

Определение и формулы

Линейная скорость — это отношение пройденного пути ко времени, в течение которого этот путь был пройден. Обозначается буквой v. Единица измерения — м/с.

l — длина траектории, вдоль которой двигалось тело за время t

Линейную скорость можно выразить через период. За один период тело делает один оборот, то есть проходить путь, равный длине окружности. Поэтому его скорость равна:

R — радиус окружности, по которой движется тело

Если линейную скорость можно выразить через период, то ее можно выразить и через частоту — величину, обратную периоду. Тогда формула примет вид:

Выразив частоту через количество оборотов и время, в течение которого тело совершало эти обороты, получим:

Угловая скорость

Определение и формулы

Угловая скорость — это отношение угла поворота тела ко времени, в течение которого тело совершало этот поворот. Обозначается буквой ω. Единица измерения — радиан в секунду (рад./с).

ϕ — угол поворота тела. t — время, в течение которого тело повернулось на угол ϕ

Полезные факты

Радиан — угол, соответствующий дуге, длина которой равна ее радиусу. Полный угол равен 2π радиан.

За один полный оборот тело поворачивается на 2π радиан. Поэтому угловую скорость можно выразить через период:

Выражая угловую скорость через частоту, получим:

Выразив частоту через количество оборотов, формула угловой скорости примет вид:

Сравним две формулы:

Преобразуем формулу линейной скорости и получим:

Отсюда получаем взаимосвязь между линейной и угловой скоростями:

Полезные факты

  • У вращающихся прижатых друг к другу цилиндров линейные скорости точек их поверхности равны: v1 = v2.
  • У вращающихся шестерен линейные скорости точек их поверхности также равны: v1 = v2.
  • Все точки вращающегося твердого тела имеют одинаковые периоды, частоты и угловые скорости, но разные линейные скорости. T1 = T2, ν1 = ν2, ω1 = ω2. Но v1 ≠ v2.

Пример №2. Период обращения Земли вокруг Солнца равен одному году. Радиус орбиты Земли равен 150 млн. км. Чему примерно равна скорость движения Земли по орбите? Ответ округлить до целых.

В году 365 суток, в одних сутках 24 часа, в 1 часе 60 минут, в одной минуте 60 секунд. Перемножив все эти числа между собой, получим период в секундах.

За каждую секунду Земля проходит расстояние, равное примерно 30 км.

Центростремительное ускорение

Определение и формула

Центростремительное ускорение — ускорение с постоянным модулем, но меняющимся направлением. Поэтому оно вызывает изменение направления вектора скорости, но не изменяет его модуль. Центростремительное ускорение обозначается как aц.с.. Единица измерения — метры на секунду в квадрате (м/с2). Центростремительное ускорение можно выразить через линейную и угловую скорости, период, частоту и количество оборотов/время:

Пример №3. Рассчитать центростремительное ускорение льва, спящего на экваторе, в системе отсчета, две оси которой лежат в плоскости экватора и направлены на неподвижные звезды, а начало координат совпадает с центром Земли.

Спящий лев сделает один полный оборот тогда, когда Земля сделает один оборот вокруг своей оси. Земля делает это за время, равное 1 сутки. Поэтому период обращения равен 1 суткам. Количество секунд в сутках: 1 сутки = 24•60•60 секунд = 86400 секунд = 86,4∙103 секунд.

Радиус Земли равен 6400 км. В метрах это будет 6,4∙106. Теперь у нас есть все, что нужно для вычисления центростремительного ускорения. Подставляем данные в формулу:

Задание EF18273

Верхнюю точку моста радиусом 100 м автомобиль проходит со скоростью 20 м/с. Центростремительное ускорение автомобиля равно…


Алгоритм решения

  1. Записать исходные данные.
  2. Записать формулу для определения искомой величины.
  3. Подставить известные данные в формулу и произвести вычисления.

Решение

Записываем исходные данные:

  • Радиус окружности, по которой движется автомобиль: R = 100 м.
  • Скорость автомобиля во время движения по окружности: v = 20 м/с.

Формула, определяющая зависимость центростремительного ускорения от скорости движения тела:

Подставляем известные данные в формулу и вычисляем:

Ответ: 4

pазбирался: Алиса Никитина | обсудить разбор

Задание EF17763

Точка движется по окружности радиусом R с частотой обращения ν. Как нужно изменить частоту обращения, чтобы при увеличении радиуса окружности в 4 раза центростремительное ускорение точки осталось прежним?

а) увеличить в 2 раза
б) уменьшить в 2 раза
в) увеличить в 4 раза
г) уменьшить в 4 раза


Алгоритм решения

  1. Записать исходные данные.
  2. Определить, что нужно найти.
  3. Записать формулу зависимости центростремительного ускорения от частоты.
  4. Преобразовать формулу зависимости центростремительного ускорения от частоты для каждого из случаев.
  5. Приравнять правые части формул и найти искомую величину.

Решение

Запишем исходные данные:

  • Радиус окружности R1 = R.
  • Радиус окружности R2 = 4R.
  • Центростремительное ускорение: aц.с. = a1 = a2.

Найти нужно ν2.

Центростремительное ускорение определяется формулой:

Запишем формулы центростремительного ускорения для 1 и 2 случаев соответственно:

Так как центростремительное ускорение в 1 и 2 случае одинаково, приравняем правые части уравнений:

Произведем сокращения и получим:

Или:

Отсюда:

Это значит, чтобы центростремительное ускорение осталось неизменным после увеличения радиуса окружности в 4 раза, частота должна уменьшиться вдвое. Верный ответ: «б».

Ответ: б

pазбирался: Алиса Никитина | обсудить разбор

Алиса Никитина | Просмотров: 22.2k

Равномерное движение по окружности

  1. Криволинейное движение
  2. Равномерное движение по окружности
  3. Параметры равномерного движения по окружности
  4. Задачи

п.1. Криволинейное движение

Прямолинейное движение встречается довольно редко и только на отдельных участках пути. Чаще мы имеем дело с криволинейным движением.

Криволинейное движение – это движение по траектории, которая является кривой линией (например, окружностью, эллипсом, гиперболой, параболой и т.д.)

Примеры криволинейного движения:

  • движение по окружности: движение конца стрелки по циферблату часов, резца по детали на токарном станке, велосипедиста по велотреку;
  • движение по эллипсу: вращение Луны вокруг Земли, вращение искусственных спутников вокруг Земли, вращение планет вокруг Солнца;
  • движение по параболе: полет футбольного мяча, полет снаряда, полет межконтинентальной ракеты;
  • движение по гиперболе: пролет астероида вблизи Земли, пролет кометы через Солнечную систему.

Это интересно

Криволинейное движение Окружность, эллипс, парабола, гипербола, — эти, на первый взгляд, совершенно разные кривые можно получить из одного и того же конуса, если рассекать его под разными углами к основанию.
Поэтому все эти кривые называются коническими сечениями.
Криволинейное движение Движение тела по криволинейной траектории всегда можно разбить на отдельные участки, которые можно представить дугами некоторых окружностей.

Вектор перемещения (overrightarrow{r}) будет направлен по отрезку, соединяющему начальную и конечную точку на окружности (такой отрезок называется хордой).
Путь (s) будет равен длине дуги между этими точками.
Вектор скорости (overrightarrow{v})в каждой точке будет направлен по касательной к окружности.

п.2. Равномерное движение по окружности

При равномерном движении тела по окружности величина скорости остается неизменной: $$ |overrightarrow{v}|=const $$

Равномерное движение по окружности В каждой точке траектории скорость направлена по касательной. И хотя модуль скорости остается постоянным: $$ |overrightarrow{v_1}|= |overrightarrow{v_2}|= |overrightarrow{v_3}|=v=const $$ направление скорости всё время меняется.
Поэтому вектора скоростей не равны между собой: $$ overrightarrow{v_1}neq overrightarrow{v_2}neq overrightarrow{v_3} $$

п.3. Параметры равномерного движения по окружности

Пусть (R) — радиус окружности, по которой движется тело, (v) – величина скорости равномерного движения. Пусть за время (t) тело совершило (N) оборотов.

Период вращения – это время, за которое тело совершает один оборот $$ T=frac tN $$ Единицей периода вращения в СИ является секунда

Частота вращения – это количество оборотов, которое тело совершает за единицу времени: $$ f=frac Nt $$ Единицей частоты вращения в СИ является 1/с или с-1.
Также используют «обороты в секунду», об/с, с тем же смыслом.

Период и частота вращения являются взаимно обратными величинами: (T=frac 1f).

За один полный оборот тело пройдет путь, равный длине окружности: $$ s=2pi R $$ Этот путь тело проходит равномерно, с постоянной скоростью. Значит, период вращения: $$ T=frac sv=frac{2pi R}{v} $$

Линейная скорость – при равномерном движении по окружности равна отношению длины окружности к периоду вращения: $$ v=frac{2pi R}{T} $$

Это интересно

Параметры равномерного движения по окружности Пятна на экваторе Солнца вращаются равномерно и совершают полный оборот за 24,47 земных суток $$ T=24,47 сут $$ Зная, что радиус Солнца равен R=696 тыс.км, мы можем рассчитать линейную скорость вращения на экваторе: $$ v=frac{2picdot 696 тыс.км}{24,47cdot 24 ч}approx 7,45frac{тыс.км}{ч}approx 2,1 frac{тыс.км}{c}(!) $$

п.4. Задачи

Задача 1. Во сколько раз период вращения часовой стрелки больше периода вращения минутной стрелки на часах?

Дано:
(T_1=60 мин=1 ч)
(T_2=12 ч)
__________________
(frac{T_2}{T_1}-?)

В этой задаче расчеты удобно вести во внесистемных единицах – в часах.
Получаем: $$ frac{T_2}{T_1}=frac{12}{1}=12 $$ Ответ: в 12 раз

Задача 2. Чему равен путь, пройденный концом минутной стрелки башенных часов за 20 минут, если длина стрелки 3 м? Ответ округлите до сотых.

Дано:
(t=20 мин=1200 с )
(T=60 мин=3600 с)
(R=3 м)
__________________
(s-?)

Путь, который проходит стрелка за период T (1 час) равен длине окружности (L=2pi R).
А путь, который стрелка проходит за время (tlt T), равен части полной дуги окружности: $$ s=Lfrac tT=2pi Rfrac tT $$ Подставляем: $$ s=2picdot 3cdotfrac{1200}{3600}=2pi (м)approx 6,28 (м) $$ Ответ: 6,28 м

Задача 3. Автомобиль едет со скоростью 72 км/ч. Найдите период вращения его колеса диаметром 70 см. Ответ округлите до сотых.

Дано:
(v=72 км/ч=20 м/с)
(D=70 см=0,7 м )
__________________
(T-?)

Линейная скорость обода колеса равна скорости автомобиля.
Линейная скорость равна отношению длины окружности к периоду вращения: $$ v=frac{2pi R}{T}=frac{pi D}{T} $$ Период равен: $$ T=frac{pi D}{v} $$ Подставляем: $$ T=frac{picdot 0,7}{20}approx 0,11 (c) $$ Ответ: 0,11 с

Задача 4. Найдите линейную скорость вращения Земли вокруг своей оси для точек на экваторе. Радиус Земли R=6400  км. Выразите ответ в м/с и км/ч, ответ округлите до целых.

Дано:
(R=6400 км)
(T=24 ч )
__________________
(v-?)

Линейная скорость равна отношению длины окружности к периоду вращения: $$ v=frac{2pi R}{T} $$ Получаем (в км/ч): $$ v=frac{2picdot 6400}{24}approx 1676 (км/ч) $$ Переведем в м/с (см. §7 данного справочника): $$ frac{1676}{3,6}approx 465 (м/с) $$ Ответ: 1676 км/ч; 465 м/с

Задача 5. Во сколько раз линейная скорость точки на ободе колеса радиусом 8 см больше линейной скорости точки, расположенной на 3 см ближе к оси вращения колеса?

Дано:
(R=8 см=0,08 м)
(triangle r=3 см=0,03 м)
__________________
(frac{v_R}{v_r}-?)
Задача 5

Радиус вращения для второй точки: (r=R-triangle r).
Период вращения для обеих точек будет одинаковым: $$ T=frac{2pi R}{v_R}=frac{2pi r}{v_r}Rightarrowfrac{R}{v_R}=frac{r}{v_r}Rightarrowfrac{v_R}{v_r}= frac Rr $$ Получаем: $$ frac{v_R}{v_R}=frac{R}{R-triangle r} $$ Подставляем: $$ frac{v_R}{v_r}=frac{0,08}{0,08-0,03}=1,6 $$ Ответ: в 1,6 раз

Задача 6. Шкив радиусом 30 см вращается с частотой 120 об/мин. Определите период вращения и линейную скорость точек на ободе шкива. Значение скорости округлите до сотых.

Дано:
(R=30 см=0,3 м )
(f=120frac{об}{мин}=frac{120 об}{1 мин}=frac{120 об}{60 c}=2 об/с)
__________________
(T, v-?)

Период вращения – величина, обратная частоте: (T=frac 1f) $$ T=frac 12=0,5 (c) $$ Линейная скорость: (v=frac{2pi R}{T}) $$ v=frac{2picdot 0,3}{0,5}approx 3,77 (м/c) $$ Ответ: 0,5 с; 3,77 м/с

Задача 7*. Пуля вылетела из ствола и пролетела 5 м со скоростью 750 м/с, вращаясь вокруг своей оси с частотой 3000 об/с. Сколько оборотов совершила пуля на этом пути?

Дано:
(u=750 м/с )
(s=5 м)
(f=3000 об/с)
__________________
(N-?)

Найдем время полета пули: (T=frac su)
За один период (T) пуля совершает один оборот, за время (t — N) оборотов.
Получаем: $$ N=frac tT=tcdot f=frac su f $$ Подставляем: $$ N=frac{5}{750}cdot 3000=20 $$ Ответ: 20 оборотов

Понравилась статья? Поделить с друзьями:
  • Как найти магнитную индукцию поля в вакууме
  • Как найти человека актау
  • Как найти порнофильм по описанию
  • Как найти многочлен формула
  • Нет парня а очень хочу как найти