Как найти пересечение параболы с осью абсцисс

Расположение графика квадратного трёхчлена относительно осей координат

В §28 данного справочника мы показали, что квадратный трёхчлен можно представить в виде:

$$ ax^2+bx+c = a(x+ frac{b}{2a})^2-frac{D}{4a}, D = b^2-4ac $$

Мы получаем:

  • ось симметрии $x = -frac{b}{2a}$
  • вершину параболы на оси симметрии $(–frac{b}{2a}; -frac{D}{4a})$
  • точку пересечения (0;c) с осью OY

Любая парабола $y = ax^2+bx+c, a ≠ 0$ пересекается с осью OY в единственной точке (0;c).

Количество точек пересечения параболы $y = ax^2+bx+c$ с осью OX зависит от знака дискриминанта.

Если $D gt 0$, парабола имеет две точки пересечения с $x_1,2 = frac{-b pm sqrt{D}}{2a}$ на оси OX.

Если D = 0, парабола имеет одну точку пересечения $x_0 = -frac{b}{2a}$, которая лежит на оси OX и является вершиной параболы.

Если $D lt 0$ у параболы нет ни одной точки пересечения с осью OX.

Точки пересечения параболы с осью OX

$a gt 0$

$a lt 0$

$D gt 0$

Расположение графика квадратного трёхчлена относительно осей координат рис.1 Расположение графика квадратного трёхчлена относительно осей координат рис.2

$x_(1,2) = frac{-b pm sqrt{D}}{2a}$

D = 0

Расположение графика квадратного трёхчлена относительно осей координат рис.3 Расположение графика квадратного трёхчлена относительно осей координат рис.4

$x_0 = -frac{b}{2a}$

$ D lt 0 $

Расположение графика квадратного трёхчлена относительно осей координат рис.5 Расположение графика квадратного трёхчлена относительно осей координат рис.6

${ varnothing }$-нет пересечений

Точки пересечения двух парабол

На практике часто возникает задача «перехвата» одного тела другим, т.е. поиска точек пересечения двух траекторий; а тела в поле тяготения Земли нередко движутся по параболе.

Точки пересечения двух парабол

Поэтому исследовать возможные точки пересечения двух парабол – важная прикладная задача. Пусть уравнения парабол:

$$ y = a_1 x^2+b_1 x+c_1, quad y = a_2 x^2+b_2 x+c_2 $$

В точках пересечения выполняется равенство:

$$ a_1 x^2+b_1 x+c_1 = a_2 x^2+b_2 x+c_2 $$

$$ (a_1-a_2 ) x^2+(b_1-b_2 )x+(c_1-c_2 ) = 0 $$

Если ввести обозначения $A = a_1-a_2, B = b_1-b_2, C = c_1-c_2$, получаем уравнение:

$$ Ax^2+Bx+C = 0 $$

Количество решений этого уравнения в зависимости от нулевых и ненулевых значений параметров равно 11 и описывается схемой общего алгоритма решений квадратного уравнения (см.§25 данного справочника).

A = B = C = 0

$ a_1 = a_2, b_1 = b_2, $

$ c_1 = c_2 $

Две параболы совпадают

Бесконечное множество общих точек, $x in Bbb R$

Бесконечное множество общих точек

$A = B = 0, C neq 0$

$ a_1 = a_2, b_1 = b_2, $

$ c_1 neq c_2 $

Параболы имеют вид

$y = ax^2+bx+c_1$

$ y = ax^2+bx+c_2 $

У них общая ось симметрии

$ x = -frac{b}{2a}$, одна парабола находится над другой.

Ветки сходятся только на бесконечности.

Точек пересечения нет

Точек пересечения нет

$A = 0, B neq 0, C = 0$

$ a_1 = a_2, b_1 neq b_2 $

$ c_1 = c_2 $

Параболы имеют вид

$y = ax^2+b_1 x+c$

$ y = ax^2+b_2 x+c $

Обе проходят через точку (0;c).

Это – единственная точка пересечения.

Одна точка пересечения

(0;c)

Одна точка пересечения

$A = 0, B neq 0, C neq 0$

$ a_1 = a_2, b_1 neq b_2 $

$ c_1 neq c_2 $

Параболы имеют вид

$y = ax^2+b_1 x+c_1$

$ y = ax^2+b_2 x+c_2 $

Абсцисса точки пересечения

$ x = — frac{C}{B} = -frac{c_1-c_2}{b_1-b_2}$

Одна точка пересечения (касание)

Одна точка пересечения (касание)

$A neq 0, B = 0, C = 0$

$ a_1 neq a_2, b_1 = b_2 $

$ c_1 = c_2 $

Параболы имеют вид

$ y = a_1 x^2+bx+c$

$ y = a_2 x^2+bx+c $

Пересекаются при x=0 (точка касания)

Одна точка пересечения (касание) (0;c)

Точек пересечения нет

$A neq 0, B = 0, C neq 0$

$ a_1 neq a_2, b_1 = b_2 $

$ c_1 neq c_2 $

Параболы имеют вид

$ y = a_1 x^2+bx+c_1$

$ y = a_2 x^2+bx+c_2 $

Не пересекаются, если

$- frac{c_1-c_2}{a_1-a_2} lt 0 $

Две точки пересечения

Две точки пересечения

Если

$- frac{c_1-c_2}{a_1-a_2} gt 0 $

Пересекаются в двух точках

$$ x_{1,2} = pm sqrt{-frac{c_1-c_2}{a_1-a_2}} $$

Две точки пересечения

Две точки пересечения, одна из которых (0;c)

$A neq 0, B neq 0, C = 0$

$ a_1 neq a_2, b_1 neq b_2 $

$ c_1 = c_2 $

Параболы имеют вид

$$ y = a_1 x^2+b_1 x+c $$

$$ y = a_2 x^2+b_2 x+c $$

Две точки пересечения

$ x_1 = 0 $

$$x_2 = -frac{b_1-b_2}{a_1-a_2}$$

Две точки пересечения,

одна из которых (0;c)

Две точки пересечения, одна из которых (0;c)

$A neq 0, B neq 0, C neq 0$

$ a_1 neq a_2, b_1 neq b_2 $

$ c_1 neq c_2 $

Все параметры парабол разные

Ищем дискриминант:

$$ D = B^2-4AC $$

Если $D gt 0$

Две точки пересечения

$$ x_1,2 = frac{-B pm sqrt{D}}{2A} $$

Две точки пересечения

Две точки пересечения

Если D = 0

Одна точка пересечения (касание)

$$ x_0 = -frac{B}{2A} $$

Одна точка пересечения

(касание)

Одна точка пересечения

Если $D lt 0$

Точек пересечения нет

Точек пересечения нет

Точек пересечения нет

Внимание!

Если две параболы не совпадают, то они могут иметь 1) две точки пересечения; 2) одну точку пересечения; 3) ни одной точки пересечения.

Иметь ровно 3, 4, 5 и т.д. точек пересечения две параболы не могут!

Примеры

Пример 1. Найдите точки пересечения параболы с осями координат:

$а) y = 3x^2+2x-1$

Пример 1. а)

Пересечение с осью OY: ${left{ begin{array}{c} x = 0 \ y = -1end{array} right.}$

Пересечение с осью OX:

$$ 3x^2+2x-1 = 0 Rightarrow (3x-1)(x+1) = 0 Rightarrow $$

$ Rightarrow left[ begin{array}{cc} {left{ begin{array}{c} x = frac{1}{3} \ y = 0 end{array} right.} \ {left{ begin{array}{c} x = -1 \ y = 0 end{array} right.} end{array} right.$ — две точки пересечения

$б) y = -4x^2-3x+1$

Пример 1. б)

Пересечение с осью OY: ${left{ begin{array}{c} x = 0 \ y = 1end{array} right.}$

Пересечение с осью OX:

$$ -4x^2-3x+1 = 0 Rightarrow 4x^2+3x-1 = 0 $$

$$ (4x-1)(x+1) = 0 Rightarrow$$

$ Rightarrow left[ begin{array}{cc} {left{ begin{array}{c} x = frac{1}{4} \ y = 0 end{array} right.} \ {left{ begin{array}{c} x = -1 \ y = 0 end{array} right.} end{array} right.$ — две точки пересечения

$в) y = 5x^2-2x+1$

Пример 1. в)

Пересечение с осью OY: ${left{ begin{array}{c} x = 0 \ y = 1end{array} right.}$

Пересечение с осью OX:

$$ 5x^2-2x+1 = 0 $$

$$ D = 2^2-4 cdot 5 cdot 1 = 4-20 = -16 lt 0 $$

Парабола не пересекает ось OX

$ г) y = -x^2+4x-4 $

Пример 1. г)

Пересечение с осью OY: ${left{ begin{array}{c} x = 0 \ y = -4end{array} right.}$

Пересечение с осью OX:

$$ -x^2+4x-4 = 0 Rightarrow x^2-4x+4 = 0 Rightarrow $$

$$ Rightarrow (x-2)^2 = 0 Rightarrow {left{ begin{array}{c} x = 2 \ y = 0 end{array} right.}$$ — одна точка пересечения

Пример 2*. Даны две параболы

$$ y = 2x^2+5x+1 и y = x^2+3x+k $$

Найдите такое значение параметра k, чтобы параболы

1) имели две точки пересечения; 2) имели одну точку пересечения; 3) не пересекались.

По условию

$$ a_1 = 2, b_1 = 5, c_1 = 1, a_2 = 1, b_2 = 3, c_2 = k $$

$$ a_1 neq a_2, b_1 neq b_2 $$

A = 2-1 = 1, B = 5-3 = 2, C = 1-k

Нам необходимо рассмотреть 4 последних случая из представленных выше, в таблице §29.

1) Параболы имеют две точки пересечения в двух случаях:

1 случай: $c_2 = c_1$, k = 1

Пример 2* 1 случай

$$x_1 = 0, x_2 = -frac{B}{A} = -2$$

$${left{ begin{array}{c} y = 2x^2+5x+1 \ y = x^2+3x+1 end{array} right.} Rightarrow left[ begin{array}{cc} {left{ begin{array}{c} x_1 = 0 \ y_1 = 1end{array} right.} \ {left{ begin{array}{c} x_2 = -2 \ y_2 = -1 end{array} right.} end{array} right.$$

2 случай: $c_2 ≠ c_1, D gt 0$

$$ D = B^2-4AC = 2^2-4 cdot 1 cdot (1-k) = 4k gt 0 Rightarrow k gt 0 $$

Пример 2* 2 случай

Например, k = 4

$$ D = 4k = 16 = 4^2 $$

$$ x_1,2 = frac{-B pm sqrt{D}}{2A} = frac{-2 pm 4}{2} = left[ begin{array}{cc} x_1 = -3\ x_2 = 1 end{array} right. $$

Оба случая можем объединить требованием $k gt 0$.

2) Параболы имеют одну точку пересечения, если:

$$ D = 4k = 0 Rightarrow k = 0 $$

Пример 2 случай 2)

$${left{ begin{array}{c} y = 2x^2+5x+1 \ y = x^2+3x end{array} right.} $$

$$ x_0 = frac{-B}{2A} = -1 $$

3) Параболы не имеют общих точек, если:

$$ D = 4k lt 0 Rightarrow k lt 0 $$

Пример 2* 3)

Например, k = -1

Ответ: 1) $k gt 0$; 2) k = 0; 3) $k lt 0$

Пример 3. Две параболы с общей вершиной

Найдите соотношение параметров двух парабол, при котором они будут пересекаться в одной точке – вершине парабол.

Пусть уравнения парабол:

$$ y = a_1 x^2+b_1 x+c_1, y = a_2 x^2+b_2 x+c_2 $$

Координаты вершин:

$$ left( -frac{b_1}{2a_1}, — frac{D_1}{4a_1} right), left(- frac{b_2}{2a_2},- frac{D_2}{4a_2} right) $$

По условию:

$$ {left{ begin{array}{c} -frac{b_1}{2a_1} = -frac{b_2}{2a_2} \ -frac{D_1}{4a_1} = -frac{D_2}{4a_2} end{array} right.} Rightarrow {left{ begin{array}{c} frac{b_1}{a_1} = frac{b_2}{2a_2} \ frac{D_1}{a_1} = frac{D_2}{a_2} end{array} right.} $$

Получаем две пропорции, которым параметры уравнений должны удовлетворять одновременно.

Пример 4. Используя результаты примера 3, найдите две параболы, у которых такая же вершина, как у $y = frac{x^2}{2}-3x+1$.

Координаты вершины:

$$ x_0 = — frac{b}{2a} = — frac{-3}{2 cdot frac{1}{2}} = 3, D = b^2-4ac = 3^2-4 cdot frac{1}{2} cdot 1 = 7 $$

$$ y_0 = — frac{D}{4a} = — frac{7}{4 cdot frac{1}{2}} = -3,5 $$

Уравнение искомой параболы: $y = ax^2+bx+c$

Пропорции для параметров (см. пример 3):

$$ {left{ begin{array}{c} frac{b}{a} = frac{-3}{1/2} = -6 \ frac{D}{a} = frac{7}{1/2} = 14 end{array} right.} Rightarrow {left{ begin{array}{c} b = -6a \ D = 14a end{array} right.} $$

Пусть для искомых двух парабол a=1 и a=-0,2 (можно взять любые другие значения). Получаем:

$$ {left{ begin{array}{c} a = 1 \ b = -6a = -6 \ D = 14a = 14 end{array} right.} Rightarrow {left{ begin{array}{c} a = 1 \ b = -6 \ b^2-4ac = 14 end{array} right.} Rightarrow {left{ begin{array}{c} a = 1 \ b = -6 \ 36-4c = 14 end{array} right.} Rightarrow {left{ begin{array}{c} a = 1 \ b = -6 \ c = frac{36-14}{4} = 5,5 end{array} right.}$$

$$ y = x^2-6x+5,5 $$

$$ {left{ begin{array}{c} a = -0,2 \ b = -6a = 1,2 \ D = 14a = -2,8 end{array} right.} Rightarrow {left{ begin{array}{c} a = -0,2 \ b = 1,2 \ 1,2^2-4 cdot (-0,2)c = -2,8 end{array} right.} Rightarrow {left{ begin{array}{c} a = -0,2 \ b = 1,2 \ c = — frac{1,44+2,8}{0,8} = -5,3 end{array} right.} $$

$$ y = -0,2x^2+1,2x-5,3 $$

Параболы

$$ y = frac{x^2}{2}-3x+1, y = x^2-6x+5,5, y = -0,2x^2+1,2x-5,3 $$

имеют общую вершину (3;-3,5)

Пример 4.

Пример 5. Комета движется по параболической траектории, которая в выбранной системе координат описывается уравнением $y = frac{x^2}{3}-2x+5$.

Космический аппарат запускается из начала координат и также движется по параболической траектории. Рассчитайте уравнение этой траектории так, чтобы её вершина совпала с вершиной траектории кометы.

Координаты вершины траектории кометы:

$$ x_0 = -frac{b}{2a} = -frac{-2}{2 cdot frac{1}{3}} = 3, D = b^2-4ac = 2^2-4 cdot frac{1}{3} cdot 5 = — frac{8}{3} $$

$$ y_0 = — frac{D}{4a} = — frac{-8/3}{4 cdot 1/3} = 2 $$

Уравнение траектории космического аппарата: $y = ax^2+bx+c$.

Аппарат запускается из начала координат, т.е. его траектория пересекается с осью OY в точке (0;0). Значит, в уравнении параболы c = 0.

Пропорции для параметров (см. пример 3) с учетом c = 0:

$$ {left{ begin{array}{c} frac{b}{a} = frac{-2}{1/3} = -6 \ frac{D}{a} = frac{-frac{8}{3}}{frac{1}{3}} = -8 end{array} right.} Rightarrow {left{ begin{array}{c} b = -6a \ D = b^2-4a underbrace{c}_{text{= 0 }} = b^2 = -8a end{array} right.} Rightarrow {left{ begin{array}{c} b = -6a \ b^2 = -8a end{array} right.} Rightarrow $$

$$ {left{ begin{array}{c} b = frac{-8a}{-6a} = frac{4}{3} \ a = -frac{b}{6} = -frac{2}{9} end{array} right.} $$

Уравнение траектории космического аппарата с «перехватом» кометы в вершине:

$$ y = -frac{2}{9} x^2+ frac{4}{3} x $$

Пример 5.

Точки пересечения графика осями




Как найти точки пересечения графика функции с осями координат?

С осью абсцисс график функции может иметь любое количество общих точек (или ни одной). С осью ординат — не более одной (так как по определению функции каждому значению аргумента ставится в соответствие единственное значение функции).

Чтобы найти точки пересечения графика функции y=f(x) с осью абсцисс, надо решить уравнение f(x)=0 (то есть найти нули функции).

Чтобы найти точку пересечения графика функции с осью ординат, надо в формулу функции вместо каждого x подставить нуль, то есть найти значение функции при x=0: y=f(0).

Примеры.

1) Найти точки пересечения графика линейной функции y=kx+b с осями координат.

Решение:

В точке пересечения графика функции с осью Ox y=0:

kx+b=0, => x= -b/k. Таким образом, линейная функция пересекает ось абсцисс в точке (-b/k; 0).

В точке пересечения с осью Oy x=0:

y=k∙0+b=b. Отсюда, точка пересечения графика линейной функции с осью ординат — (0; b).

Например, найдём точки пересечения с осями координат графика линейной функции y=2x-10.

2x-10=0; x=5. С Ox график пересекается в точке (5; 0).

y=2∙0-10=-10. С Oy график пересекается в точке (0; -10).

2) Найти точки пересечения графика квадратичной функции y=ax²+bx+c с осями координат.

Решение:

В точке пересечения графика с осью абсцисс y=0. Значит, чтобы найти точки пересечения графика квадратичной функции (параболы) с осью Ox, надо решить квадратное уравнение ax²+bx+c=0.

В зависимости от дискриминанта, парабола  пресекает ось абсцисс в одной точке или в двух точках либо не пересекает Ox.

В точке пересечения графика с осью Oy x=0.

y=a∙0²+b∙0+c=с. Следовательно, (0; с) — точка, в которой парабола пересекает ось ординат.

Например, найдём точки пересечения с осями координат графика функции y=x²-9x+20.

x²-9x+20=0

x1=4; x2=5. График пересекает ось абсцисс в точках (4; 0) и (5; 0).

y=0²-9∙0+20=20. Отсюда, (0; 20) — точка пересечения параболы y=x²-9x+20 с осью ординат.

Что такое парабола знают, пожалуй, все. А вот как ее правильно, грамотно использовать при решении различных практических задач, разберемся ниже.

Оглавление:

  • Что такое парабола и как она выглядит
  • Каноническое уравнение параболы
  • Свойства и график квадратичной функции
  • Как определить, куда направлены ветви параболы
  • Как найти вершину параболы по формуле
  • Смещение параболы
  • Как строить параболу по квадратному уравнению
  • Директриса, эксцентриситет, фокус параболы
  • Заключение

Сначала обозначим основные понятия, которые дает этому термину алгебра и геометрия. Рассмотрим все возможные виды этого графика.

Узнаем все основные характеристики этой функции. Поймем основы построения кривой (геометрия). Научимся находить вершину, другие основные величины графика данного типа.

Узнаем: как правильно строится искомая кривая по уравнению, на что надо обратить внимание. Посмотрим основное практическое применение этой уникальной величины в жизни человека.

Что такое парабола и как она выглядит

Алгебра: под этим термином понимается график квадратичной функции.

Геометрия: это кривая второго порядка, имеющая ряд определенных особенностей:

  1. Любая прямая пересекает на плоскости искомую линию в 2-х точках – так называемые, «нули» (кроме основного экстремума графика).
  2. Множество точек плоскости ХОY (М), расстояние FM которых до F = расстоянию MN до прямой Где F – фокус, AN – директриса. Эти понятия рассмотрим ниже.

Каноническое уравнение параболы

На рисунке изображена прямоугольная система координат (XOY), экстремум, направление ветвей чертежа функции вдоль оси абсцисс.

Каноническое уравнение имеет вид:

y2 = 2 * p * x,

где коэффициент p – фокальный параметр параболы (AF).

В алгебре оно запишется иначе:

y = a x2 + b x + c (узнаваемый шаблон: y = x2).

Свойства и график квадратичной функции

Функция обладает осью симметрии и центром (экстремум). Область определения – все значения оси абсцисс.

Область значений функции – (-∞, М) или (М, +∞) зависит от направления ветвей кривой. Параметр М тут означает величину функции в вершине линии.

Как определить, куда направлены ветви параболы

Чтобы найти направление кривой такого типа из выражения, нужно определить знак перед первым параметром алгебраического выражения. Если а ˃ 0, то они направлены вверх. Если наоборот – вниз.

Как найти вершину параболы по формуле

Нахождение экстремума является основным этапом при решении множества практических задач. Конечно, можно открыть специальные онлайн калькуляторы, но лучше это уметь делать самому.

Как же ее определить? Есть специальная формула. Когда b не равно 0, надо искать координаты этой точки.

Формулы нахождения вершины:

  • x0 = -b / (2 * a);
  • y0 = y (x0).

Пример.

Имеется функция у = 4 * x2 + 16 * x – 25. Найдём вершины этой функции.

Для такой линии:

  • х = -16 / (2 * 4) = -2;
  • y = 4 * 4 — 16 * 2 — 25 = 16 — 32 — 25 = -41.

Получаем координаты вершины (-2, -41).

Смещение параболы

Классический случай, когда в квадратичной функции y = a x2 + b x + c, второй и третий параметры равны 0, а = 1 – вершина находится в точке (0; 0).

Движение по осям абсцисс или ординат обусловлено изменением параметров b и c соответственно. Сдвиг линии на плоскости будет осуществляться ровно на то количество единиц, чему равно значение параметра.

Пример.

Имеем: b = 2, c = 3.

Это означает, что классический вид кривой сдвинется на 2 единичных отрезка по оси абсцисс и на 3 — по оси ординат.

Как строить параболу по квадратному уравнению

Школьникам важно усвоить, как правильно начертить параболу по заданным параметрам.

Анализируя выражения и уравнения, можно увидеть следующее:

  1. Точка пересечения искомой линии с вектором ординат будет иметь значение, равное величине с.
  2. Все точки графика (по оси абсцисс) будут симметричны относительно основного экстремума функции.

Кроме того, места пересечения с ОХ можно найти, зная дискриминант (D) такой функции:

D = (b2 — 4 * a * c).

Для этого нужно приравнять выражение к нулю.

Наличие корней параболы зависит от результата:

  • D ˃ 0, то х1, 2 = (-b ± D0,5) / (2 * a);
  • D = 0, то х1, 2 = -b / (2 * a);
  • D ˂ 0, то нет точек пересечения с вектором ОХ.

Получаем алгоритм построения параболы:

  • определить направление ветвей;
  • найти координаты вершины;
  • найти пересечение с осью ординат;
  • найти пересечение с осью абсцисс.

Пример 1.

Дана функция у = х2 — 5 * х + 4. Необходимо построить параболу. Действуем по алгоритму:

  1. а = 1, следовательно, ветви направлены вверх;
  2. координаты экстремума: х = — (-5) / 2 = 5/2; y = (5/2)2 — 5 * (5/2) + 4 = -15/4;
  3. с осью ординат пересекается в значении у = 4;
  4. найдем дискриминант: D = 25 — 16 = 9;
  5. ищем корни:
  • Х1 = (5 + 3) / 2 = 4; (4, 0);
  • Х2 = (5 — 3) / 2 = 1; (1, 0).

По полученным точкам можно построить параболу.

Пример 2.

Для функции у = 3 * х2 — 2 * х — 1 нужно построить параболу. Действуем по приведенному алгоритму:

  1. а = 3, следовательно, ветви направлены вверх;
  2. координаты экстремума: х = — (-2) / 2 * 3 = 1/3; y = 3 * (1/3)2 — 2 * (1/3) — 1 = -4/3;
  3. с осью у будет пересекаться в значении у = -1;
  4. найдем дискриминант: D = 4 + 12 = 16. Значит корни:
  • Х1 = (2 + 4) / 6 = 1; (1;0);
  • Х2 = (2 — 4) / 6 = -1/3; (-1/3; 0).

По полученным точкам можно построить параболу.

Директриса, эксцентриситет, фокус параболы

Исходя из канонического уравнения, фокус F имеет координаты (p/2, 0).

Прямая АВ – директриса (своего рода хорда параболы определенной длины). Ее уравнение: х = -р/2.

Эксцентриситет (константа) = 1.

Заключение

Мы рассмотрели тему, которую изучают школьники в средней школе. Теперь вы знаете, глядя на квадратичную функцию параболы, как найти её вершину, в какую сторону будут направлены ветви, есть ли смещение по осям, и, имея алгоритм построения, сможете начертить её график.

Как найти координаты точек пересечения графика функции: примеры решения

Автор статьи

Ирина Алексеевна Антоненко

Эксперт по предмету «Математика»

Задать вопрос автору статьи

В практике и в учебниках наиболее распространены нижеперечисленные способы нахождения точки пересечения различных графиков функций.

Первый способ

Первый и самый простой – это воспользоваться тем, что в этой точке координаты будут равны и приравнять графики, а из того что получится можно найти $x$. Затем найденный $x$ подставить в любое из двух уравнений и найти координату игрек.

Пример 1

Найдём точку пересечения двух прямых $y=5x + 3$ и $y=x-2$, приравняв функции:

$5x = x- 2$;

$4x = -2$;

$x=-frac{1}{2}$

Теперь подставим полученный нами икс в любой график, например, выберем тот, что попроще — $y=x-2$:

$y=-frac{1}{2} – 2 = — 2frac12$.

Точка пересечения будет $(-frac{1}{2};- 2frac12)$.

Логотип baranka

Сдай на права пока
учишься в ВУЗе

Вся теория в удобном приложении. Выбери инструктора и начни заниматься!

Получить скидку 3 000 ₽

Второй способ

Второй способ заключается в том, что составляется система из имеющихся уравнений, путём преобразований одну из координат делают явной, то есть, выражают через другую. После это выражение в приведённой форме подставляется в другое.

Пример 2

Узнайте, в каких точках пересекаются графики параболы $y=2x^2-2x-1$ и пересекающей её прямой $y=x+1$.

Решение:

Составим систему:

$begin{cases} y=2x^2-2x-1 \ y= x + 1 \ end{cases}$

Второе уравнение проще первого, поэтому подставим его вместо $y$:

$x+1 = 2x^2 – 2x-1$;

$2x^2 – 3x – 2 = 0$.

Вычислим, чему равен x, для этого найдём корни, превращающие равенство в верное, и запишем полученные ответы:

$x_1=2; x_2 = -frac{1}{2}$

Подставим наши результаты по оси абсцисс по очереди во второе уравнение системы:

$y_1= 2 + 1 = 3; y_2=1 — frac{1}{2} = frac{1}{2}$.

Точки пересечения будут $(2;3)$ и $(-frac{1}{2}; frac{1}{2})$.

Третий способ

«Как найти координаты точек пересечения графика функции: примеры решения» 👇

Перейдём к третьему способу — графическому, но имейте в виду, что результат, который он даёт, не является достаточно точным.

Для применения метода оба графика функций строятся в одном масштабе на одном чертеже, и затем выполняется визуальный поиск точки пересечения.

Данный способ хорош лишь в том случае, когда достаточно приблизительного результата, а также если нет каких-либо данных о закономерностях рассматриваемых зависимостей.

Пример 3

Найдите точку пересечения графиков на общем рисунке.

Точка пересечения двух функций. Автор24 — интернет-биржа студенческих работ

Рисунок 1. Точка пересечения двух функций. Автор24 — интернет-биржа студенческих работ

Решение:

Тут всё просто: ищем точки пересечения пунктиров, опущенных с графиков с осями абсцисс и ординат и записываем по порядку. Здесь точка пересечения равна $(2;3)$.

Находи статьи и создавай свой список литературы по ГОСТу

Поиск по теме

Дата последнего обновления статьи: 07.05.2023

Парабола:

Определение: Параболой называется геометрическое место точек равноудаленных от выделенной точки F, называемой фокусом параболы, и прямой (l), называемой директрисой.

Получим каноническое уравнение параболы. Выберем декартову систему координат так, чтобы фокус F лежал на оси абсцисс, а директриса проходила бы через точку, расположенную симметрично фокусу, перпендикулярно к оси абсцисс (Рис. 34). Пусть точка M(х; у) принадлежит параболе: Вычислим расстояния от точки M(х; у) до фокуса и директрисы

Парабола - определение и вычисление с примерами решения

Рис. 34. Парабола, (уравнение директрисыПарабола - определение и вычисление с примерами решения.

Возведем обе части уравнения в квадрат

Парабола - определение и вычисление с примерами решения

Раскрывая разность квадратов, стоящую в правой части уравнения, получим каноническое уравнение параболы: Парабола - определение и вычисление с примерами решения (а также аналогичные ему, см. Рис. 35а и Рис. 356).

Парабола - определение и вычисление с примерами решения

Рис. 35а. Параболы и их уравнения.

Парабола - определение и вычисление с примерами решения

Рис. 356. Параболы и их уравнения.

Найдем координаты точек пересечения параболы с координатными осями:

Определение: Точка О(0; 0) называется вершиной параболы.

Если точка М(х; у) принадлежит параболе, то ей принадлежат и точка Парабола - определение и вычисление с примерами решения следовательно, парабола симметрична относительно оси абсцисс.

Пример:

Дано уравнение параболы Парабола - определение и вычисление с примерами решения Определить координаты фокуса параболы и составить уравнение параболы.

Решение:

Так как из уравнения параболы Парабола - определение и вычисление с примерами решения следует, что Парабола - определение и вычисление с примерами решения следовательно, Парабола - определение и вычисление с примерами решения Таким образом, фокус этой параболы лежит в точке Парабола - определение и вычисление с примерами решения а уравнение директрисы имеет вид Парабола - определение и вычисление с примерами решения

Пример:

Составить каноническое уравнение параболы, фокус которой лежит на оси Ох слева от начала координат, а параметр р равен расстоянию от фокуса гиперболы Парабола - определение и вычисление с примерами решения до её асимптоты.

Решение:

Для определения координат фокусов гиперболы преобразуем её уравнение к каноническому виду.

Гипербола: Парабола - определение и вычисление с примерами решения

Следовательно, действительная полуось гиперболы Парабола - определение и вычисление с примерами решения а мнимая полуось — Парабола - определение и вычисление с примерами решения Гипербола вытянута вдоль оси абсцисс Ох. Определим расположение фокусов данной гиперболы Парабола - определение и вычисление с примерами решения Итак, Парабола - определение и вычисление с примерами решенияВычислим расстояние от фокуса Парабола - определение и вычисление с примерами решения до асимптоты Парабола - определение и вычисление с примерами решения которое равно параметру р:

Парабола - определение и вычисление с примерами решения

Следовательно, каноническое уравнение параболы, фокус которой лежит на оси Ох слева от начала координат имеет вид: Парабола - определение и вычисление с примерами решения

Пример:

Составить каноническое уравнение параболы, фокус которой совпадает с одним из фокусов эллипса Парабола - определение и вычисление с примерами решения Написать уравнение директрисы.

Решение:

Для определения координат фокусов эллипса преобразуем его уравнение к каноническому виду. Эллипс: Парабола - определение и вычисление с примерами решения

Следовательно, большая полуось эллипса Парабола - определение и вычисление с примерами решения а малая полуось Парабола - определение и вычисление с примерами решения Так как Парабола - определение и вычисление с примерами решения, то эллипс вытянут вдоль оси абсцисс Ох. Определим расположение фокусов данного эллипса Парабола - определение и вычисление с примерами решения Итак, Парабола - определение и вычисление с примерами решения Так как фокус параболы Парабола - определение и вычисление с примерами решения совпадает с одним из фокусов Парабола - определение и вычисление с примерами решения или Парабола - определение и вычисление с примерами решения эллипса, то параметр р найдем из равенства Парабола - определение и вычисление с примерами решенияуравнение параболы имеет вид Парабола - определение и вычисление с примерами решения Директриса определяется уравнением Парабола - определение и вычисление с примерами решения

Уравнение параболоида вращения

Пусть вертикальная парабола

Парабола - определение и вычисление с примерами решения

расположенная в плоскости Охz, вращается вокруг своей оси (ось Oz). При вращении получается поверхность, носящая название параболоида вращения (рис. 207).

Парабола - определение и вычисление с примерами решения

Для вывода уравнения поверхности рассмотрим произвольную точку Парабола - определение и вычисление с примерами решения параболоида вращения, и пусть эта точка получена в результате вращения точки N(X, 0, Z) данной параболы вокруг точки С(0, 0, Z).

Так как точки М и N расположены в одной и той же горизонтальной плоскости и CN = СМ как радиусы одной и той же окружности, то имеем

Парабола - определение и вычисление с примерами решения

Подставляя формулы (2) в уравнение (1), получим уравнение параболоида вращения

Парабола - определение и вычисление с примерами решения

Заметим, что форму параболоида вращения имеет поверхность ртути, находящейся в вертикальном цилиндрическом сосуде, быстро вращающемся вокруг своей оси. Это обстоятельство используют в технике для получения параболических зеркал.

  • Многогранник
  • Решение задач на вычисление площадей
  • Тела вращения: цилиндр, конус, шар
  • Четырехугольник
  • Многогранники
  • Окружность
  • Эллипс
  • Гипербола

Понравилась статья? Поделить с друзьями:
  • Как найти звукопись в тексте
  • Как найти камеру в сети по номеру
  • У меня украли кольцо как найти
  • Как найти друзей рядом в земле
  • Подключение через ретранслятор как это исправить