Как найти пересечение подпространства

Нахождение дополнения, суммы и пересечения подпространств

Нахождение алгебраического дополнения подпространства

Для заданного подпространства Ltriangleleft mathbb{R}^n требуется найти алгебраическое дополнение подпространства L^{+}, т.е. такое подпространство L^{+} triangleleftmathbb{R}^n, что mathbb{R}^n=Loplus L^{+}.

В зависимости от способа описания подпространства L, используем одно из следующих двух утверждений.

1. Если подпространство Ltriangleleft mathbb{R}^n задано как линейная оболочка L=operatorname{Lin}(a_1,ldots,a_k) столбцов матрицы A=begin{pmatrix} a_1&cdots&a_kend{pmatrix}, то множество решений однородной системы A^Tx=o является его алгебраическим дополнением L^{+}triangleleft mathbb{R}^n, т.е.

L=operatorname{Lin}(a_1,a_2,ldots,a_k)quad Rightarrowquad L^{+}= Bigl{A^Tx=oBigr}.

(8.16)

2. Если подпространство Ltriangleleft mathbb{R}^n задано как множество решений однородной системы Ax=o m уравнений с n неизвестными, то линейная оболочка столбцов a_1^{tau},ldots, a_m^{tau} транспонированной матрицы A^T=begin{pmatrix}a_1^{tau}&cdots& a_m^{tau}end{pmatrix} является его алгебраическим дополнением L^{+}triangleleft mathbb{R}^n, т.е.

L={Ax=o}quad Rightarrowquad L^{+}=operatorname{Lin} (a_1^{tau},ldots,a_m^{tau}),

(8.17)

где a_i^{tau} — i-й столбец матрицы A^T.

Разумеется, в (8.16) и (8.17) указано одно из возможных алгебраических дополнений подпространства L^{+} (см. свойство 3 алгебраических дополнений подпространств).

Докажем сначала справедливость (8.16) в одномерном случае (k=1), а потом в общем. Пусть L=operatorname{Lin}(a) — одномерное подпространство R^n, a=begin{pmatrix}alpha_1&cdots&alpha_nend{pmatrix}^T — ненулевой столбец. Найдем алгебраическое дополнение подпространства L. Рассмотрим уравнение a^Tx=o в координатной форме: alpha_1x_1+ldots+ alpha_nx_n=0. Множество {a^Tx=o} решений однородной системы, состоящей из одного уравнения, образует подпространство L' размерности (n-1). Найдем пересечение Lcap L'. Подставляя элемент x=lambda a линейной оболочки L в уравнение a^Tx=o, получаем lambda[(alpha_1)^2+ (alpha_2)^2+ldots+(alpha_n)^2]=0, что возможно только при lambda=0, так как ane o. Следовательно, элемент x из L принадлежит подпространству L' только тогда, когда x — нулевой столбец, т.е. Lcap L'={o}. Учитывая, что dim{L}+dim{L'}=n, заключаем, что L' — алгебраическое дополнение подпространства L в mathbb{R}^ncolon, Loplus L'=mathbb{R}^n.Таким образом,

operatorname{Lin}(a)oplus{a^Tx=o}=mathbb{R}^n.

(8.18)

Учитывая (8.18), докажем (8.16) в общем случае (kgeqslant1). Представим L=operatorname{Lin}(a_1,ldots,a_k) в виде суммы L=L_1+ldots+L_k, где L_i=operatorname{Lin}(a_i), i=1,ldots,k. Из (8.15) следует, что (L_1+ldots+L_k)oplus (L_1^{+}+ldots+L_k^{+})= mathbb{R}^n. Согласно (8.18), множество L_1^{+}={(a_i)^Tx=o} решений однородной системы, состоящей из одного уравнения, дополняет L_i до всего пространства mathbb{R}^n. Пересечение множеств решений отдельных уравнений дает, разумеется, множество L_1^{+} capldotscap L_k^{+}={A^Tx=o} решений системы этих уравнений. Поэтому (L_1+ ldots+L_k)oplus{A^Tx=o}=mathbb{R}^n, что и требовалось доказать. Утверждение (8.17) доказывается аналогично, используя (8.18).


Пример 8.10. Найти алгебраическое дополнение подпространства L=operatorname{Lin}[(t-1)^2,(t+1)^3] в пространстве P_3(mathbb{R}) многочленов не более, чем 3-й степени.

Решение. Сначала нужно переформулировать задачу для арифметического пространства (см. следствие теоремы 8.3 об изоморфизме конечномерных пространств). Для этого возьмем в P_3(mathbb{R}) стандартный базис mathbf{e}_1(t)=1, mathbf{e}_2(t)=t, mathbf{e}_3(t)=t^2, mathbf{e}_4(t)=t^3. Пространство P_3(mathbb{R}) изоморфно mathbb{R}^4. Найдем координаты многочленов mathbf{a}_1(t)=(t-1)^2 и mathbf{a}_2(t)=(t+1)^3 в стандартном базисе. Раскладывая mathbf{a}_1(t) по базису, получаем:

mathbf{a}_1(t)= (t-1)^2= 1-2t+t^2=1cdot mathbf{e}_1(t)+(-2)cdot mathbf{e}_2(t)+ 1cdot mathbf{e}_3(t)+0cdot mathbf{e}_4(t),

т.е. многочлену mathbf{a}_1(t) соответствует координатный столбец a_1= begin{pmatrix}1&-2&1&0end{pmatrix}^T — элемент пространства mathbb{R}^4. Аналогично получаем координатный столбец a_2= begin{pmatrix} 1&3&3&1end{pmatrix}^T для многочлена mathbf{a}_2(t).

Таким образом, исходная задача сводится к следующей: требуется найти алгебраическое дополнение подпространства L=operatorname{Lin}(a_1,a_2) в пространстве mathbb{R}^4. Используя правило (8.16), получаем, что L^{+} — это множество решений системы A^Tx=o, где A^T=begin{pmatrix} a_1&a_2 end{pmatrix}^T= begin{pmatrix}1&-2&1&0\ 1&3&3&1end{pmatrix}, т.е. системы begin{cases} x_1-2x_2+x_3=0,\ x_1+3x_2+3x_3+x_4=0. end{cases}

Решаем ее методом Гаусса. Приводим матрицу системы к упрощенному виду, прибавляя ко второй строке первую, умноженную на (-1), поделив вторую строку на 5, а затем прибавив ее, умноженную на 2, к первой:

A^T=begin{pmatrix}1&-2&1&0\ 1&3&3&1end{pmatrix}sim begin{pmatrix}1&-2&1&0\ 0&5&2&1 end{pmatrix}sim begin{pmatrix}1&0&9/5&2/5\ 0&1&2/5&1/5 end{pmatrix}!.

Базисные переменные x_1,,x_2, свободные — x_3,,x_4. Выражаем базисные переменные через свободные: x_1=-frac{9}{5}x_3-frac{2}{5}x_4; x_2=-frac{2}{5}x_3-frac{1}{5}x_4. Находим фундаментальную систему решений. Подставляя стандартные наборы свободных переменных (x_3=1,,x_4=0 и x_3= 0,,x_4=1), получаем решения: varphi_1=begin{pmatrix}-dfrac{9}{5}&-dfrac{2}{5}& 1&0end{pmatrix}^T, varphi_2=begin{pmatrix}-dfrac{2}{5}&-dfrac{1}{5}&0&1 end{pmatrix}^T, которые образуют фундаментальную систему решений и являются базисом алгебраического дополнения L^{+}=operatorname{Lin}(varphi_1,varphi_2) Полученный результат переносим в пространство многочленов. По координатному столбцу varphi_1 находим многочлен

varphi_1(t)=-frac{9}{9}cdot mathbf{e}_1(t)-frac{2}{5}cdot mathbf{e}_2(t)+ 1cdot mathbf{e}_3(t)+0cdot mathbf{e}_4(t)= -frac{9}{5}-frac{2}{5},t+t^2.

Аналогично получаем varphi_2(t)= -frac{2}{5}-frac{1}{5}t+t^3. Искомое алгебраическое дополнение имеет вид

L^{+}=operatorname{Lin}!left[left( -frac{9}{5}-frac{2}{5},t+t^2 right)!,,left( -frac{2}{5} -frac{1}{5}t+ t^3right)right]!,

Проверим равенство Lcap L^{+}={mathbf{o}}. Для этого приравняем между собой линейные комбинации многочленов mathbf{a}_1(t),,mathbf{a}_2(t) и varphi_1(t),,varphi_2(t):

alpha(1-t)^2+beta(1+t)^3= gamma!left(-frac{9}{5}-frac{2}{5},t+t^2 right)+delta! left(-frac{2}{5} -frac{1}{5}t+ t^3right)!.

Преобразовывая, получаем

(alpha+beta)cdot t^3+(alpha+3beta-gamma)cdot t^2+left(-2alpha+ 3beta+ frac{2}{5},gamma+frac{1}{5},deltaright)!cdot t+alpha+beta+ frac{9}{5},gamma+ frac{2}{5},delta=0.

Чтобы это равенство выполнялось тождественно, все его коэффициенты должны быть равны нулю:

begin{cases}beta-delta=0,\ alpha+3beta-gamma=0,\ -2alpha+3beta+ frac{2}{5} gamma+ frac{1}{5}delta=0,\ alpha+beta+ frac{9}{5}gamma+ frac{2}{5}delta=0, end{cases} Leftrightarrowquad underbrace{begin{pmatrix}0&1&0&-1\ 1&3&-1&0\ -2&3&2/5&1/5\ 1&1&9/5&2/5 end{pmatrix}}_{B}!cdot! begin{pmatrix}alpha\ beta\ gamma\ delta end{pmatrix}= begin{pmatrix} 0\0\0\0 end{pmatrix}!.

Ранг матрицы B этой системы равен 4 (находится, например, методом Гаусса). Поэтому однородная система имеет только нулевое решение alpha=beta= gamma= delta=0. Таким образом, равенство Lcap L^{+}={mathbf{o}} выполняется.


Нахождение алгебраической суммы подпространств

Для заданных подпространств A и B пространства mathbb{R}^n требуется найти размерность и базис их алгебраической суммы A+B. Рассмотрим методику решения этой задачи для двух случаев описания подпространств.

Пусть подпространства заданы линейными оболочками своих образующих (внутреннее описание): mathbf{A} =operatorname{Lin}(mathbf{a}_1,ldots, mathbf{a}_{k_1}) и mathbf{B} =operatorname{Lin} (mathbf{b}_1,ldots, mathbf{b}_{k_2}). Тогда, приписывая к образующим mathbf{a}_1,ldots, mathbf{a}_{k_1} одного подпространства образующие mathbf{b}_1,ldots, mathbf{b}_{k_2} другого подпространства, получаем образующие суммы подпространств mathbf{A} и mathbf{B}:

left.{begin{gathered}mathbf{A} =operatorname{Lin}(mathbf{a}_1,ldots, mathbf{a}_{k_1}),hfill\ mathbf{B}=operatorname{Lin}(mathbf{b}_1,ldots, mathbf{b}_{k_2}) end{gathered}}!right}quad Rightarrowquad mathbf{A}+mathbf{B}=operatorname{Lin} (mathbf{a}_1,ldots, mathbf{a}_{k_1},mathbf{b}_1,ldots, mathbf{b}_{k_2}),

(8.19)

поскольку любой вектор mathbf{v}in(mathbf{A}+mathbf{B}) имеет вид mathbf{v}= underbrace{alpha_1 mathbf{a}_1+ldots+ alpha_{k_1}mathbf{a}_{k_1} }_{mathbf{v}_1inmathbf{A}}+ underbrace{beta_1 mathbf{b}_1+ldots+ beta_{k_1}mathbf{b}_{k_2} }_{mathbf{v}_2inmathbf{B}}. Базис суммы mathbf{A}+ mathbf{B}= operatorname{Lin} (mathbf{a}_1,ldots, mathbf{a}_{k_1}, mathbf{b}_1, ldots, mathbf{b}_{k_2}) можно найти как максимальную подсистему линейно независимых столбцов.

Пусть подпространства заданы как множества решений однородных систем уравнений (внешнее описание): mathbf{A}={Ax=o} и mathbf{B}={Bx=o}. Тогда, переходя к внутреннему описанию, сводим задачу к предыдущему случаю, а именно нужно выполнить следующие действия:

1) для каждой однородной системы Ax=o и Bx=o найти фундаментальные системы решений varphi_1,ldots,varphi_{n-r} и psi_1,ldots,psi_{n-r} соответственно. При этом получим A=operatorname{Lin} (varphi_1,ldots,varphi_{n-r}) и B=operatorname{Lin}(psi_1,ldots,psi_{n-r}), где r_{A}=operatorname{rg}A, r_{B}=operatorname{rg}B;

2) по правилу (8.19) найти сумму mathbf{A}+mathbf{B}= operatorname{Lin} (varphi_1, ldots,varphi_{n-r},psi_1,ldots,psi_{n-r}).


Пример 8.11. Найти размерность и базис алгебраической суммы mathbf{A}+mathbf{B} подпространств mathbf{A},mathbf{B}triangleleft mathbb{R}^4, если подпространство mathbf{A} задано системой уравнений

begin{cases}x_1+x_2+2x_3+x_4=0,\ 2x_1+3x_2+x_4=0,\ 3x_1+4x_2+2x_3+2x_4=0,end{cases}

подпространство mathbf{B} — линейной оболочкой своих образующих:

mathbf{B}=operatorname{Lin}(b_1,b_2),quad b_1=begin{pmatrix}-4&3&1&-1 end{pmatrix}^T,quad b_2=begin{pmatrix}1&1&1&1end{pmatrix}^T.

Решение. Образующие подпространства mathbf{A} были найдены в примере 8.9: mathbf{A}=operatorname{Lin}(a_1,a_2), где a_1= begin{pmatrix}-6&4&1&0end{pmatrix}^T, a_2=begin{pmatrix}-2&1&0&1 end{pmatrix}^T. По правилу (8.19) получаем mathbf{A}+mathbf{B}= operatorname{Lin}(a_1,a_2,b_1,b_2). Найдем базис этого подпространства как максимальную линейно независимую подсистему столбцов. Составляем из этих столбцов матрицу и приводим ее методом Гаусса к ступенчатому виду:

begin{gathered}begin{pmatrix}-6&-2&-4&1\ 4&1&3&1\ 1&0&1&1\ 0&1&-1&1 end{pmatrix}sim begin{pmatrix}1&0&1&1\ 4&1&3&1\ -6&-2&-4&1\ 0&1&-1&1 end{pmatrix}sim begin{pmatrix}1&0&1&1\ 0&1&-1&-3\ 0&-2&2&7\ 0&1&-1&1 end{pmatrix}sim\[2pt] sim begin{pmatrix}1&0&1&1\ 0&1&-1&-3\ 0&0&0&1\ 0&0&0&4 end{pmatrix}sim begin{pmatrix} 1&0&1&1\ 0&1&-1&-3\ 0&0&0&1\ 0&0&0&0 end{pmatrix}!.end{gathered}

Первый, второй и четвертый столбцы полученной матрицы линейно независимы. Значит, соответствующие столбцы a_1,,a_2,,b_2 исходной матрицы так же линейно независимы (так как выполнялись элементарные преобразования только над строками). Поэтому они являются базисом mathbf{A}+mathbf{B} и dim(mathbf{A}+ mathbf{B})=3.


Нахождение пересечения подпространств

Для заданных подпространств mathbf{A} и mathbf{B} пространства mathbb{R}^n требуется найти размерность и базис их пересечения mathbf{A}cap mathbf{B}. Рассмотрим методику решения этой задачи для двух случаев описания подпространств.

Пусть подпространства заданы как множества решений однородных систем уравнений (внешнее описание): mathbf{A}={Ax=o} и mathbf{B}={Bx=o}. Тогда, приписывая к системе Ax=o, задающей одно подпространство, систему Bx=o, задающую другое подпространство, получаем систему begin{cases} Ax=o,\ Bx=o,end{cases} определяющую пересечение подпространств:

left.{begin{gathered}mathbf{A}={Ax=o},\ mathbf{B}={Bx=o} end{gathered}}right}quad Rightarrowquad mathbf{A}cap mathbf{B}=left{begin{pmatrix}A\ Bend{pmatrix}!x=oright}!.

(8.20)

Базисом пересечения служит ее фундаментальная система решений.

Пусть подпространства mathbf{A} и mathbf{B} пространства mathbb{R}^n заданы линейными оболочками своих образующих (внутреннее описание): mathbf{A}=operatorname{Lin}(a_1,ldots,a_{k_1}) и mathbf{B}= operatorname{Lin}(b_1,ldots,b_{k_2}). Переходя от внутреннего описания подпространств к внешнему, можно свести задачу к предыдущему случаю. Однако удобнее сделать иначе. Пересечению mathbf{A}cap mathbf{B} принадлежат только такие mathbf{x}in mathbb{R}^n, которые можно представить как равные между собой линейные комбинации столбцов a_1,ldots,a_{k_1} и столбцов b_1,ldots,b_{k_2} соответственно:

mathbf{x}=alphacdot mathbf{a}_1+ldots+alpha_{k_1}cdot mathbf{a}_{k_1}= beta_{1}cdot mathbf{b}_{1}+ldots+beta_{k_2}cdot mathbf{b}_{k_2}.

(8.21)

Представим второе равенство в (8.21) в матричном виде Aalpha=Bbeta, где A=begin{pmatrix}a_1&cdots&a_{k_1}end{pmatrix}, B=begin{pmatrix} b_1&cdots&b_{k_2}end{pmatrix} — матрицы, составленные из данных столбцов, alpha= begin{pmatrix}alpha_1&cdots&alpha_{k_1}end{pmatrix}^T, beta= begin{pmatrix} beta_1&cdots&beta_{k_2}end{pmatrix}^T — столбцы коэффициентов линейных комбинаций. Равенство Aalpha=Bbeta можно рассматривать как одно родную систему Aalpha-Bbeta=o n уравнений с (k_1+k_2) неизвестными alpha и beta. Каждому решению этой системы соответствует вектор mathbf{x}= Aalpha=Bbeta, при надлежащий пересечению mathbf{A}cap mathbf{B}. Однако, на практике удобнее вместо системы Aalpha-Bbeta=o рассматривать однородную систему Aalpha+Bbeta=o, решения которой обладают теми же свойствами (тогда вектор mathbf{x}= Aalpha=Bbeta при надлежит пересечению mathbf{A}cap mathbf{B}.

Поэтому для нахождения пересечения подпространств mathbf{A}= operatorname{Lin} (a_1,ldots,a_{k_1}) и mathbf{B}= operatorname{Lin}(b_1,ldots,b_{k_2}) и базиса пересечения нужно выполнить следующие действия.

1. Составить блочную матрицу (Amid B) коэффициентов однородной системы уравнений Aalpha+Bbeta=o, где матрицы A=begin{pmatrix} a_1&cdots&a_{k_1} end{pmatrix}, B=begin{pmatrix} b_1&cdots&b_{k_2}end{pmatrix} образованы из заданных столбцов.

2. Для однородной системы с матрицей (Amid B) найти фундаментальную матрицу Phi. Матрица Phi имеет размеры (k_1+k_2)times (k_1+k_2-r), где r=operatorname{rg}(Amid B).

3. Из первых k_1 строк матрицы Phi составить матрицу Phi_{alpha}= (E_{k_1}mid O)Phi. Столбцы матрицы Phi_{alpha}= begin{pmatrix} varphi_1&cdots &varphi_{k_1+k_2-r}end{pmatrix} содержат искомые коэффициенты alpha=begin{pmatrix}alpha_1&cdots&alpha_{k_1}end{pmatrix}^T линейных комбинаций (8.21).

4. Записать пересечение mathbf{A}cap mathbf{B} как линейную оболочку столбцов матрицы APhi_{alpha}: Acap B=operatorname{Lin}(Avarphi_1,ldots, Avarphi_{k_1+k_2-r}).

5. Найти базис пересечения как максимальную линейно независимую подсистему образующих Avarphi_1,ldots, Avarphi_{k_1+k_2-r}.


Пример 8.12. Найти размерности и базисы суммы mathbf{A}+ mathbf{B} и пересечения mathbf{A}cap mathbf{B} подпространств mathbf{A},mathbf{B}triangleleft mathbb{R}^4, если они заданы линейными оболочками своих образующих: mathbf{A}= operatorname{Lin}(a_1,a_2,a_3) mathbf{B}= operatorname{Lin}(b_1,b_2,b_3), где

a_1=begin{pmatrix}1\1\1\1end{pmatrix}!,quad a_2=begin{pmatrix}1\-1\1\-1 end{pmatrix}!,quad a_3=begin{pmatrix}1\3\1\3end{pmatrix}!,quad b_1=begin{pmatrix} 1\2\0\2 end{pmatrix}!,quad b_2=begin{pmatrix}1\2\1\2end{pmatrix}!,quad b_3=begin{pmatrix} 3\1\3\1 end{pmatrix}!.

Решение. Найдем базис и размерность суммы mathbf{A}+ mathbf{B}. Составим из данных столбцов блочную матрицу

(Amid B)= begin{pmatrix}a_1&a_2&a_3,mid, b_1&b_2&b_3 end{pmatrix}= begin{pmatrix}1&1&1!!&vline!!& 1&1&3\ 1&-1&3!!&vline!!& 2&2&1\ 1&1&1!!&vline!!& 0&1&3\ 1&-1&3!!&vline!!& 2&2&1 end{pmatrix}!.

Элементарными преобразованиями над строками приведем ее к ступенчатому виду:

(Amid B)sim begin{pmatrix}1&1&1!!&vline!!& 1&1&3\ 0&-2&2!!&vline!!& 1&1&-2\ 0&0&0!!&vline!!& -1&0&0\ 0&-2&2!!&vline!!& 1&1&-2end{pmatrix}sim begin{pmatrix} 1&1&1!!&vline!!& 1&1&3\ 0&-2&2!!&vline!!& 1&1&-2\ 0&0&0!!&vline!!& -1&0&0\ 0&0&0!!&vline!!& 0&0&0 end{pmatrix}= (A'mid B').

По ступенчатому виду определяем, что первый, второй и четвертый столбцы линейно независимы. Следовательно, из 6 образующих a_1,a_2,a_3, b_1,b_2,b_3 подпространства mathbf{A}+mathbf{B} максимальную линейно независимую подсистему составляют столбцы a_1,a_2,b_1 (в этих столбцах расположен базисный минор матрицы). Следовательно, эти столбцы служат базисом суммы: mathbf{A}+ mathbf{B}= operatorname{Lin}(a_1,a_2,b_1) и dim(mathbf{A}+mathbf{B})=3. По ступенчатому виду матрицы (Amid B) можно также определить размерности подпространств. В блоке A' две ненулевых строки, следовательно, dimmathbf{A}= operatorname{rg}A= operatorname{rg}A'=2. Ненулевые строки блока В’ линейно независимы, следовательно, dimmathbf{B}= operatorname{rg}B= operatorname{rg}B'=3.

Найдем базис и размерность пересечения mathbf{A}cap mathbf{B}~ (k_1=k_2=3,~ r=operatorname{rg}(Amid B)=3).

1. Первый пункт алгоритма выполнен выше: матрица (Amid B) однородной системы Aalpha+Bbeta=o приведена к ступенчатому виду (A'mid B').

2. Находим фундаментальную систему решений (используя алгоритм, описанный в разд. 5.5). Приводим матрицу (A'mid B') системы к упрощенному виду:

(A'mid B')= begin{pmatrix}1&1&1!!&vline!!& 1&1&3\ 0&-2&2!!&vline!!& 1&1&-2\ 0&0&0!!&vline!!& -1&0&0\ 0&0&0!!&vline!!& 0&0&0end{pmatrix}sim begin{pmatrix}1&0&2!!&vline!!& 0&3/2&2\ 0&1&-1!!&vline!!& 0&-1/2&1\ 0&0&0!!&vline!!& 1&0&0\ 0&0&0!!&vline!!& 0&0&0end{pmatrix}!.

Базисные переменные: alpha_1,,alpha_2,,beta_1; остальные переменные — свободные. Выражаем базисные переменные через свободные: alpha_1=-2alpha_3-frac{3}{2} beta_2-2beta_3; alpha_2=alpha_3+frac{1}{2}beta_2-beta_3; beta_1=0. Придавая свободным переменным наборы значений

alpha_3=1,quad beta_2=0,quad beta_3=0;qquad alpha_3=0,quad beta_2=2,quad beta_3=0;qquad alpha_3=0,quad beta_2=0,quad beta_3=1,

получаем линейно независимые решения

varphi_1=begin{pmatrix} -2&1&1&0&0&0 end{pmatrix}^T,quad varphi_2= begin{pmatrix} -3&1&0&0&2&0 end{pmatrix}^T,quad varphi_3=begin{pmatrix}-2&-1&0&0&0&1 end{pmatrix}^T.

т.е. фундаментальная матрица имеет вид

Phi= begin{pmatrix}-2&-3&-2\ 1&1&-1\ 1&0&0\ 0&0&0\ 0&2&0\ 0&0&1 end{pmatrix}!.

3. Из первых трех строк (k_1=3) матрицы Phi составляем матрицу Phi_{alpha}= begin{pmatrix} -2&-3&-2\ 1&1&-1\ 1&0&0 end{pmatrix}.

4. Вычисляем произведение

AcdotPhi_{alpha}= begin{pmatrix}1&1&1\ 1&-1&3\ 1&1&1\ 1&-1&3 end{pmatrix}! cdot! begin{pmatrix}-2&-3&-2\ 1&1&-1\ 1&0&0end{pmatrix}= begin{pmatrix}0&-2&-3\ 0&-4&-1\ 0&-2&-3\ 0&-4&-1end{pmatrix}= begin{pmatrix}o&c_1&c_2end{pmatrix}!.

Столбцы этой матрицы являются образующими пересечения mathbf{A}cap mathbf{B}= operatorname{Lin}(o,c_1,c_2), где o — нулевой столбец, c_1= begin{pmatrix} -2&-4&-2&-4 end{pmatrix}^T, c_2=begin{pmatrix}-3&-1&-3&-1 end{pmatrix}^T.

5. Найдем базис пересечения mathbf{A}cap mathbf{B}. Для этого матрицу APhi_{alpha} приводим к ступенчатому виду

AcdotPhi_{alpha}= begin{pmatrix}0&-2&-3\ 0&-4&-1\ 0&-2&-3\ 0&-4&-1end{pmatrix}sim begin{pmatrix}0&2&3\ 0&0&5\ 0&0&0\ 0&0&0 end{pmatrix}sim begin{pmatrix}0&1&3/2\ 0&0&1\ 0&0&0\ 0&0&0 end{pmatrix}!.

По ступенчатому виду определяем, что последние два столбца матрицы APhi_{alpha} линейно независимы. Следовательно, два столбца c_1,c_2 являются базисом пересечения mathbf{A}cap mathbf{B}= operatorname{Lin}(c_1,c_2) и dim(mathbf{A}cap mathbf{B})=2.

Проверим размерность пересечения подпространств, которую вычислим, используя формулу (8.13):

dim(mathbf{A}cap mathbf{B})= dim mathbf{A}+dim mathbf{B}-dim(mathbf{A}+ mathbf{B})= 2+3-3=2,

что совпадает с найденной ранее размерностью.


Пример 8.13. Найти размерности и базисы пересечения mathbf{A}cap mathbf{B} и суммы mathbf{A}+ mathbf{B} подпространств mathbf{A}, mathbf{B}triangleleft mathbb{R}^4, если они заданы однородными системами уравнений:

mathbf{A}colon, begin{cases}x_1+x_2+2x_3+x_4=0,\ 2x_1+3x_2+x_4=0,\ 3x_1+4x_2+2x_3+2x_4=0;end{cases}quad mathbf{B}colon, begin{cases}x_1+x_2+x_3=0,\ 2x_1+3x_2+x_3+2x_4=0,\ x_1+2x_2+2x_4=0.end{cases}

Решение. Обозначим матрицы данных систем через mathbf{A} и mathbf{B} соответственно. По правилу (8.20) пересечение mathbf{A}cap mathbf{B} описывается однородной системой begin{cases}Ax=o,\Bx=o.end{cases} Найдем базис пересечения — фундаментальную систему решений этой однородной системы уравнений. Составляем матрицу системы begin{pmatrix}dfrac{A}{B}end{pmatrix} и приводим ее к ступенчатому виду, а затем к упрощенному виду:

begin{gathered} begin{pmatrix}dfrac{A}{B}end{pmatrix}= begin{pmatrix}1&1&2&1\ 2&3&0&1\ 3&4&2&2\hline 1&1&1&0\ 2&3&1&2\ 1&2&0&2 end{pmatrix}sim begin{pmatrix} 1&1&2&1\ 0&1&-4&-1\ 0&1&-4&-1\hline 0&0&-1&-1\ 0&1&-3&0\ 0&1&-2&1 end{pmatrix}sim begin{pmatrix}1&1&2&1\ 0&1&-4&-1\ 0&0&0&0\hline 0&0&-1&-1\ 0&0&1&1\ 0&0&2&2 end{pmatrix}sim begin{pmatrix}1&1&2&1\ 0&1&-4&-1\ 0&0&1&1\hline 0&0&0&0\ 0&0&0&0\ 0&0&0&0 end{pmatrix}sim\[2pt] sim begin{pmatrix}1&0&6&2\ 0&1&-4&-1\ 0&0&1&1\hline 0&0&0&0\ 0&0&0&0\ 0&0&0&0 end{pmatrix}sim begin{pmatrix}1&0&0&-4\ 0&1&0&3\ 0&0&1&1\hline 0&0&0&0\ 0&0&0&0\ 0&0&0&0end{pmatrix}!.end{gathered}

Базисные переменные: x_1,x_2,x_3, свободная переменная — x_4. Выражаем базисные переменные через свободную: x_1=4x_4; x_2=-3x_4; x_3=-x_4. Фундаментальная система содержит одно решение varphi_1= begin{pmatrix} 4&-3&-1&1end{pmatrix}^T, которое получаем, задавая x_4=1. Следовательно, mathbf{A}cap mathbf{B}= operatorname{Lin}(varphi_1) и dim(mathbf{A}cap mathbf{B}).

Найдем теперь сумму mathbf{A}+mathbf{B}. Фундаментальная система решений однородной системы Ax=o была найдена в примере 8.9. Следовательно,

mathbf{A}=operatorname{Lin}(a_1,a_2), где a_1=begin{pmatrix} -6&4&1&0 end{pmatrix}^T,~~ a_2=begin{pmatrix}-2&1&0&1end{pmatrix}^T,~~ dim{mathbf{A}}=2.

Найдем фундаментальную систему решений однородной системы Bx=o. Для этого приводим матрицу системы к ступенчатому виду, а затем к упрощенному:

B=begin{pmatrix}1&1&1&0\ 2&3&1&2\ 1&2&0&2 end{pmatrix}sim begin{pmatrix} 1&1&1&0\ 0&1&-1&2\ 0&1&-1&2 end{pmatrix}sim begin{pmatrix}1&1&1&0\ 0&1&-1&2\ 0&0&0&0 end{pmatrix}sim begin{pmatrix}1&0&2&-2\ 0&1&-1&2\ 0&0&0&0 end{pmatrix}!.

Базисные переменные: x_1,,x_2, свободные переменные: x_3,,x_4. Выражаем базисные переменные через свободные: x_1=-2x_3+2x_4; x_2=x_3-2x_4. Фундаментальная система состоит из двух решений b_1=begin{pmatrix}-2&1&1&0end{pmatrix}^T, b_2=begin{pmatrix}2&-2&0&1end{pmatrix}^T, которые находим, придавая свободным переменным стандартные наборы значений (x_3=1,~x_4=0 и x_3=0,~x_4=1). Следователь но, mathbf{B}= operatorname{Lin}(b_1,b_2) и dim mathbf{B}=2.

По правилу (8.19) находим сумму mathbf{A}+mathbf{B}= operatorname{Lin} (a_1,a_2,b_1,b_2). Чтобы определить базис, составим из столбцов a_1,,a_2,, b_1,,b_2 матрицу и приведем ее к ступенчатому виду:

begin{pmatrix}-6&-2&-2&2\ 4&1&1&-2\ 1&0&1&0\ 0&1&0&1end{pmatrix}sim begin{pmatrix}1&0&1&0\ 0&1&-3&-2\ 0&-2&4&2\ 0&1&0&1 end{pmatrix}sim begin{pmatrix} 1&0&1&0\ 0&1&-3&-2\ 0&0&-2&-2\ 0&0&3&3 end{pmatrix}sim begin{pmatrix}1&0&1&0\ 0&1&-3&-2\ 0&0&1&1\ 0&0&0&0 end{pmatrix}!.

Первые три столбца линейно независимы. Следовательно, mathbf{A}+mathbf{B}= operatorname{Lin}(a_1,a_2,b_1) и dim(mathbf{A}+mathbf{B})=3.

Проверим размерность суммы подпространств. По формуле (8.13) получаем

dim(mathbf{A}+mathbf{B})= dimmathbf{A}+dimmathbf{B}-dim(mathbf{A}cap mathbf{B})=2+2-1=3,

что совпадает с найденной ранее размерностью.


Нахождение относительных алгебраических дополнений подпространств

Пусть дана цепочка подпространств mathbf{A}triangleleft mathbf{B}triangleleft mathbb{R}^n. Требуется найти относительное дополнение mathbf{A}^{+}cap mathbf{B} подпространства mathbf{A} до подпространства mathbf{B}.

Рассмотрим случай внешнего описания подпространств — как множеств решений однородных систем уравнений: mathbf{A}={Ax=o} и mathbf{B}={Ax=o}. Согласно (8.17) базис пространства mathbf{A}^{+} образуют линейно независимые столбцы транспонированной матрицы A^T. Тогда относительное дополнение mathbf{A}^{+}cap mathbf{B} составляют такие векторы x=A^Ty, которые удовлетворяют системе Bx=o. Если обозначить через Phi фундаментальную матрицу системы BA^Ty=o, то линейно независимые столбцы матрицы A^TPhi являются максимальной системой векторов подпространства mathbf{B}, линейно независимой над mathbf{A}, т.е. базисом относительного дополнения.

На практике нахождение базиса mathbf{A}^{+}cap mathbf{B} удобнее производить, используя ступенчатые виды матриц A и B, согласно следующей методике.

1. Привести матрицы A и B при помощи элементарных преобразований строк к ступенчатому виду и удалить нулевые строки. В результате по лучим матрицы (A)_{text{st}} и (B)_{text{st}} модифицированного ступенчатого вида (строки каждой из этих матриц линейно независимые).

2. Найти фундаментальную матрицу Phi однородной системы уравнений (B)_{text{st}}(A)_{text{st}}^Ty=o.

3. Вычислить матрицу (A)_{text{st}}^TPhi. Ее столбцы образуют искомый базис mathbf{A}^{+}cap mathbf{B}.

Рассмотрим случай внутреннего описания подпространства mathbf{A} как линейной оболочки своих образующих: mathbf{A}=operatorname{Lin}(a_1,ldots,a_k). Согласно (8.16) множество решений системы уравнений A^Tx=o (матрица A= begin{pmatrix}a_1&cdots&a_kend{pmatrix} составлена из образующих) является алгебраическим дополнением mathbf{A}^{+}. Тогда множество решений системы begin{cases}A^Tx=o,\Bx=o,end{cases}!!Leftrightarrow, begin{pmatrix} dfrac{A^T}{B} end{pmatrix}!x=o является относительным дополнением mathbf{A}^{+}cap mathbf{B}, а ее фундаментальная система решений — базисом относительного дополнения.

Замечание 8.10. Способы описания подпространств комплексного линейного пространства, а также методы решения типовых задач аналогичны рассмотренным. В отличие от вещественного арифметического пространства mathbb{R}^n вместо операции транспонирования матрицы в комплексном арифметическом пространстве mathbb{C}^n нужно использовать операцию сопряжения матрицы.

Математический форум (помощь с решением задач, обсуждение вопросов по математике).

Кнопка "Поделиться"

Если заметили ошибку, опечатку или есть предложения, напишите в комментариях.

Пусть
заданы два подпространства R1
и R2
n-мерного
пространства R.

Определение:
Если каждый вектор x
пространства R
можно, и притом единственным образом,
представить как сумму двух векторов:

x
=
x1
+
x2,

где


, то говорят, что пространство R
разложено в прямую сумму подпространств
R1
и R2.
Это записывают так:

R
= R1
+ R2,

Теорема. Для
того, чтобы пространство
R
разлагалось в прямую сумму подпространств

R1
и R2,достаточно,
чтобы:

  1. Подпространства

    R1
    и
    R2

    имели только один общий вектор
    x
    =
    0 (нулевой вектор).

  2. Сума
    размерностей этих подпространств была
    равна размерности пространства
    R.

Пусть
имеем два произвольных подпространства
R1
и R2
линейного пространства R.
Подпространство пересечения
R1
и R2
— это совокупность векторов, принадлежащих
обоим подпространствам R1
и R2:

Пример
12
4. Пусть
R1
и R2
– два двумерных подпространства
трехмерного прос-транства (две плоскости,
проходящие через начало координат).
Тогда их пересечение

есть одномерное подпространство (прямая,
по которой эти плоскости пересекаются).

По
двум подпространствам
R1
и R2

можно построить еще одно подпространство,
которое называют суммой:
векторами этого подпространства являются
всевозможные суммы вида:

x
=
x1
+
x2, (*)

где

,
его обозначают:

отличие от прямой суммы двух подпрос-транств,
запись (*) элемента из R
может быть неоднозначной. Легко проверить,
что построенные элементы (*) образуют
подпространство.

Теорема. Сумма
размерностей

R1
и R2,
равна размерности их суммы плюс
размерность пересечения.

Пример
12
5. Найдем
базис пересечения подпространств

, если R1
натянут на векторы a1
и
a2,
а R2
– на векторы b1
и
b2:

, ,

, .

Решение:
Нетрудно заметить, что векторы a1
и
a2,
b1
и
b2:
— линейно независимы. Согласно
вышеприведенной теореме запишем
размерность пересечения

в виде d
= k+r-s,
где k
= 2 – число независимых векторов,
порождающих подпространство R1;
r
= 2 – число независи-мых векторов,
порождающих подпространство R2;
s
– число независимых векторов, порождающих
подпространство

(его предстоим вычислить).

Применяя
один из способов вычисления ранга
системы векторов, получаем: s
= 3. В таком случае размерность пересечения
d
= 2 + 2 — 3 = 1/

Найдем базис из
условия:

c
= x1
a1+
x2
a
2 =
x3
b1+
x4
b
2

или

Решая
эту систему одним из способов, изложенных
в Гл.5, получим: x1
=
-s;
x2
=
4s;
x3
=
-3s;
x4
=
s,
где s
– произвольная постоянная. Принимая
s
= -1, получим:

c
= a1
4 a2
= 3
b1
b2
= (5, -2, -3, -4).

Ответ:
базис пересечения подпространств: c
=
a1
4
a2
=
3
b1
b2
= (5, -2, -3, -4).

Решите
примеры
:

Пример
12
6. Найдем
базис пересечения подпространств

, если R1
натянут на векторы a1
и
a2,
а R2
– на векторы b1
и
b2:

, ,

, .

Ответ:
базис пересечения подпространств: c
=
-4a1
+
13
a2
=
8 b1+
3b2
= (5, 9, -13, 27).

Пример
127
. Найдем
базис пересечения подпространств

, если R1
натянут на векторы a1
и
a2,
а R2
– на векторы b1
и
b2:

, ,

, .

Ответ:
базис пересечения подпространств: c
=
2a1
3
a2
=

b1+
b2
= (1, 3, -1, 1).

Соседние файлы в папке СРС

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Теория функций действительного переменного


  1. Эквивалентные множества
  2. Счётные множества
  3. Метрическое пространство
  4. Множества в метрическом пространстве
  5. Сходимость метрического пространства
  6. Непрерывные отображения метрического пространства
  7. Полные метрические пространства
  8. Принцип сжимающихся отображений
  9. Применение принципа сжимающихся отображений
  10. Линейные пространства
  11. Линейные функционалы
  12. Выпуклые множества и функционалы
  13. Нормированные и евклидовы пространства
  14. Непрерывные линейные функционалы
  15. Сопряжённое пространство
  16. Слабая сходимость
  17. Обобщённые функции
  18. Линейные операторы
  19. Компактные операторы
  20. Системы множеств
  21. Мера множеств, измеримые функции
  22. Интеграл Лебега
  23. Теория дифференцирования
  24. Пространства суммируемых функций
  25. Тригонометрические ряды
  26. Ортогональные системы функций
  27. Преобразование Фурье

Введение на некотором множестве метрики (то есть расстояния между элементами этого множества) позволяет ввести понятие сходимости — фундаментальное понятие математического анализа.
В данном разделе мы рассмотрим такие множества, в которых можно ввести фундаментальные понятия алгебры: линейная комбинация, линейная зависимость, базис.
Понятие линейной комбинации, в свою очередь, позволяет говорить о выпуклых множествах и телах — аналогах привычных понятий из геометрии.

Определение[править]

Непустое множество {displaystyle ~L} называют линейным пространством (или векторным пространством), если выполняются следующие условия:

В зависимости от того, какие числа используются для построения линейного пространства, различают действительные и комплексные линейные пространства. Можно также рассматривать линейные пространства, построенные над произвольным полем.

Элементы линейного пространства часто называют векторами.

Два линейных пространства {displaystyle ~L_{1}} и {displaystyle ~L_{2}} называются изоморфными друг другу, если между их элементами можно установить взаимно-однозначное соответствие, согласованное с операциями линейного пространства. Это означает, что если

{displaystyle x_{1},y_{1}in L_{1}},
{displaystyle x_{2},y_{2}in L_{2}},

и установлены следующие взаимные соответствия

{displaystyle x_{1}leftrightarrow x_{2},y_{1}leftrightarrow y_{2}},

то для любого числа {displaystyle ~alpha } должны выполняться соответствия

{displaystyle x_{1}+y_{1}leftrightarrow x_{2}+y_{2}},
{displaystyle alpha x_{1}leftrightarrow alpha x_{2}}.

Примеры[править]

Примером линейного пространства, является пространство геометрических радиусов-векторов на плоскости L = R2 = { x = x1·i + x2· j}:
x = x1·i + x2· j, y = y1·i + y2· j,
x + y = (x1+ y1)·i + ( x2+ y2)· j, α·x = (αx1)·i + (αx2)· j,
0 = 0·i + 0· j, −x = (−x1)·i +(−x2)· j.
Справедливость остальных аксиом линейного пространства следует из свойств операций сложения и умножения на число действительных чисел.

Линейная зависимость[править]

Система элементов

{displaystyle ~{x_{1},...,x_{n}}}

линейного пространства {displaystyle ~L} называется линейно зависимой, если существуют такие числа

{displaystyle ~a_{1},...,a_{n}},

не все равные нулю, что имеет место равенство

{displaystyle sum _{i=1}^{n}a_{i}x_{i}=0}.

Если же это равенство возможно только при

{displaystyle ~a_{1}=a_{2}=...=a_{n}=0},

то система векторов называется линейно независимой.
Бесконечная система элементов называется линейно независимой, если любая её конечная подсистема является линейно независимой.

Если в линейном пространстве {displaystyle L} можно найти n линейно независимых элементов, а любые {displaystyle n+1} элементов являются линейно-зависимыми, то говорят, что пространство {displaystyle L} имеет размерность n. Если же в линейном пространстве можно выбрать любое конечное число линейно независимых элементов, то такое пространство называют бесконечномерным.

Базисом в n-мерном линейном пространстве называется любая система n линейно независимых элементов.

Конечномерные линейные пространства являются основным предметом изучения линейной алгебры, в анализе же, как правило, рассматриваются бесконечномерные линейные пространства.

Подпространства[править]

Непустое подмножество {displaystyle L'} линейного пространства {displaystyle L} называется подпространством, если оно является пространством по отношению к операциям сложения и умножения на число, определённых в исходном пространстве {displaystyle L}.
Другими словами, {displaystyle L'} является подпространством {displaystyle L}, если для любых чисел alpha и {displaystyle beta }:

{displaystyle x,yin L'Rightarrow alpha x+beta yin L'}.

Любое пространство можно считать своим подпространством. Кроме того, любое пространство содержит подпространство состоящее из одного — нулевого — элемента (так называемое нулевое подпространство). Подпространство, отличное от всего пространства и содержащее хотя бы один ненулевой элемент, называется собственным.

Пересечение двух подпространств {displaystyle L_{1}} и {displaystyle L_{2}} линейного пространства {displaystyle L} также является подпространством этого пространства. Для доказательства, рассмотрим два произвольных вектора {displaystyle x,y}, принадлежащих пересечению подпространств, и два произвольных числа {displaystyle a,b}:

{displaystyle x,yin L_{1}cap L_{2}}.

По определению пересечения множеств:

{displaystyle x,yin L_{1}},
{displaystyle x,yin L_{2}}.

Следовательно, по определению подпространства линейного пространства:

{displaystyle ax+byin L_{1}},
{displaystyle ax+byin L_{2}}.

Так как вектор {displaystyle ax+by} принадлежит и множеству {displaystyle L_{1}}, и множеству {displaystyle L_{2}}, то он принадлежит, по определению, и пересечению этих множеств. Таким образом:

{displaystyle x,yin L_{1}cap L_{2}Rightarrow ax+byin L_{1}cap L_{2}}.

Утверждение доказано.
По индукции можно доказать, что пересечение любого количества подпространств является подпространством.

Пусть {displaystyle {x_{n}}} — произвольное непустое множество элементов линейного пространства {displaystyle L}. Наименьшее подпространство пространства {displaystyle L}, содержащее {displaystyle {x_{n}}} называется линейной оболочкой множества {displaystyle {x_{n}}} и обозначается

{displaystyle Lleft({x_{n}}right)}.

Покажем, что линейная оболочка множества существует. Рассмотрим систему всех подпространств, содержащих множество {displaystyle {x_{n}}}, эта система содержит по меньшей мере один элемент — всё пространство {displaystyle L}, и найдём пересечение всех таких подпространств. Так как пересечение любой системы подпространств снова есть подпространство, то полученное подпространство и будет наименьшим подпространством, содержащим {displaystyle {x_{n}}}.

Линейно-независимая система {displaystyle {x_{n}}} элементов линейного пространства {displaystyle L} называется базисом Гамеля, если её линейная оболочка совпадает со всем {displaystyle L}.

Фактор-пространства[править]

Пусть {displaystyle L} — линейное пространство, а {displaystyle L'} — некоторое его подпространство. Введём следующее отношение эквивалентности: два элемента {displaystyle x,yin L} отнесём к одному классу эквивалентности, если их разность принадлежит подпространству {displaystyle L'}, то есть

{displaystyle xsim yLeftrightarrow x-yin L'}.

Легко проверить, что это отношение действительно удовлетворяет аксиомам отношения эквивалентности: рефлексивности, симметричности и транзитивности.

Рефлексивность:

{displaystyle ~x-x=x+(-x)=0},

так как любое подпространство содержит нулевой элемент, то любой элемент эквивалентен сам себе в указанном смысле.

Симметричность. Рассмотрим два вектора {displaystyle x,y}. Пусть

{displaystyle ~z=x-y},

тогда:

{displaystyle ~y-x=(-1)(x-y)=-z},

так как {displaystyle L'} — подпространство линейного пространства, то оно само является линейным пространством, а значит вместе с любым вектором содержит и обратный к нему.

Транзитивность. Рассмотрим три вектора {displaystyle x,y,z}. Пусть

{displaystyle x-yin L'},
{displaystyle y-zin L'},

тогда, по определению подпространства линейного пространства:

{displaystyle (x-y)+(y-z)in L'},

с другой стороны

{displaystyle ~(x-y)+(y-z)=x-y+y-z=x-z},

а значит

{displaystyle ~x-zin L'}.

Классы эквивалентности построенного отношения называются классами смежности(по подпространству {displaystyle L'}). Совокупность всех таких классов называется фактор-пространством пространства {displaystyle L} по {displaystyle L'} и обозначается {displaystyle L/L'}.

В любом фактор-пространстве можно естественным образом ввести операции сложения и умножения на число. Рассмотрим два класса смежности : {displaystyle eta ,xi in L/L'}.
Выберем в каждом из этих классов по одному представителю

{displaystyle xin eta ,~yin xi }

и назовём суммой этих классов тот класс, которому принадлежит элемент {displaystyle x+y}.
Аналогичным образом определяется и произведение класса на число — класс, которому принадлежит произведение представителя на класса на то это число.
Можно проверить, что определение сложения и умножения на число в фактор-пространстве не зависит от выбора представителей классов. Введённые таким образом операции удовлетворяют аксиомам линейного пространства, а значит фактор-пространство линейного пространства само является линейным пространством, причём нулевым элементом фактор-пространства является подпространство {displaystyle L'}

Упражнение 1. Докажите, что введённые операции действительно удовлетворяют аксиомам линейного пространства и не зависят от выбора представителей классов смежности.

Размерность фактор-пространства {displaystyle L/L'} называется коразмерностью подпространства {displaystyle L'} в пространстве {displaystyle L}.

Если коразмерность некоторого подпространства {displaystyle L'subset L} есть конечное число n, то в {displaystyle L} можно выбрать систему элементов {displaystyle x_{1},...,x_{n}} таких, что всякий элемент {displaystyle xin L} будет иметь единственное представление вида

{displaystyle x=sum _{i=1}^{n}a_{i}x_{i}+y},

где {displaystyle ~a_{1},...,a_{n}} — некоторые числа и {displaystyle yin L'}.

Упражнение 2. Докажите это утверждение.

Упражнение 3. Докажите, что если размерность пространства {displaystyle L} равна n, а размерность подпространства {displaystyle L'} равна k, то размерность фактор-пространства равна {displaystyle n-k}.

Решения для упражнений[править]

Упражнение 1.

Пусть {displaystyle eta _{1},eta _{2}in L/L'} — два класса смежности.

Докажем, что сумма классов не зависит от выбора представителей.
Возьмём в каждом классе по два представителя:

{displaystyle x_{1},y_{1}in eta _{1}},
{displaystyle x_{2},y_{2}in eta _{2}}.

Рассмотрим следующие вектора:

{displaystyle x=x_{1}+x_{2}},
{displaystyle y=y_{1}+y_{2}}

и найдём разность между ними

{displaystyle ~x-y=(x_{1}+x_{2})-(y_{1}+y_{2})=(x_{1}-y_{1})+(x_{2}-y_{2})}.

По определению класса смежности

{displaystyle x_{1}-y_{1}in L'},
{displaystyle x_{2}-y_{2}in L'}.

А так как {displaystyle L'} — подпространство линейного пространства, то и

{displaystyle x-yin L'}.

Таким образом, элементы {displaystyle x_{1}+x_{2}} и {displaystyle y_{1}+y_{2}} принадлежат одному классу смежности, а значит определение суммы для классов смежности действительно не зависит от выбора представителей.

Докажем, что определение умножения класса смежности на число не зависит от выбора представителя.
Пусть дан класс смежности {displaystyle eta } и число a.
Выберем двух представителей класса

{displaystyle x_{1},x_{2}in eta }.

Нужно доказать, что вектора

{displaystyle y_{1}=ax_{1}}
{displaystyle y_{2}=ax_{2}}

принадлежат одному классу смежности.
Вычислим их разность:

{displaystyle y_{2}-y_{1}=ax_{2}-ax_{1}=a(x_{2}-x_{1})}.

По определению класса смежности

{displaystyle x_{2}-x_{1}in L'},

но так как {displaystyle L'} является линейным пространством, то

{displaystyle y_{2}-y_{1}=a(x_{2}-x_{1})in L'}.

Таким образом, определение операции умножения класса смежности на число не зависит от выбора представителя.

Докажем теперь, что для фактор-пространства с указанными операциями выполняются свойства линейного пространства.

Начнём с того, что укажем нулевой элемент фактор-пространства.
Нулевым элементом фактор-пространства является подпространство {displaystyle L'}.
Для доказательства этого факта нужно показать, что для любого класса смежности {displaystyle eta } имеет место равенство

{displaystyle eta +L'=eta }.

Это равенство означает, что существуют такие вектора {displaystyle x,yin eta } и {displaystyle zin L'}, что

{displaystyle x+z=y}

или

{displaystyle x-y=z},

но так как {displaystyle zin L'}, то и

{displaystyle x-yin L'},

а следоватльно они принадлежат одному классу смежности,
а класс {displaystyle eta _{0}=L'} является нулевым элементом фактор пространства.

Для доказательства остальных свойств нужно использовать тот факт, что определение суммы классов смежности и умножения класса смежности на число не зависит от выбора представителя, а представители классов смежности являются элементами линейного пространства.

Упражнение 2.

Пусть фактор пространство {displaystyle L/L'} имеет размерность n, выберем в этом фактор-пространстве базис

{displaystyle eta _{1},...,eta _{n}}

тогда произвольный класс можно представить в виде линейной комбинации

{displaystyle eta =sum _{j=1}^{n}a_{j}eta _{j}}.

Рассмотрим вектор {displaystyle xin eta }, выберем в каждом из базисных классов {displaystyle eta _{j}} по одному представителю {displaystyle x_{j}}, тогда, по определению класса смежности фактор-пространства

{displaystyle y=x-sum _{j=1}^{n}a_{j}x_{j}in L'},

то есть любой вектор {displaystyle xin L} действительно представим в виде

{displaystyle x=sum _{j=1}^{n}a_{j}x_{j}+y},

причём

{displaystyle yin L'}.

Упражнение 3.

Если {displaystyle k=n}, то {displaystyle L=L'} и теорема утверждение становится тривиальным.
Будем далее считать, что {displaystyle k<n}.

Пусть {displaystyle e'_{1},...,e'_{k}} — базис в пространстве {displaystyle L'}.
Так как размерность пространства {displaystyle L} равна n, то можно так выбрать вектора {displaystyle x_{1},...x_{n-k}}, чтобы система

{displaystyle ~e'_{1},...,e'_{k},x_{1},...,x_{n-k}}

была линейно независимой.
Вектора {displaystyle x_{1},...x_{n-k}} принадлежат разным классам смежности, причём ни один из этих векторов не лежит в {displaystyle L'}.
Действительно, если {displaystyle x_{j}} и x_{i} принадлежат одному классу смежности, то

{displaystyle x_{j}-x_{i}=yin L'},

или

{displaystyle x_{j}=x_{i}+sum _{t=1}^{k}a_{t}e'_{t}},

где {displaystyle a_{1},...a_{k}} — некоторые числа,
то есть система окажется линейно-зависимой.
Аналогично доказывается, что {displaystyle x_{j}notin L'}.
Так как мы указали {displaystyle n-k} линейно-независимых векторов, принадлежащих разным классам смежности, то можно найти {displaystyle n-k} линейно-независимых классов смежности {displaystyle eta _{1},...,eta _{n-k}}.

Рассмотрим теперь произвольный класс смежности {displaystyle eta } и выберем в нём представителя x.
Так как система

{displaystyle ~e'_{1},...,e'_{k},x_{1},...,x_{n-k}}

является линейно-независимой, то вектор x можно представить в виде

{displaystyle ~x=b_{1}x_{1}+...+b_{n-k}x_{n-k}+c_{1}e'_{1}+...+c_{k}e'_{k}}.

Так как

{displaystyle z=c_{1}e'_{1}+...+c_{k}e'_{k}in L'},

то вектор x принадлежит классу смежности

{displaystyle ~b_{1}eta _{1}+...+b_{n-k}eta _{n-k}},

а так как класс смежности вполне определяется одним своим представителем, то

{displaystyle ~eta =b_{1}eta _{1}+...+b_{n-k}eta _{n-k}}.

Утверждение доказано.

Подпространство линейного пространства

Определение и размерность подпространства

Определение 6.1. Подпространством L n-мерного пространства R называется множество векторов, образующих линейное пространство по отношению к действиям, которые определены в R.

Другими словами, L называется подпространством пространства R, если из x, yL следует, что x+yL и если xL, то λxL, где λ— любое вещественное число.

Простейшим примером подпространства является нулевое подпространство, т.е. подмножество пространства R, состоящее из единственного нулевого элемента. Подпространством может служить и все пространство R. Эти подпространства называются тривиальными или несобственными.

Подпространство n-мерного пространства конечномерно и его размерность не превосходит n: dim L≤ dim R.

Сумма и пересечение подпространств

Пусть L и M — два подпространства пространства R.

Cуммой L+M называется множество векторов x+y, где xL и yM. Очевидно, что любая линейная комбинация векторов из L+M принадлежит L+M, следовательно L+M является подпространством пространства R (может совпадать с пространством R).

Пересечением LM подпространств L и M называется множество векторов, принадлежащих одновременно подпространствам L и M (может состоять только из нулевого вектора).

Теорема 6.1. Сумма размерностей произвольных подпространств L и M конечномерного линейного пространства R равна размерности суммы этих подпространств и размерности пересечения этих подпространств:

dim L+dim M=dim(L+M)+dim(L∩M).

Доказательство. Обозначим F=L+M и G=L∩M. Пусть G g-мерное подпространство. Выберем в нем базис . Так как GL и GM, следовательно базис G можно дополнить до базиса L и до базиса M. Пусть базис подпространства L и пусть базис подпространства M. Покажем, что векторы

(6.1)

составляют базис F=L+M. Для того, чтобы векторы (6.1) составляли базис пространства F они должны быть линейно независимы и любой вектор пространства F можно представить линейной комбинацией векторов (6.1).

Докажем линейную независимость векторов (6.1). Пусть нулевой вектор пространства F представляется линейной комбинацией векторов (6.1) с некоторыми коэффициентами:

(6.2)

Тогда

(6.3)

Левая часть (6.3) является вектором подпространства L, а правая часть является вектором подпространства M. Следовательно вектор

принадлежит подпространству G=L∩M. С другой стороны вектор v можно представить линейной комбинацией базисных векторов подпространства G:

(6.5)

Из уравнений (6.4) и (6.5) имеем:

(6.6)

или

(6.7)

Но векторы являются базисом подпространства M, следовательно они линейно независимы и . Тогда (6.2) примет вид:

(6.8)

В силу линейной независимости базиса подпространства L имеем:

(6.9)

Так как все коэффициенты в уравнении (6.2) оказались нулевыми, то векторы

(6.10)

линейно независимы. Но любой вектор z из F (по определению суммы подпространств) можно представить суммой x+y, где x∈L, y∈M. В свою очередь x представляется линейной комбинацией векторов а y — линейной комбинацией векторов. Следовательно векторы (6.10) порождают подпространство F. Получили, что векторы (6.10) образуют базис F=L+M.

Изучая базисы подпространств L и M и базис подпространства F=L+M (6.10), имеем: dim L=g+l, dim M=g+m, dim (L+M)=g+l+m. Следовательно:

dim L+dim M−dim(L∩M)=dim(L+M).

Прямая сумма подпространств

Определение 6.2. Пространство F представляет собой прямую сумму подпространств L и M, если каждый вектор x пространства F может быть единственным способом представлен в виде суммы x=y+z, где yL и zM.

Прямая сумма обозначается LM. Говорят, что если F=LM, то F разлагается в прямую сумму своих подпространств L и M.

Теорема 6.2. Для того, чтобы n-мерное пространство R представляло собой прямую сумму подпространств L и M, достаточно, чтобы пересечение L и M содержало только нулевой элемент и чтобы размерность R была равна сумме размерностей подпространств L и M.

Доказательство. Выберем некоторый базис в подпространстве L и некоторый базис в подпространстве M. Докажем, что

(6.11)

является базисом пространства R. По условию теоремы размерность пространства R n равна сумме подпространств L и M (n=l+m). Достаточно доказать линейную независимость элементов (6.11). Пусть нулевой вектор пространства R представляется линейной комбинацией векторов (6.11) с некоторыми коэффициентами:

(6.12)

или

(6.13)

Так как левая часть (6.13) является вектором подпространства L, а правая часть — вектором подпространства M и LM=0, то

(6.14)

Но векторы и являются базисами подпространств L и M соответственно. Следовательно они линейно независимы. Тогда

(6.15)

Установили, что (6.12) справедливо лишь при условии (6.15), а это доказывает линейную независимость векторов (6.11). Следовательно они образуют базис в R.

Пусть x∈R. Разложим его по базису (6.11):

(6.16)

Из (6.16) имеем:

(6.17)

(6.18)

Из (6.17) и (6.18) следует, что любой вектор из R можно представить суммой векторов x1L и x2M. Остается доказать что это представление является единственным. Пусть кроме представления (6.17) есть и следующее представление:

(6.19)

Вычитая (6.19) из (6.17), получим

или

(6.20)

Так как , и LM=0, то и . Следовательно и . ■

Содержание

Пересечение и сумма подпространств

проверено. нафиг тогда определение 1, если есть 1′?

Пересечение и сумма

Внутренняя прямая сумма

Определение 2. Пространство $ V $ называется прямой суммой2) своих векторных подпространств $U_1,U_2,ldots,U_n$, если каждый вектор $vin V$ может быть представлен одним и только одним способом в виде суммы

$v=u_1+ldots+u_n,$ где $u_iin U_i$.

Прямая сумма векторных пространств обозначается через $V=U_1oplus U_2oplusldotsoplus U_n$.

Замечание 2. Определенная таким образом прямая сумма называется внутренней.

Пример 2. Пусть $V=F^2$ и подпространства $U_1$ и $U_2$ определены также, как в примере 1. Тогда сумма $U_1+U_2$ является прямой, то есть $V=U_1oplus U_2$.

Предложение 3. Сумма $V=U_1+ldots+U_n$ является прямой тогда и только тогда, когда выполнено любое из следующих двух условий:

  1. $U_icap(U_1+ldots+U_{i-1}+U_{i+1}+ldots+U_n)=0$ для $i=1,2,ldots,n$,

  2. $dim V=dim U_1+dim U_2+ldots+dim U_n$.

Следствие 1. Если $n=2$, то сумма $V=U_1+U_2$ является прямой тогда и только тогда, когда $U_1cap U_2=0$.

Предложение 4. Для любого $m$-мерного подпространства $U$ векторного пространства $V$ размерности $n$ найдется такое $n-m$-мерное подпространство $W$, что $V=Uoplus W$.

Определение 3. Для подпространства $U$ векторного пространства $V$ подпространство $W$ из предложения 4, то есть такое, что $V=Uoplus W$, называется дополнительным подпространством3) к $U$.

Внешняя прямая сумма

Литература

Наверх

Понравилась статья? Поделить с друзьями:
  • Как исправить растянутую горловину на трикотаже
  • Как найти зарплату за отпуск
  • Как найти резистор по номинальному сопротивлению
  • Как найти только установленный сайт
  • Как найти волков в фортнайте