Как найти пересечение поверхностей второго порядка

Содержание:

Взаимное пересечение поверхностей:

Взаимное пересечение поверхностей в начертательной геометрии с примерами

При пересечении поверхностей образуется линия, которую принято называть линией взаимного пересечения поверхностей. Эта линия пересечения принадлежит одновременно двум поверхностям. Поэтому построение линии пересечения сводится к определению точек одновременно принадлежащих обеим поверхностям. Для нахождения таких точек используется в общем случае метод вспомогательных секущих поверхностей. Сущность способа заключается в следующем: Пусть задано две поверхности Взаимное пересечение поверхностей в начертательной геометрии с примерами

Общий алгоритм построения линии пересечения поверхностей:

  1. Введем вспомогательную поверхность Ф.
  2. Строим линии пересечения поверхности Ф с поверхностями Взаимное пересечение поверхностей в начертательной геометрии с примерами
  3. Определяем точки пересечения К и М, простроенных линий a и b
  4. Многократно повторяя эту операцию, найдем ряд точек, принадлежащих одновременно двум поверхностям.
  5. Соединяем последовательно точки с учетом видимости.

В качестве посредников могут быть приняты как поверхности, так и плоскости, но целесообразно выбирать такие, которые дают наиболее простые линии пересечения с заданными поверхностями.

Взаимное пересечение поверхностей

Линия, общая для двух пересекающихся поверхностей — линия пересечения.

Чтобы определить проекцию линии пересечения, необходимо найти проекции точек, общих для этих поверхностей. Их находят способом вспомогательных секущих плоскостей или вспомогательных сфер.

Если рёбра призмы или ось вращения цилиндра перпендикулярны какой-либо из плоскостей проекций, то на этой плоскости проекций линия пересечения совпадает с контуром основания призмы или цилиндра.

Пересечение двух многогранников

Для построения линии пересечения двух многогранников необходимо определить точки пересечения ребер первого многогранника с гранями второго, затем ребер второго с гранями первого. Полученные точки соединить отрезками прямой с учетом видимости. На рисунке 9.2 заданы поверхности трехгранной призмы DEFD’E’F’ и трехгранной пирамиды SABC. Так как призма F, фронтально-проецирующая, фронтальная проекция линии пересечения совпадает с гранями призмы, поэтому необходимо построить только горизонтальную проекцию. Для этого определяем точки пересечения ребер пирамиды с гранями призмы. Ребро SC пересекает грани призмы в точках I и 2, ребро SB — в точках 3 и 4, ребро SA не пересекает призму. Затем определяем точки пересечения ребер призмы с гранями пирамиды.

Взаимное пересечение поверхностей в начертательной геометрии с примерами

По чертежу видим, что только ребро DD’ пресекает поверхность пирамиды. Для определения точек пересечения 5 и б через ребро DD’ проводим горизонтальную плоскость, которая пересекает пирамиду по треугольнику. Точки 5 и 6 получаем, как пересечение DD’ с построенным треугольником.

Полученные точки соединяем с учетом видимости. Видимой считается тот отрезок прямой, который принадлежит двум видимым граням поверхностей.

Как видим, линия пересечения двух многогранников представляет собой пространственную ломаную линию.

В том случае, когда обе гранные поверхности общего положения, последовательность соединения точек вызывает затруднение. Поэтому для соединения точек используется диаграмма Ананова — условные развертки поверхностей (см. учебник).

Пересечение гранной и кривой поверхности

Линия пересечения гранной и кривой поверхности, представляет собой пространственную кривую линию, с точками излома на ребрах многогранника.

Поэтому сначала определяем точки пересечения ребер многогранника с кривой поверхностью, а затем промежуточные точки и соединяем их с учетом видимости. На рисунке 9.3 заданы поверхности трехгранной призмы и кругового конуса.

Взаимное пересечение поверхностей в начертательной геометрии с примерами

Так как призма фронтально-проецирующая, фронтальная проекция линии пересечения совпадает с проекцией боковых граней призмы, поэтому необходимо построить только горизонтальную проекцию линии пересечения.

Сначала определяем точки пересечения ребер призмы Взаимное пересечение поверхностей в начертательной геометрии с примерамис поверхностью конуса, а затем находим промежуточные точки, принадлежащие линиям пересечения. Для нахождения точек пересечения, используем горизонтальные плоскости посредники, так как они пересекают конус по окружностям, а призму но прямым линиям. Как видим, в данном случае линия пересечения распадается на две отдельные части.  

Пересечение двух кривых поверхностей. Метод вспомогательных секущих плоскостей

Линия пересечения двух кривых поверхностей, представляет пространственную кривую линию. Поэтому для ее построения необходимо определить ряд точек принадлежащих этой лини.

На рисунке 9.4 заданы поверхности конуса и сферы. Точки строятся при помощи горизонтальных плоскостей посредников, которые рассекают обе поверхности но окружностям.

Обязательно находим опорные точки, к которым относятся высшая и низшая точки линии пересечения и точки границы видимости. Так как оси поверхностей лежат в одной фронтальной плоскости, контурные образующие поверхностей пересекаются в точках 1 и 2 — это и будет высшая и низшая точки. Точки границы видимости лежат на экваторе сферы, поэтому точки 3 и 3′ находим с помощью вспомогательной горизонтальной плоскости, проходящей через центр сферы. Она рассекает сферу по экватору, а конус но параллели радиуса R.

Взаимное пересечение поверхностей в начертательной геометрии с примерами

Взаимно пересекаясь, они и дают точки 3 и 3′ фронтальную проекцию определяем по вертикальной линии связи на плоскости Взаимное пересечение поверхностей в начертательной геометрии с примерами Затем берем еще две вспомогательные плоскости расположенные выше и ниже плоскости Взаимное пересечение поверхностей в начертательной геометрии с примерами и выполняя, аналогичные построения определяем точки 4 и Взаимное пересечение поверхностей в начертательной геометрии с примерами 5 и 5′. Полученные точки соединяем с учетом видимости.  

  • Заказать чертежи

Пересечение поверхностей вращении. Метод вспомогательных секущих сфер

Способ вспомогательных секущих сфер применяется при следующих условиях:

  1. Пересекающиеся поверхности являются поверхностями вращения.
  2. Оси этих поверхностей пересекаются.
  3. Оси поверхностей параллельны одной из плоскостей проекций.

Перед рассмотрением этого способа разберем понятие соосных поверхностей. Соосными называются поверхности вращения, имеющие общую ось. Соосные поверхности пересекаются по окружностям перпендикулярным оси вращения.

На рисунке 9.5 приведены некоторые из них.

Именно то, что поверхности пересекаются по окружностям, которые проецируются в линии и используется в методе сфер. Взаимное пересечение поверхностей в начертательной геометрии с примерами

Рассмотрим пример на рисунок 9.6. Даны поверхности вращения — конус и цилиндр. Так как оси лежат в одной плоскости, можно определить точки пересечения контурных образующих в точках 1 и 2, как в предыдущем примере.

Взаимное пересечение поверхностей в начертательной геометрии с примерами

Однако, для нахождения промежуточных точек, вспомогательные секущие плоскости не подходят, т.к. горизонтальные плоскости рассекут цилиндр по эллипсам, фронтально-нроецирующие — конус по эллипсам. А сам эллипс строить непросто. Поэтому именно в этом случае удобно использовать в качестве посредников — сферы. За центр вспомогательных сфер, принимается точка пересечения осей заданных поверхностей. Далее необходимо определить, размеры радиусов вспомогательных секущих сфер. Максимальный радиус сферы

В данном случае минимальная сфера вписана в конус. Минимальная сфера касается поверхности конуса по окружности, а цилиндр пересекает по окружности. Нужно, иметь ввиду, что проекции окружностей пересечения перпендикулярны осям вращения. Эти две окружности пересекаются в точке Взаимное пересечение поверхностей в начертательной геометрии с примерами. Фактически таких точек две, они совпадают на фронтальной проекции. Для построения промежуточных точек берем вспомогательные сферы радиусов в пределах от Взаимное пересечение поверхностей в начертательной геометрии с примерами

Они пересекают и поверхность цилиндра, и поверхность конуса по окружностям, которые пересекаясь даюг промежуточные точки. Полученные точки соединяются плавной линией.

Здесь построена только фронтальная проекция. Для построения горизонтальной проекции, если это необходимо, точки строят как лежащие на окружностях полученных радиусов.  

Теорема Монжа

Рассмотрим вариант, когда минимальная сфера касается двух поверхностей вращения. В этом случае для построения линии пересечения поверхностей используется теорема Г. Монжа, которая формулируется так:

Если две поверхности вращении второго порядка описаны около третьей или вписаны в нее, то линии их пересечении распадается на две плоские кривые второго порядка. Плоскости этих кривых проходит через прямую, соединяющую точки пересечении линий касании.

В соответствии с этой теоремой линии пересечения конуса и цилиндра описанного около сферы (рисунок 9.7) будут плоскими кривыми -эллипсами, фронтальные проекции которых изображаются прямыми Взаимное пересечение поверхностей в начертательной геометрии с примерамипроходящими через Взаимное пересечение поверхностей в начертательной геометрии с примерами — точки линий пересечения окружностей касания.

Взаимное пересечение поверхностей в начертательной геометрии с примерами

Пересечение поверхностей вращения с многогранниками

Внешние и внутренние формы большинства предметов образуются сочетанием нескольких поверхностей. Пересекаясь между собой, они образуют линии, которые принято называть линиями перехода.

На рис. 9.1 изображена деталь с несколькими линиями перехода. Линия 1 является границей между плоской и торовой поверхностями, 2 — торовой и конической, 3 — конической и плоскими (гранями призмы), 4 и 5 — торовой поверхностью корпуса и цилиндрическими поверхностями патрубков.

Взаимное пересечение поверхностей в начертательной геометрии с примерами Рисунок 9.1 – Корпус с линиями перехода

Линия пересечения многогранника с телом вращения в общем случае состоит из отдельных участков кривых линий, получающихся при пересечении граней многогранника с поверхностью вращения. Точки перехода от одного участка к другому находятся в пересечении ребер многогранника с телом вращения и называются точками излома. Участок линии пересечения может быть и прямой линией в случае пересечения линейчатой поверхности вращения гранью многогранника по образующей.

При проницании (полном пересечении) получаются две замкнутые линии пересечения. Они могут быть плоскими (поверхность вращения проницает одну грань) или пространственными, состоящими из нескольких плоских кривых с точками излома в местах пересечения поверхности вращения ребрами многогранника.

При врезании (неполном пересечении) получается одна замкнутая пространственная линия.

Таким образом, в соответствии с указанным выше, задачи данной темы решаются по следующему плану:

  • Определяются точки излома линии пересечения, являющиеся точками пересечения ребер многогранника с поверхностью вращения;
  • Находятся точки принадлежащие линиям пересечения отдельных граней многогранника с телом вращения. При этом сначала следует найти характерные (опорные) точки кривых. Это точки, проекции которых отделяют видимую часть проекции линии пересечения от невидимой, это проекции наивысших и наинизших точек линии пересечения, ближайших и наиболее удаленных, крайних слева и справа на проекциях линии пересечения;
  • Определение видимости линии пересечения поверхностей и их очерков. Видимость проекций участков линии пересечения определяется из условия расположения их на видимой стороне каждой поверхности.

При построении точек линии пересечения многогранников с телами вращения используют вспомогательные секущие плоскости. Их располагают так, чтобы они пересекали данные поверхности по простым для построения линиям (прямым или окружностям).

Рассмотрим линии пересечения поверхности прямой трехгранной призмы с поверхностью конуса вращения. Боковые грани призмы являются фронтально-проецирующими плоскостями, а ось конуса перпендикулярна горизонтальной плоскости проекций.

Призму можно рассматривать, как три плоскости, проходящие через ее грани, а задача сводится к нахождению линий пересечения этих плоскостей с конусом.

Взаимное пересечение поверхностей в начертательной геометрии с примерами

Рисунок 9.2 — Пересечение трехгранной призмы с конусом

Пример. Построить линию пересечения поверхности тора с поверх-ностью трехгранной призмы (рис. 9.3).

Решение. Боковые грани призмы являются фронтально-проецирующими плоскостями и фронтальная проекция линии пересечения совпадают с проекцией боковой поверхности призмы. Из фронтальной проекции видно, что в данном случае имеет место проницание тора призмой (две замкнутые линии пересечения).

На рис. 9.3 рассмотрен пример пересечения поверхностей тора и треугольной призмы [2].

По двум заданным проекциям строим третью – профильную.

Взаимное пересечение поверхностей в начертательной геометрии с примерами

Рисунок 9.3 – Построение линии пересечения трехгранной призмы с тором

Заданная призма – горизонтально-проецирующая. Так как грани призматического отверстия перпендикулярны горизонтальной плоскости проекций, то на чертеже известна горизонтальная проекция линии пересечения, она совпадает с вырожденной проекцией поверхности призмы.

Следовательно, линия пересечения совпадает с горизонтальной проекцией основания призмы.

Определяем характерные точки: самую близкую точку 1 фронтальной плоскостью Взаимное пересечение поверхностей в начертательной геометрии с примерами и самые далекие – Взаимное пересечение поверхностей в начертательной геометрии с примерами и 3 фронтальной плоскостью S (Взаимное пересечение поверхностей в начертательной геометрии с примерами).

Определяем промежуточные точки 4 и 5 при помощи вспомогательных фронтальных плоскостей Взаимное пересечение поверхностей в начертательной геометрии с примерами.

Соединяем полученные точки плавной кривой линией с учетом видимости.

Пересечение поверхностей вращения

Линия пересечения двух поверхностей вращения в общем случае представляет пространственную кривую, которая может распадаться на две и более части. Эти части могут быть, в частности, и плоскими кривыми и даже прямыми линиями.

Линию пересечения поверхностей обычно строят по ее отдельным точкам. Точки подразделяются на характерные (опорные) и промежуточные (случайные).

Общим способом построения этих точек является способ вспомогательных секущих поверхностей – посредников. При пересечении данных поверхностей вспомогательной поверхностью определяются линии пересечения ее с данными поверхностями, в пересечении этих линий получаются точки, принадлежащие искомой линии пересечения.

Наиболее часто в качестве поверхностей-посредников применяются плоскости или сферы.

Для определения линии пересечения часто пользуются вспомогательными секущими поверхностями. Поверхности-посредники пересекают данные поверхности по линиям, которые, в свою очередь, пересекаются в точках линии пересечения данных поверхностей.

Секущие поверхности-посредники выбираются так, чтобы они, пересекаясь с данными поверхностями, давали простые для построения линии, например прямые и окружности.

Из общей схемы построения линии пересечения поверхностей выделяют два основных метода — метод секущих плоскостей и метод секущих сфер.

Способ вспомогательных секущих плоскостей

В качестве вспомогательных секущих плоскостей чаще всего используют плоскости, параллельные одной из плоскостей проекций.

Положение их выбирают таким, чтобы они пересекали заданные поверхности по простейшим линиям – прямым или окружностям.

Этот способ рекомендуется применять, если сечениями заданных поверхностей одной и той же плоскостью являются прямыми линиями или окружностями. Такая возможность существует в трех случаях:

  1. Если образующие (окружности) расположены в общих плоскостях уровня;
  2. Если в общих плоскостях уровня оказываются прямолинейные образующие линейчатой поверхности и окружности циклической;
  3. Линейчатые каркасы заданных поверхностей принадлежат общим плоскостям уровня или пучкам плоскостей общего положения.

Пересечение цилиндрической и торовой поверхности

Если одна из поверхностей является цилиндрической проецирующей поверхностью, то построение линии пересечения упрощается, так как в этом случае одна проекция линии пересечения совпадает с окружностью – проекцией цилиндра на перпендикулярную плоскость проекций.

На рис. 9.4 построена линия перехода между цилиндром и тором. Так как поверхность цилиндра перпендикулярна плоскости Н, то горизонтальная проекция линии перехода известна. Она совпадает с горизонтальной проекцией цилиндра. Фронтальную и профильную проекции строим по принадлежности точек линии перехода не проецирующей поверхности тора.

Взаимное пересечение поверхностей в начертательной геометрии с примерами

Рисунок 9.4 — Построение линии пересечения цилиндра с тором

Линия пересечения заданных поверхностей представляет собой пространственную кривую линию, имеющую фронтальную плоскость симметрии, образованную пересекающимися поверхностями цилиндра и тора.

Рассмотрим линию пересечения поверхности сферы с поверхностью конуса вращения (Рисунок 9.5).

Точки 1 и 7, расположенные на очерках фронтальных проекций конуса и сферы, очевидны и определяются без дополнительных построений.

Точка 4 на экваторе сферы построена с помощью горизонтальной плоскости, пересекающей конус по окружности. В пересечении горизонтальных проекций этой окружности и экватора находится горизонтальная проекция 4′ точки 4 и фронтальная 4» проекции точки 4 определим с помощью линии связи. Точка 4 на горизонтальной проекции разделяет кривую на видимую и невидимую части.

Точки 2, 3, 5 и 6, расположенные в промежутке между характерными точками 1,4 и 7 строим аналогично. С помощью линий связи определим фронтальные и горизонтальные проекции этих точек.

Взаимное пересечение поверхностей в начертательной геометрии с примерами

Рисунок 9.5 — Построение линии пересечения конуса и сферы

Особые случаи пересечения

Пересечение соосных поверхностей вращения

Соосными называют поверхности вращения, оси которых совпадают. Линия пересечения таких поверхностей строится на основании теоремы о пересечении соосных поверхностей вращения: соосные поверхности вращения пересекаются между собой по окружностям.

Если ось вращения соосных поверхностей перпендикулярна к какой либо плоскости проекций, то линия их пересечения проецируется на эту плоскость в виде окружности, а на другую плоскость проекций – в прямую линию.

75

На рис. 9.6 даны примеры пересечения соосных поверхностей вращения (ось вращения параллельна горизонтальной плоскости). На рис. 9.6, а приведены сфера и конус, б – сфера и цилиндр, в – сфера и тор.

Взаимное пересечение поверхностей в начертательной геометрии с примерами

Рисунок 9.6 — Пересечение соосных поверхностей вращения

Теорема Монжа для пересекающихся поверхностей вращения

Если две поверхности второго порядка описаны около третьей или вписаны в нее, то линия их пересечения распадается на две плоские кривые второго порядка. Плоскости этих кривых проходят через прямую, соединяющую точки пересечения линий касания.

Для этого случая пересечения поверхностей вращения необходимо выполнение трех условий:

  • пересекающиеся поверхности должны быть поверхностями вращения;
  • оси поверхностей должны пересекаться;
  • плоскость, образованная осями поверхностей, должна быть параллельна одной из плоскостей проекций.

Взаимное пересечение поверхностей в начертательной геометрии с примерами

Рисунок 9.7 — Пересечение поверхностей вращения по теореме Монжа

Это положение подтверждается теоремой Монжа: Если две поверхности второго порядка могут быть вписаны или описаны около третьей поверхности второго порядка, то пространственная кривая их пересечения четвертого порядка распадается на две плоские кривые второго порядка.

Способ вспомогательных секущих сфер

При построении линии пересечения поверхностей вращения не всегда удается подобрать секущие плоскости так, чтобы они пересекали поверхности по линиям, проекции которых были бы прямыми или окружностями. В некоторых таких случаях в качестве секущих поверхностей (посредников) целесообразно применять сферы. Этот способ основан на свойстве сферы пересекаться с любой поверхностью вращения, ось которой проходит через центр сферы по окружности.

Чтобы сфера одновременно пересекала две поверхности по окружностям, проецирующимся в прямые линии, необходимо выполнить условия:

  • Оси поверхностей вращения должны пересекаться (точку пересечения принимают за центр вспомогательных концентрических сфер).
  • Оси поверхностей вращения должны располагаться параллельно какой-либо плоскости проекций.

Пример. Построить проекции линии пересечения поверхностей конуса и цилиндра (рис. 9.8) [1].

Заданы прямой усеченный конус и наклонный цилиндр – тела вращения. Их оси параллельны фронтальной плоскости проекций и пересекаются в точке О(о′,о), т.е. соблюдены условия метода сфер.

Как и в предыдущих задачах, найдем проекции характерных точек. Точка 1 – самая высокая, точка 2 – самая низкая. Чтобы убедится в этом проведем через оси тел вспомогательную фронтальную плоскость Взаимное пересечение поверхностей в начертательной геометрии с примерами. Эта плоскость рассекает рассматриваемые тела по крайним очерковым образующим, которые на фронтальную плоскость проекции проецируются без искажения и, пересекаясь между собой, образуют искомые точки 1′, 2′. С помощью вспомогательных сфер найдем другие точки линии пересечения заданных поверхностей. Для определения радиуса наименьшей сферы из центра О(о′) проведем две нормали, перпендикулярные очерковым образующим этих тел и большей нормалью выполним эту сферу. Эта сфера будет наименьшей Взаимное пересечение поверхностей в начертательной геометрии с примерами, проведенной в большем теле, поэтому поверхности конуса она касается по окружности, которая проецируется на фронтальную плоскость проекций в виде отрезка m′′n′′, а поверхность наклонного цилиндра пересекает по окружности, фронтальная проекция которой также проецируется в прямую линию k′′l′′. В пересечении k′′l′′ и m′′n′′ получим точку 3′′ – самую глубокую точку пересечения. Для нахождения промежуточных точек проведем ряд концентрических сфер, радиусы которых должны находится в пределе Взаимное пересечение поверхностей в начертательной геометрии с примерами, и аналогично точке 3′′ находим необходимые промежуточные точки.

Взаимное пересечение поверхностей в начертательной геометрии с примерами

Рисунок 9.8 — Построение линии пересечения конуса и цилиндра

Учитывая, что сфера минимального радиуса всегда касается той поверхности, которая пронизывается другой, соединим найденные фронтальные проекции плавной кривой. Получим фронтальную проекцию линии пересечения. В нашем случае сфера радиусом Взаимное пересечение поверхностей в начертательной геометрии с примерами касается поверхности конуса, значит, поверхность цилиндра пронизывает поверхность конуса.

Построим горизонтальную проекцию линии пересечения. Т.к. точки 1′′, 2′′ лежат на очерковой образующей конуса, то горизонтальные проекции этих точек находятся на оси конуса, т.е. на горизонтальной проекции этой образующей. Для нахождения горизонтальных проекций точек 3′, 4′, 5′ воспользуемся горизонтальными плоскостями Взаимное пересечение поверхностей в начертательной геометрии с примерами, проведенными через эти точки соответственно. Каждая плоскость рассекает поверхность конуса по окружности, которая на горизонтальной плоскости проекций не искажается. По линиям связи найдем горизонтальные проекции точек 3′, 4′, 5′.

Для правильного соединения точек определим их видимость. Границей видимости на плоскости Н является точка 4′′, лежащая на осевой фронтальной проекции цилиндра. Горизонтальные проекции ее Взаимное пересечение поверхностей в начертательной геометрии с примерами находятся на очерковых образующих цилиндра. Соединив плавной кривой найденные точки, получим горизонтальную проекцию линии пересечения рассматриваемых тел.

Способ вспомогательных секущих плоскостей

Суть способа — вспомогательная секущая плоскость одновременно пересекает поверхности каждого тела и образует фигуры сечения, контуры которых пересекаются. Точки пересечения контуров соединяют.

Этот способ применим тогда, когда контуры отдельных сечений представляют прямые линии или окружности.

Взаимное пересечение поверхностей в начертательной геометрии с примерами

Точки Взаимное пересечение поверхностей в начертательной геометрии с примерами являются очевидными — это точки пересечения очерковых и оснований конусов. Найдём соответствующие вторые проекции этих точек.

Проведём горизонтальную плоскость Взаимное пересечение поверхностей в начертательной геометрии с примерами которая рассечет оба конуса. В сечении конусов будут окружности Взаимное пересечение поверхностей в начертательной геометрии с примерами причем их фронтальными проекциями являются прямые. Построим горизонтальные проекции этих сечений — окружности радиусом Взаимное пересечение поверхностей в начертательной геометрии с примерами

На пересечении этих окружностей сечений на Взаимное пересечение поверхностей в начертательной геометрии с примерами определим горизонтальную проекцию общей точки — Взаимное пересечение поверхностей в начертательной геометрии с примерами Фронтальную проекцию точек 2 и 2 определим по линиям связи на секущей плоскости Взаимное пересечение поверхностей в начертательной геометрии с примерами

Проведём еще ряд горизонтальных секущих плоскостей и определим проекции других промежуточных точек линии пересечения, которые соединим лекальной кривой с учётом видимости.

Взаимное пересечение поверхностей в начертательной геометрии с примерами

При взаимном пересечении конуса и цилиндра (рисунок 1) ось вращения цилиндра перпендикулярна Взаимное пересечение поверхностей в начертательной геометрии с примерами. Значит, на Взаимное пересечение поверхностей в начертательной геометрии с примерами линия пересечения совпадет с контуром основания цилиндра, т.е. фронтальной проекцией линии пересечения будет являться фронтальная проекция цилиндра.

Построив горизонтальную проекцию линии пересечения, на Взаимное пересечение поверхностей в начертательной геометрии с примерами на пересечении горизонтальной оси симметрии цилиндра с проекцией цилиндра наметим точки Взаимное пересечение поверхностей в начертательной геометрии с примерами Взаимное пересечение поверхностей в начертательной геометрии с примерами— точки границы видимости линии пересечения, лежащие на экваторе цилиндра.

На Взаимное пересечение поверхностей в начертательной геометрии с примерами точки линии пересечения, лежащие выше экватора будут видимы, а точки, лежащие ниже экватора — невидимы.

Способ вспомогательных сфер

Этот метод можно применять при соблюдении следующих условий :

  • пересекающиеся поверхности должны быть поверхностями вращения;
  • их оси должны пересекаться ; точка пересечения осей является центром вспомогательных сфер;
  • их оси должны быть // какой-либо плоскости проекций.

Сфера Взаимное пересечение поверхностей в начертательной геометрии с примерами проходит через самую дальнюю очевидную точку.

Сфера Взаимное пересечение поверхностей в начертательной геометрии с примерами, должна касаться образующей большего тела, а меньшее тело -пересекать.

Сфера Взаимное пересечение поверхностей в начертательной геометрии с примерами определяется как большее расстояние от центра сфер до образующих обоих тел — перпендикуляры из центра сфер к очерковым образующим. Больший перпендикуляр и будет являться радиусом минимальной сферы.

Сфера пересекает тела по окружностям, проецирующимся на одну из плоскостей проекций отрезком.

1.    Определяем очевидные точки Взаимное пересечение поверхностей в начертательной геометрии с примерами

2.    Восстанавливаем перпендикуляры из центра сферВзаимное пересечение поверхностей в начертательной геометрии с примерами к очерковым образующим цилиндра и конуса. Перпендикуляр к цилиндру Взаимное пересечение поверхностей в начертательной геометрии с примерами больше, чем перпендикуляр к образующей конуса. Значит, Взаимное пересечение поверхностей в начертательной геометрии с примерамии будет являться радиусом минимальной сферы. На Взаимное пересечение поверхностей в начертательной геометрии с примерами проводим из центра Взаимное пересечение поверхностей в начертательной геометрии с примерами этим радиусом R окружность, которая рассечет и конус и цилиндр по окружностям, фронтальной проекцией которых будут прямые — сечение конусаВзаимное пересечение поверхностей в начертательной геометрии с примерамии сечение цилиндра Взаимное пересечение поверхностей в начертательной геометрии с примерами

На пересечении этих сечений определяем фронтальную проекцию точки 3 — Взаимное пересечение поверхностей в начертательной геометрии с примерами.

3.    На Взаимное пересечение поверхностей в начертательной геометрии с примерами строим горизонтальную проекцию сечения конуса, на котором находится точка 3 -окружность радиусом Взаимное пересечение поверхностей в начертательной геометрии с примерами/ 2, на которой по линии связи определяем точкиВзаимное пересечение поверхностей в начертательной геометрии с примерами

Взаимное пересечение поверхностей в начертательной геометрии с примерами

1.    Проводим ещё ряд секущих сфер радиусом больше минимальной и меньше максимальной и определяем другие промежуточные точки линии пересечения, которые соединяем лекальной кривой с учётом видимости.

Большее тело поглощает меньшее.

2.    Видимость линии пересечения определяем следующим образом:

Элементы технического рисования

Технический рисунок — это наглядное изображение, выполненное по правилам аксонометрических проекций от руки, на глаз, соблюдая пропорции. Им пользуются на производстве для иллюстрации чертежей.

Обычно технический рисунок выполняется в изометрии.

Выполнение рисунка модели или детали начинается с проведения аксонометрических осей. Затем рисуется основание и строятся габаритные очертания -прямоугольные параллелепипеды. Деталь мысленно расчленяют на отдельные геометрические элементы, постепенно вырисовывая все элементы.

Взаимное пересечение поверхностей в начертательной геометрии с примерами
Технические рисунки получаются более наглядными, если их покрыть штрихами. При нанесении штрихов считают, что лучи света падают на предмет справа и сверху или слева и сверху.

Взаимное пересечение поверхностей в начертательной геометрии с примерами

Взаимное пересечение поверхностей с примерами

Алгоритм решения задач по определению линии пересечения поверхностей Ф’ и Ф» (рис. 9.1) в целом аналогичен решению второй позиционной задачи и состоит в следующем:

  1. Обе заданные поверхности Ф’ и Ф» рассекают третьей, вспомогательной плоскостью или поверхностью P.
  2. Определяют линии пересечения каждой заданной поверхности со вспомогательной: Ф’ × P =l’, Ф» × P =l».
  3. Определяют точки пересечения полученных линий l’×l» = A и A’. Точки A и a´ принадлежат обеим поверхностям.
  4. Проведя несколько вспомогательных поверхностей, находят достаточное количество точек и соединяют их плавной лекальной кривой, которая и является искомой линией пересечения поверхностей.
  5. Определяют видимость поверхностей и линии их пересечения.

Взаимное пересечение поверхностей в начертательной геометрии с примерами

Рис. 9.1. Пересечение поверхностей

В качестве вспомогательных поверхностей P следует выбирать поверхности — плоскости или сферы, которые пересекают обе заданные поверхности по наиболее простым для построения линиям — прямым или окружностям. Кроме того, если в сечении поверхности получаются окружности, они должны проецироваться на одну из плоскостей проекций без искажения.

Определение точек линии пересечения поверхностей начинают с построения так называемых опорных точек. К ним относятся:

  • точки пересечения очерковых образующих, если образующие лежат в одной плоскости,
  • точки, лежащие на очерковых образующих поверхностей,
  • точки, лежащие в общей плоскости симметрии,
  • экстремальные (верхние — нижние, правые — левые) по отношению к плоскостям проекций, к центру концентрических сфер.

При соединении точек следует иметь ввиду, что проекции линии пересечения не могут выходить за пределы общей площади — площади наложения — проекций пересекающихся поверхностей. Видимыми будут те участки линии пересечения, которые принадлежат видимым частям обеих поверхностей.

Способ вспомогательных параллельных плоскостей

Этот способ заключается в том, что обе поверхности рассекаются параллельными плоскостями уровня. Этот способ применяют лишь в тех случаях, когда вспомогательные плоскости рассекают поверхности по простым линиям — прямым или окружностям, которые проецируются на соответствующую плоскость проекций без искажения.

Рассмотрим построение линии пересечения прямого кругового конуса и сферы (рис. 9.2).
Взаимное пересечение поверхностей в начертательной геометрии с примерами

Рис. 9.2. Линия пересечения поверхностей прямого кругового конуса и сферы

Фронтальные плоскости уровня пересекают поверхность конуса по гиперболам, следовательно, для решения данной задачи нужно применить горизонтальные плоскости уровня, которые рассекают обе данные поверхности по окружностям.

Решение задачи начинают с построения опорных точек. Конус и сфера имеют общую плоскость симметрии γ(γ1), параллельную плоскости П2. Поэтому высшая точка A и низшая точка F линии пересечения получаются как результат пересечения очерковых образующих конуса и сферы (рис. 9.3).

Остальные точки определяются с помощью горизонтальных плоскостей уровня. Более подробно разберем построение точек E и E'(рис. 9.4).

1.    Пересечь обе поверхности вспомогательной горизонтальной плоскостью уровня α(а2). Плоскость а(а2) пересекает сферу по окружности m(m1,m2), а конус — по окружности q(q1,q2):
m(m1 ,m 2)=Ф сф Взаимное пересечение поверхностей в начертательной геометрии с примерамиа (а2);
q(q1 ,q2) =Фк Взаимное пересечение поверхностей в начертательной геометрии с примерамиа (u2).
 

2.    Построив горизонтальные проекции окружностей m и q, определить точки их пересечения E и E’:
E1= m1 × q1; E2=E1E2Взаимное пересечение поверхностей в начертательной геометрии с примерамиα2.
E’1=m1 × q1; E’2=ElE2Взаимное пересечение поверхностей в начертательной геометрии с примерамиα2.

Взаимное пересечение поверхностей в начертательной геометрии с примерами

Рис. 9.3. Определение опорных точек линии пересечения поверхностей

3.    Аналогичным образом определяются остальные точки, формирующие линию пересечения (рис. 9.5,а). Они получены с помощью горизонтальных плоскостей уровня β(β2), δ(δ2) и μ(μ2). Пределы этих плоскостей по высоте определяют высшая и низшая опорные точки линии пересечения поверхностей. Плоскость μ(μ2)рассекает поверхность сферы по очерковой образующей b (b2, b2),поэтому полученные точки В и В’ являются опорными, ограничивающими линию пересечения поверхностей по ширине.

4.    Последовательно соединить одноименные проекции полученных точек плавной лекальной кривой. Полученная линия не должна выходить за пределы области перекрытия проекций данных поверхностей.

5.    Определить видимость линии пересечения поверхностей и их очерковых образующих.

Поверхность конуса на горизонтальной плоскости проекций полностью видима, следовательно, видимость линии пересечения определяется по поверхности сферы. Видима будет та часть сферы, которая на П2 лежит выше очерковой образующей b2.Точки В и В’ на очерковой образующей сферы являются точками смены видимости линии пересечения на плоскости проекций П1.
Искомая линия пересечения поверхностей конуса и сферы d(d1,d2) (кривая второго порядка), полученная способом вспомогательных секущих плоскостей, приведена на рис 9.5,б.

Взаимное пересечение поверхностей в начертательной геометрии с примерами

Рис. 9.4. Определение промежуточных точек линии пересечения поверхностей:
а — наглядное изображение;
б — комплексный чертеж
Взаимное пересечение поверхностей в начертательной геометрии с примерами

Рис. 9.5. Определение линии пересечения поверхностей способом вспомогательных параллельных плоскостей:
а — определение промежуточных точек;
б — искомая линия пересечения

Способ вспомогательных сфер

При построении линии пересечения двух поверхностей способом вспомогательных сфер возможны два случая. В одном из них используются сферы, проведенные из одного, общего центра (концентрические), а в другом -сферы, проведенные из разных центров (эксцентрические).

Способ концентрических сфер

Этот способ применяется для построения линии пересечения поверхностей вращения произвольного вида, при условии, что оси этих поверхностей пересекаются.

В основу способа концентрических сфер положено свойство сферы с центром на оси какой-либо поверхности.

Если центр сферы находится на оси любой поверхности вращения, то сфера соосна с поверхностью вращения и в их пересечении получатся окружности (рис. 9.6).

Взаимное пересечение поверхностей в начертательной геометрии с примерами

Рис.    9.6. Соосные поверхности вращения:
a- наглядное изображение;
б — на комплексном чертеже

Рассмотрим способ концентрических сфер на примере построения линии пересечения цилиндра и конуса вращения, оси которых i(i1,i2) и q(q1,q2) пересекаются и точка пересечения осей обозначена через O (O1 ,O2)(рис. 9.7).

Взаимное пересечение поверхностей в начертательной геометрии с примерами

Рис. 9.7. Линия пересечения поверхностей цилиндра и прямого кругового конуса

Точка пересечения осей поверхностей принимается за центр вспомогательных концентрических сфер.

Алгоритм решения задачи об определении линии пересечения поверхностей состоит в следующем:

1.    Определить опорные точки (рис. 9.8). Так как обе данные поверхности имеют общую плоскость симметрии δ(δ1), параллельную плоскости проекций П2, то их очерковые образующие, по отношению к плоскости П2,пересекаются. Точки A(A1,A2), B(B1,B2), C(C1,C2) и D(D1,D2) пересечения этих образующих являются точками видимости линии пересечения поверхностей.

2.    Определить радиусы максимальной и минимальной сфер, необходимых для определения точек линии пересечения.

Радиус максимальной сферы Rmax равен расстоянию от центра вспомогательных сфер до наиболее удаленной точки пересечения очерковых образующих, в данном случае Rmax=O2A2 (рис. 9.9).

Чтобы определить радиус минимальной сферы Rmin, необходимо провести через точку O2 нормали к очерковым образующим данных поверхностей. Тогда больший из отрезков этих нормалей и будет Rmin. В этом случае сфера минимального радиуса будет касаться одной из данных поверхностей, а со второй — пересекаться.

В данном случае сферой минимального радиуса является сфера, касающаяся цилиндрической поверхности (см. рис. 9.9).

Сфера радиусом Rmin касается цилиндрической поверхности по окружности m, которая на фронтальной проекции изображается в виде прямой m2, перпендикулярной q2(m2Взаимное пересечение поверхностей в начертательной геометрии с примерамиq2). Эта же сфера пересекает коническую поверхность по двум окружностям. Но, в данном случае, нам интересна только окружность n, так как только она дает решение. Эта окружность n изображается на фронтальной проекции в виде прямой n2, перпендикулярной i2(n2Взаимное пересечение поверхностей в начертательной геометрии с примерамиi2). Точки E и Fпересечения этих окружностей будут принадлежать обеим поверхностям:

m2×n2 =E2, F2.

Чтобы построить горизонтальные проекции точек Е и F следует воспользоваться окружностью n, содержащей данные точки, так как она не искажается на плоскости проекций П1:

E1 ,F 1∈ n1.

Взаимное пересечение поверхностей в начертательной геометрии с примерами

Рис. 108. Определение опорных точек линии пересечения поверхностей

Взаимное пересечение поверхностей в начертательной геометрии с примерами

Рис. 9.9. Определение радиусов максимальной и минимальной сфер.

Для построения промежуточных точек линии пересечения проводят несколько концентрических сфер с центром в точке O, причем радиус R этих сфер должен изменяться в пределах Rmin< R < Rmax.

Рассмотрим определение точек линии пересечения на примере сферы радиусом R1 (Rmin1max) (рис. 9.10, 9.11).

Взаимное пересечение поверхностей в начертательной геометрии с примерами

Рис. 9.10. Определение промежуточных точек линии пересечения поверхностей

Сфера радиусом R1 пересекает цилиндрическую поверхность по окружности l, которая на фронтальной проекции изображается в виде прямой l2, перпендикулярной q2( 12Взаимное пересечение поверхностей в начертательной геометрии с примерамиq2). Эта же сфера пересекает коническую поверхность по окружности k, которая изображается на фронтальной проекции в виде прямой k2, перпендикулярной i2(k2Взаимное пересечение поверхностей в начертательной геометрии с примерамиi2). Точки G и Hпересечения этих окружностей будут точками искомой линии пересечения:

12×k2=G2, H2.

Чтобы построить горизонтальные проекции точек G и H, следует воспользоваться окружностью k, содержащей данные точки, так как она не искажается на плоскости проекций Π1: G1∈ k 1.

4.    Аналогичным образом определить все остальные точки искомой линии пересечения. Последовательно соединить полученные точки плавной лекальной кривой. В данном случае линия пересечения поверхностей цилиндра и конуса представляет собой две кривые второго порядка u(u1,u2) и u( u’1 ,u 2) (рис. 9.12).

Горизонтальная проекция линии пересечения поверхностей симметрична относительно плоскости δ(δ1) — общей плоскости симметрии данных поверхностей. Эта плоскость была указана ранее (см. рис. 9.8).

Взаимное пересечение поверхностей в начертательной геометрии с примерами

Рис. 9.11. Определение промежуточных точек линии пересечения поверхностей

5.    Определить видимость линии пересечения поверхностей и их очерковых образующих. На фронтальной плоскости проекций видимы будут те точки линии пересечения, которые лежат перед горизонтальной проекцией очерковых образующих, проекции которых совпадают с плоскостью симметрии δ(δ1), — точки A, M, G, E, D и B, K, P, C. На горизонтальной плоскости проекций линия u(u1,u2) видима, так как все ее точки лежат выше фронтальной проекции оси вращения цилиндра q(q2), а линия u(u1 ,u2)будет невидима, поскольку все ее точки лежат ниже фронтальной проекции образующих, совпадающих с проекцией оси вращения цилиндра q(q2).

Взаимное пересечение поверхностей в начертательной геометрии с примерами

Рис. 9.12. Линия пересечения поверхностей цилиндра и конуса

Пересечение поверхностей

Пересечение поверхностей и способы построения линий пресечения

Линия пересечения принадлежит обеим пересекающимся поверхностям и образуется множеством их общих точек. Следовательно, построение линии пересечения поверхностей сводится к построению этих общих точек.

При пересечении поверхностей вращения порядок линии пересечения определяется умножением порядков пересекающихся поверхностей. Например, если пересекаются круговой конус (поверхность 2-го порядка) и сфера (поверхность 2-го порядка), то линия пересечения является кривой 4-го порядка.

Определение способа построения линии пересечения зависит от взаимного расположения пересекающихся поверхностей, а также от их расположения относительно плоскостей проекций. Из всех возможных вариантов пересечения поверхностей геометрических тел в зависимости от их взаимного расположения можно выделить четыре случая, которые позволяют определить и представить форму линии пересечения поверхностей:

I случай. Частичное врезание (рис. 8.1). В этом случае линией пересечения является одна замкнутая пространственная линия.

Взаимное пересечение поверхностей в начертательной геометрии с примерами

II случай. Полное проницание (рис. 8.2). В этом случае линией пересечения являются две замкнутые пространственные линии.

Взаимное пересечение поверхностей в начертательной геометрии с примерами

III случай. Одностороннее соприкосновение (рис. 8.3). В этом случае поверхности соприкасаются в одной общей точке K1 и линия их пересечения, проходя через эту точку, распадается на две замкнутые пространственные линии (поверхности имеют одну общую касательную плоскость).

Взаимное пересечение поверхностей в начертательной геометрии с примерами

IV случай. Двойное соприкосновение (рис. 8.4).

Взаимное пересечение поверхностей в начертательной геометрии с примерами

В этом случае поверхности имеют две точки соприкосновения K1 и K2 и линия их пересечения распадается на две плоские кривые в соответствии с теоремой 2 (С. А. Фролов «Начертательная геометрия» [23]): «Если две поверхности вращения второго порядка имеют касание в двух точках, то линия их пересечения распадается на две кривые второго порядка, плоскости которых проходят через прямую m, соединяющую точки касания» (поверхности имеют две общие касательные плоскости).

В зависимости от расположения пересекающихся геометрических тел относительно плоскостей проекций и участия в пересечении геометрических тел, имеющих проецирующую поверхность (как призма или цилиндр) или не имеющих проецирующей поверхности (пирамида, конус, шар, тор, тороид, наклонная призма или наклонный цилиндр, глобоид и др.), следует выбрать оптимальный способ построения проекций линии пересечения поверхностей на чертеже.

По этим признакам способы построения линий пересечения поверхностей можно объединить в две группы:

Первая группа: частные случаи пересечения поверхностей, когда для построения линий пересечения не требуется применения специальных способов, а используется частное положение пересекающихся геометрических тел относительно плоскостей проекций.

Вторая группа: общие случаи пересечения поверхностей, когда для построения линий пересечения требуется применить специальные способы посредников.

Частные случаи пересечения поверхностей

K первой группе частных случаев пересечения поверхностей относятся следующих четыре случая:

1-й случай: пересечение геометрических тел, боковые поверхности которых являются проецирующими, то есть, перпендикулярны какой-либо плоскости проекций.

2-й случай: пересечение геометрических тел, у одного из которых боковая поверхность является проецирующей.

3-й случай: пересечение соосных поверхностей вращения, т. е. имеющих общую ось вращения.

4-й случай: пересечение поверхностей вращения второго порядка, описанных вокруг сферы (по теореме Г. Монжа).

Рассмотрим на примерах построение проекций линий пересечения поверхностей геометрических тел в четырех частных случаях первой группы.

Следует отметить, что перечисленные частные случаи пересечения поверхностей наиболее часто встречаются при формообразовании различных реальных деталей.

1-й частный случай

На рис. 8.5 показан пример построения проекций линии пересечения поверхностей горизонтально-проецирующего цилиндра и фронтально-проецирующей прямой правильной треугольной призмы, то есть пересекаются два геометрических тела, боковые поверхности которых занимают относительно плоскостей проекций проецирующее положение.

Взаимное пересечение поверхностей в начертательной геометрии с примерами

Характерный признак 1-го частного случая: на заданных проекциях тел определяются две проекции искомой линии пересечения:

– фронтальная проекция (л»п») линии пересечения 1″-2″-3″-4″ совпадает с вырожденной в ломаную линию боковой поверхностью призмы;

– горизонтальная проекция (л’п’) линии пересечения 1′-2′-3′-4′ совпадает с участком окружности, которая является вырожденной проекцией боковой поверхности цилиндра.

Следовательно, требуется достроить только профильную проекцию (л'»п»‘) линии пересечения, построив профильные проекции обозначенных точек по их принадлежности одному из тел (в данной задаче – цилиндру), и соединить их плавной кривой с учетом ее видимости на поверхностях.

2-й частный случай

На рис. 8.6 показан пример построения проекций линии пересечения поверхностей прямого кругового конуса и фронтально-проецирующего цилиндра, то есть пересекающихся геометрических тел, у одного из которых боковая поверхность проецирующая.

Взаимное пересечение поверхностей в начертательной геометрии с примерами

Характерный признак 2-го частного случая: на заданных проекциях тел определяется одна проекция линии пересечения:

– фронтальная проекция (л»п») линии пересечения 1″-2″-3″-4″ совпадает с окружностью, которая является вырожденной проекцией боковой поверхности цилиндра.

Следовательно, требуется достроить горизонтальную (л’п’) и профильную (л»‘п»‘) проекции линии пересечения, построив горизонтальные и профильные проекции обозначенных точек по их принадлежности конусу, и соединить построенные на проекциях точки плавными кривыми линиями с учетом их видимости на поверхностях.

!!! На профильную проекцию предмета пространственная кривая линия пересечения 4-го порядка проецируется в виде участка гиперболы.

3-й частный случай

Пересечение соосных геометрических тел. Соосными называются геометрические тела вращения, имеющие общую ось вращения «i». Поверхности соосных тел пересекаются по окружностям, перпендикулярным их общей оси. Если общая ось «i» соосных геометрических тел является прямой проецирующей (т. е. она перпендикулярна какой-либо одной плоскости проекций, а двум другим параллельна), то окружность пересечения проецируется дважды в прямую линию, перпендикулярную их общей оси, на те плоскости проекций, которым эта общая ось параллельна.

На рис. 8.7 показан пример построения линии пересечения соосных геометрических тел – конуса и горизонтально-проецирующего цилиндра, имеющих общую горизонтально-проецирующую ось i (ось перпендикулярна H и параллельна V и W). Линией пересечения является окружность, фронтальная (л»п») и профильная (л»‘п»‘) проекции которой представляют собой прямые линии, перпендикулярные их общей оси i и проходящие через точки пересечения фронтальных и профильных очерков поверхностей. Горизонтальная проекция этой окружности пересечения л’п’) совпадает с вырожденной горизонтальной проекцией боковой поверхности цилиндра.

Взаимное пересечение поверхностей в начертательной геометрии с примерами

На рис. 8.8 показан пример построения линий пересечения двух пар соосных поверхностей:

– поверхности шара и горизонтально-проецирующего цилиндра, соосных относительно горизонтально-проецирующей оси i1, окружности пересечения которых проецируются в прямые линии на фронтальную и профильную проекции;

– поверхности шара и сквозного профильно-проецирующего цилиндрического отверстия Цотв в шаре, соосных относительно профильно-проецирующей оси i2, окружности пересечения которых проецируются в прямые линии на фронтальную и горизонтальную проекции.

Взаимное пересечение поверхностей в начертательной геометрии с примерами

4-й частный случай

Пересечение поверхностей вращения второго порядка, описанных вокруг сферы (по теореме Г. Монжа).

Напоминаем, к поверхностям вращения второго порядка относятся круговые цилиндр и конус, шар, эллипсоиды, параболоид и одно-, двуполостные гиперболоиды.

Эллиптические цилиндры и конусы, а также наклонный круговой конус – это не поверхности вращения!

Все торы (открытый, закрытый и самопересекающийся), глобоиды и тороиды относятся к поверхностям вращения четвертого порядка!

В 4-м частном случае имеет место двойное соприкосновение пересекающихся поверхностей вращения второго порядка, описанных вокруг сферы, и построение линии пересечения основано на теореме 2 (С. А. Фролов «Начертательная геометрия» [23]):

Теорема 3, известная как теорема Г. Монжа, вытекает из теоремы 2: «Если две поверхности вращения второго порядка описаны вокруг третьей поверхности второго порядка или вписаны в нее, то линия их пересечения распадается на две кривые второго порядка, плоскости которых проходят через прямую, соединяющую точки касания».

Практическое применение теоремы возможно в том случае, когда две поверхности вращения второго порядка описаны вокруг сферы или вписаны в нее.

Использовать теорему Г. Монжа для построения на чертеже линии пересечения поверхностей можно при наличии в задаче четырех обязательных графических условий:

  1. Пересекаются поверхности вращения второго порядка.
  2. Оси поверхностей вращения должны пересекаться (точка пересечения – центр вписанной сферы).
  3. Поверхности описаны вокруг общей сферы или вписаны в нее.
  4. Общая плоскость симметрии, проходящая через оси поверхностей, является плоскостью уровня.

При соблюдении этих четырех условий на одной из заданных проекций можно построить проекции двух плоских кривых, на которые распадается искомая линия пересечения:

  • – плоские кривые проецируются в отрезки прямых линий на ту проекцию предмета, которая расположена на плоскости проекций, параллельной общей плоскости симметрии поверхностей;
  • – точки пересечения очерков поверхностей на этой проекции принадлежат искомой линии пересечения и через эти точки проходят прямые, в которые проецируются плоские кривые пресечения;
  • – прямые, как проекции плоских кривых, пересекаются в точке, с которой совпадают проекции двух точек K1≡K2 соприкосновения поверхностей и соответственно проекция прямой m(m’, m»), соединяющей эти точки соприкосновения (точки касания).

!!! Точки касания (соприкосновения) поверхностей K1(K1«) и K2(K2«) определяются на пересечении проекций окружностей касания вписанной сферы с каждой из поверхностей.

На рис. 8.9 показан пример построения проекций линии пересечения поверхностей вращения второго порядка – прямого кругового конуса и наклонного кругового цилиндра, описанных вокруг общей сферы. Для решения задачи использована теорема Г. Монжа, поскольку здесь соблюдены все четыре обязательных условия ее применения:

  1. Пересекаются прямой круговой конус и круговой наклонный цилиндр, т. е. поверхности вращения второго порядка.
  2. Оси конуса и цилиндра пересекаются в точке O(O»).
  3. Обе поверхности описаны вокруг общей для них сферы с центром точке O(O»).
  4. Общая плоскость симметрии поверхностей α(αH) является фронтальной плоскостью уровня (//V).

Взаимное пересечение поверхностей в начертательной геометрии с примерами

Построение проекций линии пересечения поверхностей по теореме Г. Монжа выполняется по следующему графическому алгоритму:

1-е действие. Определить проекцию предмета, на которую плоские кривые проецируются в отрезки прямых линий: в данной задаче это фронтальная проекция, так как общая плоскость симметрии α(αН) параллельна фронтальной плоскости проекций V.

2-е действие. Построить фронтальные совпадающие проекции K1≡K2 точек соприкосновения заданных поверхностей, лежащих на пересечении проекций окружностей касания вписанной сферы с каждой из поверхностей (прямые линии – проекций этих окружностей касания – строятся как линии пересечения соосных поверхностей, так как вписанная сфера образует две пары соосных поверхностей – конус/сфера с общей осью i1 и цилиндр/сфера с общей осью i2. На чертеже проекции этих окружностей касания проходят через точки, полученные на пересечении перпендикуляров, проведенных из точки О(О») – центра вписанной сферы – к образующим конуса (окружность касания 1) и цилиндра (окружность касания 2).

3-е действие. Отметить на фронтальной проекции точки A(A»), B(B»), C(C») и D(D») пересечения очерков поверхностей и построить фронтальные проекции плоских кривых пересечения 2-го порядка, соединив прямыми линиями A-B(A»-B») и C-D(C»-D») противоположные точки пересечения очерков (обе прямые обязательно должны пройти через построенные проекции точек соприкосновения поверхностей K1≡K2 (K»1≡K»2);

4-е действие. Построить горизонтальные проекции двух плоских кривых пересечения – эллипсов, по горизонтальным проекциях обозначенных точек A, B, C, D, K1 и K2, построенных по принадлежности поверхности конуса; обозначить и построить точки E(E’) и F(F’), которые лежат на очерковых образующих горизонтальной проекции цилиндра и определяют границу видимости кривых на горизонтальной проекции предмета, а также отметить и построить необходимое количество промежуточных точек (здесь не обозначены).

5-е действие. Оформить фронтальный и горизонтальный очерки пресекающихся поверхностей.

!!! Построение точек соприкосновения K1≡K2 поверхностей особенно важно в задачах, где по условию нельзя определить одну из четырех точек пересечения очерков поверхностей. Совпадающие проекции точек соприкосновения в этом случае определят направление одной из двух прямых линий – проекций плоских кривых пересечения (рис. 8.10). В данном случае проекция плоской кривой линии пересечения CE проведена через точки C и K1≡K2. Точка E определяется на основании конуса.

Взаимное пересечение поверхностей в начертательной геометрии с примерами

На рис. 8.11 показаны примеры построения линий пересечения поверхностей второго порядка, описанных вокруг сферы, с применением теоремы Г. Монжа. Они часто встречаются при конструировании различных переходов цилиндрических и конических труб, или пересечений отверстий в деталях.

Взаимное пересечение поверхностей в начертательной геометрии с примерами

Общие случаи пересечения поверхностей и способы построения линий пересечения поверхностей

Ко второй рассматриваемой группе относятся общие случаи пересечения геометрических тел, боковые поверхности которых могут занимать относительно плоскостей проекций непроецирующее положение (это наклонные призмы и цилиндры), а также геометрические тела, поверхности которых непроецирующие – это конус, сфера, торы, глобоид, эллипсоид, параболоид и гиперболоиды. Сюда же относятся наклонный эллиптический цилиндр, имеющий круговые сечения, и наклонный круговой конус.

Для построения линий пересечения поверхностей в этом случае применяются специальные способы вспомогательных посредников – плоскостей уровня или поверхностей (сфер, цилиндров, конусов), из которых мы рассматриваем следующие:

  1. способ вспомогательных секущих плоскостей уровня;
  2. способ вспомогательных концентрических сфер;
  3. способ вспомогательных эксцентрических сфер.

Применение одного из указанных способов для построения линий пересечения поверхностей геометрических тел возможно при наличии некоторых обязательных графических условий расположения геометрических тел относительно плоскостей проекций и зависит от того, какие именно геометрические тела пересекаются в конкретной задаче.

Линия пересечения поверхностей является общей для обеих поверхностей и образуется множеством общих точек, которые строятся с помощью вспомогательных посредников.

Предварительно требуется выполнить графический анализ условия задачи для выбора рационального способа ее решения, определить проекцию предмета, на которой следует начинать решение задачи, и границы введения посредников.

Для построения проекций точек, принадлежащих линии пересечения поверхностей, способом посредников следует применять общий для всех рассматриваемых способов графический алгоритм.

Графический алгоритм I:

1-е действие. Ввести вспомогательную плоскость или поверхность-посредник.

2-е действие. Построить вспомогательные линии пересечения плоскости – или поверхности-посредника с каждой из заданных поверхностей.

3-е действие. Определить точки пересечения построенных вспомогательных линий пересечения – эти точки принадлежат искомой линии пересечения.

Рассмотрим на примерах применение различных способов вспомогательных посредников для построения проекций линий пересечения поверхностей.

Способ вспомогательных секущих плоскостей уровня

Применение способа вспомогательных секущих плоскостей рационально при наличии двух графических условий:

1. Общая плоскость симметрии пересекающихся геометрических тел является плоскостью уровня; при соблюдении этого условия точки пересечения очерков поверхностей принадлежат искомой линии пересечения и определяют верхнюю и нижнюю границу введения плоскостей-посредников на соответствующей проекции предмета.

2. Сечениями геометрических тел в одной из плоскостей уровня должны быть простые в построении линии пересечения – прямые линии (образующие) или окружности; эту плоскость уровня и следует выбрать в качестве посредника.

На рис. 8.12 показан пример построения проекций линии пересечения прямого конуса и половины шара.

Взаимное пересечение поверхностей в начертательной геометрии с примерами

Для решения задачи требуется предварительно выполнить графический анализ заданных проекций предмета:

А. Выбираем для решения задачи способ вспомогательных секущих плоскостей, так как здесь соблюдены два графических условия его применения:

– общая плоскость симметрии β(βН) геометрических тел – конуса и полушара – является фронтальной плоскостью уровня (первое условие применения);

– горизонтальные плоскости уровня, которые пересекают поверхности конуса и полушара по окружностям, выбираем в качестве вспомогательных плоскостей-посредников (второе условие применения).

Б. Решение задачи, то есть введение плоскостей-посредников, начинаем на фронтальной проекции предмета, так как общая плоскость симметрии геометрических тел является фронтальной плоскостью уровня.

В. Определяем границы введения плоскостей-посредников – это точка А(А») пересечения фронтальных очерков и точки B(B’,B») пересечения окружностей оснований конуса и полушара, лежащие в горизонтальной плоскости уровня α(α).

Построить проекции точек искомой линии пересечения, выполнив действия предложенного графического алгоритма I:

1-е действие. Ввести на фронтальной проекции предмета первую вспомогательную секущую горизонтальную плоскость-посредник α(αV1) произвольно и ниже точки А(А»).

2-е действие. Построить на горизонтальной проекции предмета вспомогательные окружности радиусами Rк1 и Rш1, по которым секущая плоскость-посредник α(αV1) пересекает поверхности конуса и шара.

3-е действие. Определить на пересечении построенных вспомогательных окружностей горизонтальные проекции точек 1(1′), принадлежащих линии пересечения; фронтальные совпадающие проекции 1(1″) этих точек определяются по линии связи на фронтальной проекции плоскости-посредника α(αV1).

3.1. Повторить действия основного графического алгоритма, введя вторую плоскость-посредник α2V2), и построить проекции точек 2(2′,2″) и т. д.

Дополнительные действия:

4-е действие. Соединить проекции построенных точек на фронтальной и горизонтальной проекциях предмета плавными кривыми линиями с учетом их видимости на проекциях: на фронтальную проекцию предмета пространственная кривая пересечения проецируется в видимую плоскую кривую второго порядка (участок параболы), поскольку горизонтальная проекция предмета имеет фронтальную симметрию; на горизонтальную проекцию предмета – в участок видимой кривой 4-го порядка сложной формы.

5-е действие. Оформить очерки поверхностей на заданных проекциях предмета с учетом их относительной видимости:

  • – на фронтальной проекции – очерк конуса существует влево от точки А(А»), а очерк шара вправо от точки А(А») (несуществующие очерки конуса и шара оставить тонкими линиями);
  • – на горизонтальной проекции – окружность основания конуса существует влево от точек В(B’), а окружность основания шара существует вправо от точек В(B’) (несуществующие части окружностей оснований конуса и шара оставить тонкими линиями).

!!! Способ вспомогательных секущих плоскостей позволяет строить одновременно две проекции искомой линии пересечения.

Способ вспомогательных концентрических сфер

Основанием для применения сферы в качестве вспомогательной поверхности-посредника являются две ее характерные особенности:

  • – в сфере можно провести через ее центр бесконечное количество осей;
  • – сфера может быть соосна любой поверхности вращения; соосные поверхности пересекаются по окружностям, проекции которых легко построить (см. рис. 8.7 и 8.8).

Сфера-посредник образует две пары соосных поверхностей с каждой из заданных поверхностей. Каждая образованная пара соосных поверхностей пересекается по соответствующим окружностям, которые проецируются в прямые, перпендикулярные общей оси каждой пары, и проходят через точки пересечения очерков каждой пары соосных поверхностей.

Применение способа вспомогательных концентрических сфер для построения линии пересечения поверхностей возможно при наличии трех следующих графических условий:

  1. Пересекаются поверхности вращения (кроме открытого и закрытого тора).
  2. Общая плоскость симметрии пересекающихся поверхностей является плоскостью уровня; при этом условии точки пересечения очерков на проекции предмета, изображенного на параллельной общей плоскости симметрии плоскости проекций, принадлежат искомой линии пересечения.
  3. Оси поверхностей пересекаются; точка пересечения осей является центром всех вспомогательных сфер.

На рис. 8.13 показан пример построения проекций линии пересечения усеченного конуса и тороида (самопересекающийся тор).

Взаимное пересечение поверхностей в начертательной геометрии с примерами

Рассмотренный способ вспомогательных секущих плоскостей здесь применять не следует, так как ни одна плоскость уровня не пересекает поверхности одновременно по окружностям (одно из условия применения).

Для решения задачи требуется предварительно выполнить графический анализ заданных проекций предмета.

А. Выбираем для решения задачи способ вспомогательных концентрических сфер, так как здесь соблюдены три графических условия его применения:

  • – пересекаются поверхности вращения – прямой круговой конус и тороид  (самопересекающийся тор);
  • – общая плоскость симметрии геометрических тел β(βН) является фронтальной плоскостью уровня;
  • – оси поверхностей пересекаются в точке O(O») – центр всех вспомогательных сфер.

Б. Решение задачи, то есть введение вспомогательных сфер-посредников начинаем на фронтальной проекции предмета, так как общая плоскость симметрии является фронтальной плоскостью уровня и точки A(A»), B(B»), C(C») и D(D») пересечения фронтальных очерков принадлежат линии пересечения.

В. Определяем границы введения сфер – это точки C(C») и D(D») пересечения фронтальных очерков пересекающихся геометрических тел. Построить проекции точек линии пересечения, выполнив действия предложенного графического алгоритма I.

1-е действие. Ввести на фронтальной проекции вспомогательную сферу-посредник минимального радиуса R1min, с центром в точке O(O»), вписанную в тороид (минимальная сфера-посредник должна вписываться в одну из поверхностей, а с другой поверхностью – пересекаться).

2-е действие. Построить проекции вспомогательных окружностей пересечения двух пар соосных поверхностей, образованных сферой-посредником с каждой заданной поверхностью:

  • – первая пара соосных поверхностей – сфера-посредник и тороид – имеют горизонтальную общую ось i1» и пересекаются по окружности касания n1«, которая проецируется в прямую линию (совпадает с осью конуса);
  • – вторая пара соосных поверхностей – сфера-посредник и конус имеют вертикальную общую ось вращения i2» и пересекаются по двум вспомогательным окружностям m1«, которые проецируются в прямые линии;

3-е действие. Определить точки 1(11«) пересечения построенных проекций вспомогательных окружностей m1» и n1«, которые принадлежат искомым линиям пересечения (по две пары совпадающих точек).

!!! Здесь имеет место случай полного проницания (II случай), и линия пересечения распадается на две замкнутые кривые.

Дополнительные действия:

4-е действие. Повторить действия основного графического алгоритма, введя вспомогательные сферы большего радиуса R2 и R3 с тем же центром в точке О(О»), и построить следующие пары точек 2(2″) и 3(3″).

4.1. Достроить горизонтальные проекции построенных точек линии пересечения по принадлежности параллелям конуса.

4.2. Соединить проекции построенных точек на фронтальной и горизонтальной проекциях предмета плавными кривыми линиями с учетом их видимости на проекциях (только линия пересечения D’-3′-2′-11‘-C’ будет невидимой на горизонтальной проекции предмета).

5-е действие. Оформить очерки поверхностей на заданных проекциях предмета с учетом их относительной видимости.

Способ вспомогательных эксцентрических сфер

Наименование способа говорит о том, что вспомогательные сферы имеют разные центры, которые и нужно определять в процессе построения проекций линии пересечения поверхностей.

Способ вспомогательных эксцентрических сфер для построения линии пересечения поверхностей возможно применять при наличии трех следующих графических условий:

1. Пересекаются:

  • – поверхности вращения 4-го порядка, т. е. торовые поверхности – открытый или закрытый тор;
  • – поверхности эллиптических цилиндра и конуса, имеющие круговые сечения.

2. Общая плоскость симметрии поверхностей является плоскостью уровня.

3. Оси поверхностей пересекаются или скрещиваются.

Поскольку в этом способе центр каждой вспомогательной сферы нужно определять графическими построениями, первое действие графического алгоритма для построения проекций точек линии пересечения дополняется построением центра каждой вспомогательной сферы.

Порядок графических действий для построения линий пересечения способом вспомогательных эксцентрических сфер показан на двух примерах.

На рис. 8.14 показан пример построения проекции линии пересечения профильно-проецирующего цилиндра с поверхностью четвертой части открытого тора. Задача решается способом вспомогательных эксцентрических сфер, так как здесь соблюдены три необходимых условия для применения этого способа:

  • – одна из пересекающихся поверхностей – открытый тор, имеющий круговые сечения во фронтально-проецирующих плоскостях, проходящих через его ось вращения i»m;
  • – общая плоскость симметрии поверхностей – фронтальная плоскость уровня (подразумевается), поэтому точка A(A») пересечения фронтальных очерков принадлежит искомой линии пересечения;
  • – оси поверхностей iц и im скрещиваются.

Взаимное пересечение поверхностей в начертательной геометрии с примерами

Построение проекций точек линии пересечения поверхностей выполняется на заданной фронтальной проекции предмета по предлагаемому графическому алгоритму II.

Графический алгоритм II.

1-е действие. Ввести вспомогательную сферу, выполнив предварительно следующие графические действия.

1.1. Задать произвольное круговое сечение поверхности тора фронтально-проецирующей плоскостью αV1, проходящей через его ось i»m; окружность t1-t2, (ее проекция – прямая линия t»1-t»2) – это заданная линия пересечения тора с искомой вспомогательной сферой, центр которой должен лежать на перпендикуляре к проекции этой окружности – прямой t»1-t»2 (хорда окружности, в которую проецируется вспомогательная сфера).

1.2. Провести к прямой t»1-t»2 через ее середину перпендикуляр k» и на его пересечении с осью цилиндра i»ц определить центр первой вспомогательной сферы – точку O»1.

1.3. Провести окружность – проекцию вспомогательной сферы-посредника – с центром в точке O»1, радиус которой Rсф.1 определяется расстоянием от точки О»1 до одной из крайних точек t»1 или t»2 прямой t»1-t»2.

2-е действие. Построить проекцию окружности пересечения построенной сферы-посредника с поверхностью соосного ей цилиндра – это прямая s»1-s»2, проходящая через точки s»1 и s»2 пересечения очерков цилиндра и сферы-посредника.

3-е действие. Определить на пересечении построенных проекций заданной окружности t»1-t»2 и построенной окружности s»1-s»2 совпадающие точки 1(1″), принадлежащие искомой линии пересечения заданных поверхностей.

Дополнительные действия:

4-е действие. Повторить действия графического алгоритма и построить достаточное количество точек линии пересечения. В данном примере дополнительными сечениями вспомогательных плоскостей αV2 и αV3 и вспомогательными сферами Rсф.2 и Rсф.3 с центрами O2 и O3 построены точки 2 и 3, принадлежащие линии пересечения. Причем в плоскости αV3 окружности сечений совпадают и совпадающие точки 3 делят существование этих окружностей на две половины – верхняя часть принадлежит цилиндру, а нижняя – тору.

5-е действие. Соединить на фронтальной проекции точки A»-1″-2″-3″ линии пересечения плавной видимой кривой.

6-е действие. Оформить очерки поверхностей на заданной проекции.

На рис. 8.15 показан пример построения линии пересечения наклонного кругового цилиндра Ц1 с осью i»1 и наклонного эллиптического цилиндра с осью i»2, у которого есть круговые сечения в горизонтальных плоскостях уровня.

Взаимное пересечение поверхностей в начертательной геометрии с примерами

Выполнить графический анализ условия и исключить нерациональный способ решения задачи.

Рассмотренный способ вспомогательных секущих плоскостей применять не следует, так как на заданной фронтальной проекции ни одна плоскость уровня не пересекает поверхности одновременно по окружностям или образующим (одно из условий применения).

Рассмотренный способ вспомогательных концентрических сфер применять нельзя, так как проведенные сферы с центром в точке пересечения осей образуют соосные пары только с одной заданной поверхностью Ц1 (одно из условий применения).

Выбираем для решения задачи способ вспомогательных эксцентрических сфер, так как здесь соблюдены три условия его применения:

  • – пересекаются наклонный круговой цилиндр Ц1 и эллиптический цилиндр Ц2 (поверхность не вращения);
  • – общая плоскость симметрии поверхностей является фронтальной плоскостью уровня (подразумевается);
  • – оси поверхностей i1 и i2 – пересекаются.

Решение задачи, то есть введение сечений цилиндра Ц2 (параллельных заданному) горизонтальными плоскостями уровня α, начинаем на фронтальной проекции предмета, так как общая плоскость симметрии является фронтальной плоскостью уровня и точки A(A») и B(B») пересечения фронтальных очерков принадлежат линии пересечения.

Определяем границы введения сечений цилиндра Ц2 – это точки A(A») и B(B») пересечения фронтальных очерков пересекающихся геометрических тел.

Построить проекции точек линии пересечения поверхностей, выполнив действия предложенного графического алгоритма II.

Графический алгоритм II.

1-е действие. Ввести вспомогательную сферу, выполнив предварительные графические действия.

1.1. Задать произвольное круговое сечение эллиптического цилиндра Ц2 горизонтальной плоскостью αV1 – прямую t1-t2. Эта заданная линия t1-t2 – окружность пересечения эллиптического цилиндра с искомой вспомогательной сферой, центр которой лежит на перпендикуляре, проведенном из середины этой прямой.

1.2. Провести к прямой t1-t1 через ее середину перпендикуляр k» и на пересечении с осью i1 кругового цилиндра Ц1 определить точку О1 – центр первой вспомогательной сферы-посредника.

1.3. Провести окружность сферы-посредника радиусом Rсф.1, который определяется расстоянием от точки О»1 до одной из точек t»1 или t»2 прямой t1-t2.

2-е действие. Построить проекцию окружности пересечения сферы посредника с соосной ей поверхностью кругового цилиндра Ц1 – это прямая s1-s2, проходящая через точки пересечения очерков сферы и цилиндра.

3-е действие. Определить на пересечении заданной окружности t1«-t2» и построенной окружности s1«-s2» совпадающие точки 1(1″), принадлежащие искомой линии пересечения.

Дополнительные действия.

4-е действие. Повторить действия графического алгоритма II и построить проекции точек 2(2″);

5-е действие. Соединить на фронтальной проекции точки А»-1″-2″-B» линии пересечения плавной видимой кривой.

6-е действие. Оформить очерки поверхностей на заданной проекции.

Структуризация материала восьмой лекции в рассмотренном объеме схематически представлена на рис. 8.16 (лист 1). На последующих листах 2–5 приведены иллюстрации к этой схеме для быстрого визуального закрепления изученного материала при повторении (рис. 8.17–8.20).

Пересечение поверхностей:

Взаимное пересечение поверхностей в начертательной геометрии с примерами

Частный случай 1. Обе пересекающиеся поверхности проецирующие

Взаимное пересечение поверхностей в начертательной геометрии с примерами

Частный случай 2. Одна из двух пересекающихся поверхностей проецирующая

Взаимное пересечение поверхностей в начертательной геометрии с примерами

Частный случай 3. Соосные поверхности вращения (с общей осью i)

Взаимное пересечение поверхностей в начертательной геометрии с примерами

Частный случай 4. Пересечение поверхностей вращения 2-го порядка, описанных вокруг сферы
Взаимное пересечение поверхностей в начертательной геометрии с примерами

Общие случаи пересечения поверхностей:

1. Способ вспомогательных секущих плоскостей

Взаимное пересечение поверхностей в начертательной геометрии с примерами

а. Одностороннее касание (две замкнутые пространственные линии пересечения касаются в одной точке К)

Графический алгоритм:

  1. Ввести плоскость-посредник (горизонтальная плоскость α/αV3).
  2. Построить линии пересечения плоскости-посредника с каждой поверхностью (окружности радиусом R и R3m).
  3. Определить точки (3), принадлежащие искомой линии пересечения (на пересечении построенных окружностей радиусами R и R3m).
  4. Повторить алгоритм необходимое число раз.
  5. Способ вспомогательных концентрических сфер

Взаимное пересечение поверхностей в начертательной геометрии с примерами

б. Частичное врезание (линия пересечения — замкнутая пространственная линия)

Графический алгоритм:

  1. Ввести сферу-посредник (R1min минимальная вписанная сфера-посредник)
  2. Построить линии пересечения сферы-посредника с каждой поверхностью (касательная окр.1 и окр.1, пересечение соосных поверхностей)
  3. Определить точки 1, принадлежащие искомой линии пересечения (на пересечении построенных проекций окружностей 1)
  4. Повторить алгоритм необходимое число раз, увеличивая радиусы сфер-посредников
  5. Способ вспомогательных эксцентрических сфер

Взаимное пересечение поверхностей в начертательной геометрии с примерами

в. Полное проницание (линия пересечения распадается на две замкнутые пространственные линии)

Графический алгоритм:

I. Предварительные действия для определения центра вспомогательной сферы-посредника

1. Задать проекцию окружности (прямая S1-S2), по которой вспомогательная плоскость α/αV1) пересекает поверхность открытого тора.

2. Провести через середину этой проекции перпендикуляр к ней до пересечения с осью конуса — на пересечении определяется центр первой сферы-посредника О1(О»).

II. Основные действия

3. Ввести сферу-посредник радиусом R1 с центром в т. О11«).

4. Построить линии пересечения сферы-посредника с каждой поверхностью (заданная окружность S1 -S2 и две построенные окружности n1 и n2).

5. Определить точки 11» и 12», принадлежащие искомой линии пересечения (на пересечении линий S1 -S2 (S1«-S2«) и n1» и n2».

Образец взаимного пересечения поверхностей

Линия пересечения двух поверхностей — это геометрическое место точек, принадлежащих одновременно обеим поверхностям.

Взаимное пересечение поверхностей в начертательной геометрии с примерами

Общим способом построения точек, принадлежа­щих кривой взаимного пере­сечения поверхностей, является способ вспомогательных поверхностей посредников. Этот способ заключается в следующем.

Пусть даны некоторые взаимно пересекающиеся по­верхности Взаимное пересечение поверхностей в начертательной геометрии с примерами (рис. 5.39).

Введем плоскость-посредник Р, которая пересечет поверхности по линиям Взаимное пересечение поверхностей в начертательной геометрии с примерами Пересечение линий даст точки Взаимное пересечение поверхностей в начертательной геометрии с примерами принадлежащие кривой пересечения. Применяя ряд посредников, получаем семейство точек линии пересечения. В качестве посредников наиболее часто применяют плоскости и шаровые поверхности — сферы. В зависимости от вида поверхностей посредников можно выделить следующие способы построения линии пересечения двух поверхностей:

  • а) способ вспомогательных секущих плоскостей;
  • б) способ вспомогательных сфер.

При построении линии взаимного пересечения поверхностей не­обходимо сначала строить опорные точки кривой. Эти точки дают пределы линии пересечения. Между ними и следует определять промежуточные (случайные) точки.

  • Собственные тени поверхностей вращения
  • Построение падающих теней
  • Проекции с числовыми отметкам
  • Гранные поверхности
  • Тени в ортогональных проекциях
  • Кривые поверхности
  • Пересечения криволинейных поверхностей
  • Пересечения поверхностей с прямой и плоскостью

Пересечения криволинейных поверхностей в начертательной геометрии с примером

Содержание:

Возможные случаи пересечения криволинейных поверхностей:

Существуют четыре варианта пересечения двух поверхностей.

Проницание

Все образующие первой поверхности (цилиндра) пересекаются со второй поверхностью, но не все образующие второй поверхности пересекаются с первой. В этом случае линия пересечения поверхностей распадается на две замкнутые кривые линии (рис. 5.43).

Врезание

Не все образующие той и другой поверхности пересекаются между собой. В этом случае линия пересечения — одна замкну­ тая кривая линия (рис. 5.44).

Одностороннее касание

Все образующие одной поверхности пересекаются со второй, но не все образующие второй поверхности пересекаются с первой. Поверхности имеют в одной точке (точка К на рис. 5.45) общую плоскость касания. Линия пересечения распадается на две замкнутые кривые линии, пересекающиеся в точке касания.

Двойное касание

Все образующие обеих поверхностей пересекаются между собой. Пересекающиеся поверхности имеют две общие касательные плоскости. В этом случае линия пересечения распадается на две плоские кривые, которые пересекаются в точках касания (рис. 5.46).

Пересечение поверхностей второго порядка

В общем случае две поверхности второго порядка пересекаются по пространственной кривой четвертого порядка. Следует отметить, что при некоторых особых положениях относительно друг друга поверхности второго порядка могут пересекаться по плоским кривым второго порядка, то есть пространственная кривая пересечения распадается на две плоские кривые.

Теорема о двойном касании

Если две поверхности второго порядка имеют две общие точки (точки касания), то линия их взаимного пересечения распадается на две плоские кривые второго порядка. Причем плоскости этих кривых пройдут через прямую, соединяющую точки касания.

На рис. 5.47 показано построение линии пересечения поверхно­стей прямого кругового цилиндра и эллиптического конуса. Линии пересечения — эллипсы — лежат в профильно-проецирующих плоскостях S и Т, проходящих через прямую соединяющую точки касания.

Теорема Монжа

Если две поверхности второго порядка описаны около третьей поверхности второго порядка или вписаны в нее, то линия их взаимного пересечения распадается на две плоские кривые. Плоскости этих кривых пройдут через прямую, соединяющую точки пересечения линий касания.

Если оси пересекающихся поверхностей вращения параллельны какой — либо плоскости проекций, то на эту плоскость кривые линии проецируются в прямые.

На рис. 5.48 — 5.50 приведены примеры построения линий пересе­чения поверхностей на основании теоремы Монжа, где два цилиндра, цилиндр и конус и два конуса описаны вокруг сферы, а на рис. 5.51 приведен пример построения линии пересечения двух сжатых эллипсоидов вращения, вписанных в сферу.

Рекомендую подробно изучить предметы:
  1. Инженерная графика
  2. Начертательная геометрия
  3. Компас
  4. Автокад
  5. Черчение
  6. Проекционное черчение
  7. Аксонометрическое черчение
  8. Строительное черчение
  9. Техническое черчение
  10. Геометрическое черчение
Ещё лекции с примерами решения и объяснением:
  • Пересечения поверхностей с прямой и плоскостью
  • Взаимное пересечение поверхностей
  • Собственные тени поверхностей вращения
  • Построение падающих теней
  • Взаимное положение прямой и плоскости
  • Решение метрических задач
  • Тени в ортогональных проекциях
  • Кривые поверхности

При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org

Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи

Сайт пишется, поддерживается и управляется коллективом преподавателей

Whatsapp и логотип whatsapp являются товарными знаками корпорации WhatsApp LLC.

Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.

Кривые и поверхности второго порядка в математике с примерами решения и образцами выполнения

Кривая второго порядка — геометрическое место точек плоскости, прямоугольные координаты которых удовлетворяют уравнению вида.

Кривые второго порядка используются при решении задач по аналитической геометрии, кривые других порядков используются при решении задач математического анализа в разделе вычисления кратных, криволинейных и поверхностных интегралов.

Кривые и поверхности второго порядка

Преобразование координат на плоскости

Пусть на плоскости заданы две прямоугольные декартовы системы координат, Оху и О’х’у’ (рис. 1). Произвольная точка М относительно одной из этих координатных систем определяется парой чисел х и у, а относительно другой — парой чисел x’ и у’. Ясно, что между парами (х,у) и (x’, у’) имеется связь. Найдем ее.

Параллельный перенос

Предположим, что соответствующие координатные оси параллельны и сонаправлены, а точки начала отсчета различны. Это означает, что орты координатных осей соответственно равны (рис. 2).

Пусть г и г’ — радиусы-векторы точки М, т.е.

и а, β — координаты точки О’ относительно системы координат Оху, т. е.

Поворот

Предположим, что координатные оси одной системы координат получаются из координатных осей другой системы поворотом на угол φ, а начальные точки совпадают (рис.4). Координатами единичного вектора i’ являются косинусы углов φ и , образованных этим вектором с осями Ох и Оу:

а координатами единичного вектора j’ служат косинусы углов и φ:

(рис. 5). Так как радиус-векторы

произвольной точки М в рассматриваемом случае равны,

то, заменяя векторы i’ и j’ их выражениями, получаем, что

Зеркальное отражение

В случае, когда оси абсцисс Ох и Ох’ координатных систем совпадают, а оси ординат Оу и Оу’ направлены противоположно, координаты (х, у) и (х’,у’) произвольной точки М связаны равенствами

Справедливо следующее утверждение.

Любое преобразование прямоугольных декартовых координат (с сохранением масштаба) можно представить в виде последовательного выполнения переноса, поворота и <если необходимо) зеркального отражения.

Кривые второго порядка

Пусть на плоскости задана прямоугольная декартова система координат Оху. Множество точек плоскости, координаты х и у которых удовлетворяют равенству

F(x, у) = 0,

где F(x, у) — некоторая функция двух переменных, называется плоской кривой, или плоской линией само равенство называется уравнением данной линии (кривой).

Например, равенство х — у = 0 есть уравнение прямой — биссектрисы первого и третьего координатных углов (рис. 7). Равенство x 2 + y 2 — 1 = 0 — уравнение окружности единичного радиуса с центром в начале координат (рис. 8).

Рассмотрим многочлен второй степени от двух переменных х и у:

F(x,y) = 0

будем называть уравнением линии (кривой) второго порядка.

Если линиями первого порядка являются именно прямые и только они, то множество кривых второго порядка заметно разнообразней. Поэтому исследованию общего уравнения кривой второго порядка естественно предпослать изучение некоторых частных, но важных случаев.

Эллипс

Эллипсом называется кривая, уравнение которой в некоторой прямоугольной декартовой системе координат Оху имеет вид (1)

Система координат Оху, в которой уравнение эллипса имеет вид (1), называется канонической (для данного эллипса); само уравнение (!) называется каноническим уравнением эллипса. Окружность

является частным случаем эллипса (при а = b). Это позволяет несложным способом определить форму эллипса: эллипс (1) получается из окружности (2) путем ее равномерного сжатия» к оси Ох (с коэффициентом), т.е. заменой в уравнении x 2 + y 2 = a 2 координаты у на (рис.9).

Свойства эллипса

  1. Эллипс (I) содержится в прямоугольнике

В этом легко убедиться, заметив, что, если точка М(х, у) принадлежит эллипсу (1), то (рис. 10)

Точки (±а, 0), (0, ±b) называются вершинами эллипса.

2. Координатные оси Ох и Оу канонической системы являются осями симметрии эллипса, а начало координат О — его центром симметрии. Это означает, что если точка Мо(хo, yо) принадлежит эллипсу, то точки (-хо, yо), (-xо, -yо) и (хо, -yо) также ему принадлежат (рис. 11).

3. Если эллипс не является окружностью, то координатные оси канонической системы — единственные оси симметрии.

Положим с = . Ясно, что с 0 называется преобразование, переводящее произвольную точку М(х, у) окружности в точку М’ ().

Пусть сначала М(х, у) — произвольная точка эллипса

Вычислим ее расстояния от фокусов эллипса (рис. 12). Имеем

Заменяя y 2 его выражением

после несложных преобразований получаем, что

Последнее равенство вытекает из того, что

Легко убедиться в том, что

Доказательство того, что точки, обладающие указанным свойством, принадлежат эллипсу, было проведено ранее (см. раздел «Простейшие задачи аналитической геометрии» Введения, задача 2).

называется эксцентриситетом эллипса (I). Ясно, что 0

называются директрисами эллипса. У каждого эллипса две директрисы — левая и правая (рис. 13).

5. Эллипс есть множество точек плоскости, отношение расстояний от которых до данной точки (фокуса эллипса) и доданной прямой (одноименной с фокусом директрисы эллипса) постоянно (равно эксцентриситету эллипса).

Пусть сначала М(х,у) — произвольная точка эллипса (1). Вычислим расстояния от нее до правого фокуса и до правой директрисы (рис. 14). Имеем соответственно

Откуда легко получаем требуемое

Аналогично проверяется, что

Рассмотрим теперь на плоскости точку (с, 0) и прямую х =(с = ае). Возьмем произвольную точку М(х, у) и вычислим расстояния от нее до выбранной точки (с, 0) —

— и до выбранной прямой —

Возведем обе части последнего соотношения в квадрат и, положив и учтя равенство с = ае, после простых преобразований получим

Тем самым, точка М(х,у) лежит на эллипсе (1).

Гипербола

Гиперболой называется кривая, уравнение которой в некоторой прямоугольной системе координат Оху имеет вид (1)

Система координат Оху, в которой уравнение гиперболы имеет вид (1), называется канонической (для данной гиперболы); само уравнение (1) называется каноническим уравнением гиперболы.

Свойства гиперболы

  1. Гипербола (1) лежит вне полосы |x|

и, значит, |x| ≥ а (рис. 15).

Точки (±а, 0) называются вершинами гиперболы.

2. Гипербола (1) лежит в вертикальных углах, образованных прямыми у = ±х и содержащих точки оси Ох (рис. 16).

вытекает, что если точка М(х, у) лежит на гиперболе (1), то

Таким образом, гипербола состоит из двух частей — ветвей гиперболы, левой и правой. Прямые

называются асимптотами гиперболы.

3, На гиперболе лежат точки, сколь угодно далекие от начала координат O(0, 0).

Пусть, например, точка М(х, у) лежит на гиперболе (1) и у = n, где n — произвольное положительное число (рис. 17).

Возьмем в первой четверти две точки: точку гиперболы (1) и точку ее асимптоты = 0 с одинаковой абсциссой х > а —

соответственно — и вычислим расстояние между ними. Имеем

Умножив и разделив полученное выражение на сумму х +и перейдя затем к пределу при получим

Тем самым, установлен следующий факт.

4. Если текущая точка асимптоты неограниченно удаляется от начала координат, т.е. х —» + ∞, то на гиперболе можно указать соответствующую ей точку так, чтобы расстояние между ними стремилось к нулю (рис. 18).

Верно и обратное.

стремится к нулю.

6. Оси канонической координатной системы являются осями симметрии гиперболы, а начало координат — ее центром симметрии (рис. 19).

Координатные оси канонической системы — единственные оси симметрии гиперболы.

Положим с = . Ясно, что с > 0. .Точки (-с, 0) и (с, 0) называются фокусами гиперболы, 2с — фокусное расстояние.

Гипербола есть множество точек, абсолютная величина разности расстояний от которых до двух данных точек (фокусов гиперболы) постоянна (равна заданному числу).

Доказательство этого свойства проводится так же, как и доказательство свойства 4 эллипса. Покажем, например, что каждая точка гиперболы обладает указанным свойством. Если М(х, у) — точка гиперболы (1), то расстояния от нее до фокусов соответственно равны

(рис. 20). Так как > 1, то

Отсюда нетрудно вычислить, что

называется эксцентриситетом гиперболы (1). Ясно, что е > 1. Прямые

называются директрисами гиперболы (рис. 21). У каждой гиперболы две директрисы — левая и правая.

Практически также, как и для эллипса, доказывается следующий факт.

8. Гипербола есть множество точек, отношение расстояний от которых до данной точки (фокуса гиперболы) и доданной прямой (одноименной с фокусом директрисы) постоянно (равно эксцентриситету гиперболы) (рис. 22).
Гипербола (2)

называется сопряженной гиперболе (1). Взаимное расположение гипербол (1) и (2) указано на рис. 23.

Парабола

Параболой называется кривая, уравнение которой в некоторой прямоугольной декартовой системе координат Оху имеет вид (1)

Система координат Оху, в которой уравнение параболы имеет вид (1), называется канонической (для данной параболы); уравнение (]) называется каноническим уравнением параболы.

Свойства параболы

  1. Все точки параболы лежат в правой полуплоскости: х ≥ 0 (рис. 25). Точка 0(0, 0) лежит на параболе и называется ее вершиной.
  2. На параболе лежат точки, сколь угодно далеко расположенные от начала координат О(0, 0).
  3. Ось абсцисс канонической координатной системы является (единственной) осью симметрии параболы (рис. 26).

Ось симметрии параболы называется осью параболы. Число р называется фокальным параметром параболы; точка (; 0) — фокус параболы; прямая х = — директриса параболы.

4. Парабола есть множество точек, равноудаленных отданной точки (фокуса параболы) и от данной прямой (директрисы параболы) (рис. 27).

Пусть точка М(х, у) лежит на параболе (1). Вычислим расстояния от нее до фокуса (;0)

и до директрисы х = —

Заменяя у 2 его выражением 2рх, легко убеждаемся в том, что

Верно и обратное. Если для некоторой точки М(х, у) расстояния от нее до точки (; 0) и до прямой х = — равны —

то, возводя в квадрат, после простых преобразований получаем, что эта точка лежит на параболе:

Оптическое свойство кривых второго порядка

Касательные к эллипсу и гиперболе

Если кривая задана уравнением

y = f(x)

то уравнение касательной к ней, проходящей через точку (хо,у0)> где Уо = f(xо), можно записать в следующем виде

Пусть Мо(хо, yо) — точка эллипса

Предположим для определенности, что точка М0 лежит в первой четверти, т. е. хо > 0, yо > 0. Тогда часть эллипса, лежащую в первой четверти, можно описать уравнением

Пользуясь формулой (1), получаем уравнение касательной к эллипсу в точке Мо

а так как точка (х0, у о) лежит на эллипсе, то

Полученное соотношение после несложных преобразований можно записать так:

Отсюда с учетом тождества

приходим к уравнению

(рис. 28). Полученное соотношение является уравнением касательной к эллипсу, проходящей через его точку (х0, yо), и в общем случае ее произвольного расположения, т. е. при любых знаках хо и уо.

Уравнение касательной к гиперболе выводится аналогично и имеет следующий вид

Подчеркнем, что точка (хо, yо) лежит на гиперболе.

Касательные к параболе

Если кривая задана уравнением

х = g(у),

то уравнение касательной к ней, проходящей через точку (хo,уo), где х0 = g (уо), можно записать в следующем виде

Пусть М0(х0, у0) — точка параболы. Пользуясь формулой (I), получаем уравнение касательной к параболе

Отсюда в силу равенства приходим к уравнению касательной вида

Замечание:

Сопоставляя канонические уравнения эллипса, гиперболы и параболы с уравнениями касательных к этим кривым, нетрудно заметить, что для получения последних не требуется специальных вычислений. В самом деле, заменяя у 2 на уу 0 , а х 2 на хх 0 (в случае параболы 2х нужно заменить на x + х 0 ). приходим к уравнению соответствующей касательной. Еще раз отметим, что сказанное справедливо лишь в том случае, когда точка (x 0 . y 0 ) лежит на кривой.

Оптическое свойство эллипса

Пусть М 0 — произвольная точка эллипса

Как уже отмечалось, расстояния от нее до фокусов Fл и F n — фокальные радиусы — равны соответственно

Проведем через точку М 0 касательную к эллипсу,

и вычислим, на каком расстоянии от этой касательной лежат фокусы Fл (-c, 0) и Fn (c; 0) (напомним, что для этого следует воспользоваться формулой (10).

— нормирующий множитель (рис. 29). Нетрудно проверить, что

Обратившись к рис.29, заметим, что вычисленные отношения равны синусам углов, образованных касательной и фокальными радиусами точки касания. Из того, что синусы этих углов равны, вытекает равенство и самих углов. Тем самым доказано оптическое свойство эллипса: касательная к эллипсу образует равные углы с фокальными радиусами точки касания.

Это свойство называется оптическим по следующей причине: если поместить в один из фокусов эллипса с зеркальной «поверхностью» точечный источник света, то все лучи после отражения от «поверхности» эллипса сойдутся в другом его фокусе (рис. 30).

Оптическое свойство гиперболы

Устанавливается аналогичными выкладками и заключается в следующем.

Если поместить в один из фокусов гиперболы точечный источник света, то каждый луч после отражения от зеркальной «поверхности» гиперболы видится исходящим из другого фокуса (рис. 31).

Оптическое свойство параболы

Если в фокус параболы помещен точечный источник света, то все лучи, отраженные от зеркальной «поверхности» параболы, будут направлены параллельно оси параболы (рис. 32).

Классификация кривых второго порядка

Многочлены второй степени на плоскости

Теорема:

Пусть на плоскости введена прямоугольная декартова система координат Оху и пусть

— многочлен второй степени от переменных х и у.

Тогда на плоскости можно построить прямоугольную дека ртов у систему координат O’XY так, что после замены переменных х и у на переменные X и Y исходный многочлен f(x, у) приведется к многочлену F(X, Y) одного из следующих трех видов:

1-й шаг. Поворотом координатных осей на подходящим образом выбранный угол всегда можно добиться того, чтобы коэффициент при произведении разноименных координат обратился в нуль.

Пусть b ≠ 0 (при 6 = 0 этот шаг не нужен). Повернем оси координат вокруг точки О. Эта операция описывается следующими формулами

При этом координатные оси исходной системы Оху поворачиваются на угол φ (рис.33).

Заменим переменные х и у в формуле (1) их выражениями (2) через x’ и у’ и вычислим коэффициент 2b’ при произведении х’у’. Он равен

и обращается в нуль, если

Так как полученное уравнение разрешимо относительно φ, то указанным преобразованием всегда можно добиться обращения в нуль нужного коэффициента.

Приступая ко второму этапу преобразования, будем считать, что исходный многочлен f(x,у) уже имеет вид

где а 2 + с 2 >0. Для определенности положим с ≠ 0 (это не ограничивает общности наших рассуждений, так как заменой х, у в случае необходимости этого всегда можно добиться).

2-й шаг. Переносом начала координат можно достичь дальнейшего упрощения вида многочлена f(x,y). Эта операция описывается следующими формулами:

координатные оси новой системы O’XY получаются из координатных осей исходной системы Оху параллельным переносом в точку (-а, — β) (рис. 34).

Укажем конкретные значения а и β. Возможны три случая

I. а ≠ 0, с ≠ 0. Тогда, полагая

где А = а, В = с, С = g —

II. а = 0, d ≠ 0. Тогда, полагая

III. а = d = 0. Тогда, полагая

где В = с, Е = g —

Канонические уравнения кривых второго порядка

Если многочлен второй степени F(X, У) приравнять к нулю, то получим уравнение линии второго порядка

F(X, У) = 0.

Рассмотрим каждый из трех полученных выше случаев I, II, III отдельно.

I.

Э. А • В > 0. Домножением обеих частей уравнения на — 1 и заменой X на У, а У на X (в случае необходимости) всегда можно добиться того, чтобы В ≥ А > 0.

    С

(мнимый эллипс)2). На действительной плоскости нет ни одной точки (X, Y), координаты которой обращали бы это уравнение в тождество.

Точка (0, 0) является единственной точкой плоскости, координаты которой удовлетворяют этому уравнению; точку (0,0) можно мыслить как действительную точку пересечения двух мнимых пересекающихся прямых 3).

Г. А • В 0, В

— пару пересекающихся прямых:

2) Название можно объяснить некоторым сходством этого уравнения с уравнением эллипса.
3) Название можно объяснить некоторым сходством этого уравнения с уравнением пары пересекающихся
прямых.

II. BY 2 + 2DX = О, В • D ≠ 0.

Всегда можно добиться того, чтобы В • D

III. BY 2 + Е = 0, В ≠ 0. Можно считать, что В > 0.

1. Е

Y 2 — с 2 = 0, с > 0

— пару параллельных прямых.

Y 2 — с 2 = 0, с 2 = 0

— пара совпадающих прямых.

Чтобы определить тип кривой второго порядка, не обязательно проводить все указанные выше преобразования. Достаточно вычислить знаки некоторых выражений, составленных из коэффициентов уравнения.

— уравнение линии второго порядка. Введем следующие обозначения

Числа D и ∆ не зависят от выбора системы координат на плоскости и называются инвариантами. Из приводимой таблицы видно, какому сочетанию знаков определителей D и ∆ соответствует та или иная линия второго порядка.

Задача:

Убедитесь в том, что D и ∆ при рассмотренных преобразованиях системы координат действительно остаются неизменными.
4) Название можно объяснить некоторым сходством этого уравнения с уравнением пары параллельных прямых.

Поверхности второго порядка

Пусть в пространстве задана прямоугольная декартова система координат Oxyz. Множество точек пространства, координаты х, у и z которых удовлетворяют равенству

F(x, у, z) = О,

называется поверхностью; равенство (*) называется уравнением этой поверхности.

Пример:

— уравнение сферы радиуса о с центром в точке (0,0,0) (рис. 35).

Рассмотрим многочлен второй степени от трех переменных х, у и z

Уравнение

F(x, y, z) = 0

будем называть уравнением поверхности второго порядка.

Исследование общего уравнения поверхностей второго порядка оказывается зна-чительноболее сложным, чем исследование общего уравнения кривых второго порядка, требует разработки соответствующего математического аппарата и будет проведено в конце главы VI.

В оставшихся параграфах этой главы мы сначала остановимся на изучении геометрических свойств некоторых важных классов общих поверхностей; затем используем их для рассмотрения канонических уравнений основных поверхностей второго порядка и исследования структуры этих поверхностей.

Некоторые классы поверхностей

Поверхности вращения

Рассмотрим на плоскости Oxz кривую γ, заданную уравнением

г = f(x), х ≥ 0

(рис. 36). При вращении кривой γ вокруг оси Oz она будет заметать некоторую поверхность, называемую поверхностью вращения (рис. 37). Найдем уравнение этой поверхности, т. е. равенство, которому должны удовлетворять координаты точек построенной поверхности и только они.

Тем самым, координаты х, у и z0 любой точки М этой окружности связаны следующим равенством

В силу произвольности выбора точки М0 на кривой γ искомое уравнение полученной поверхности вращения имеет вид

Цилиндрические поверхности

Через каждую точку некоторой заданной кривой γ проведем прямую l параллельно заданной прямой l0. Множество точек, лежащих на так построенных прямых, назовем цилиндрической поверхностью (рис. 39); кривая γ называется направляющей цилиндрической поверхности, а прямая l — ее образующей.

Найдем уравнение, описывающее цилиндрическую поверхность.

Возьмем произвольную точку О и проведем через нее плоскость П, перпендикулярную образующей I. Построим в пространстве прямоугольную координатную систему Oxyz, взяв за ось Oz прямую, перпендикулярную плоскости П. Тогда плоскость П будет координатной плоскостью Оху (рис.40). Плоскость П пересекает цилиндрическую поверхность по направляющей γ0.

F(x,y) = 0

— уравнение этой направляющей. Убедимся в том, что последнее соотношение можно считать уравнением искомой цилиндрической поверхности.

самом деле, пусть (х, у, z) — точка цилиндрической поверхности (рис. 41). Тогда точка (х, у, 0) лежит на γ0 и, значит, удовлетворяет уравнению

F(x,y)=0.

Но координаты точки (х, у, z) также обращают это уравнение в тождество. Последнее обстоятельство и позволяет считать соотношение F(x,y) = 0 искомым уравнением.

Пример:

Введем в пространстве прямоугольные декартовы координаты Охуz. Соотношение

является уравнением цилиндрической поверхности (эллиптического цилиндра) (рис. 42).

Замечание:

F(y, z) = 0

описывает цилиндрическую поверхность с образующей, параллельной координатной оси Оx, а уравнение

F(x,z) = 0

— цилиндрическую поверхность с образующей, параллельной оси Oy.

Конические поверхности

Пусть γ — произвольная кривая и О — точка вне eе. Через каждую точку кривой γ и точку О проведем прямую l. Множество точек, лежащих на построенных таким образом прямых, называется конической поверхностью (рис.43); кривая γ — направляющая конической поверхности, l — ее образующая, точка О — вершина. Рассмотрим функцию

F (x, у, z)

переменных х, у и z. Функция F(x, у, z) называется однородной функцией степени q, если для любого t > 0 выполняется равенство

Покажем, что если F(x, у, z) однородная функция, то F
является уравнением конической поверхности.

В самом деле, пусть

т.е. точка М0(xo, уо, zо) лежит на этой поверхности. Будем считать, что . Проведем через эту точку и точку 0(0,0, 0) (считая, что F(0,0, 0) = 0) прямую I (рис. 44). Ее параметрические уравнения имеют вид

Подставляя полученные выражения для х, у и z в функцию F(x, у, z), видим, что

Это означает, что вся прямая l лежит на поверхности, определяемой уравнением F(x,y,z) = 0, которое, следовательно, и описывает коническую поверхность.

Пример:

является однородной функцией второй степени:

— уравнение конической поверхности (конуса второго порядка) (рис.45).

Воспользуемся теперь полученными выше результатами для исследования геометрической формы поверхностей второго порядка.

Эллипсоид. Гиперболоиды. Параболоиды. Цилиндры и конус второго порядка

Эллипсоид

Эллипсоидом называется поверхность, уравнение которой в некоторой прямоугольной декартовой системе координат Oxyz имеет вид

где а ≥ b ≥ с > 0. Для того, чтобы выяснить, как выглядит эллипсоид, поступим следующим образом. Возьмем на плоскости Oxz эллипс

и будем вращать его вокруг оси Oz (рис. 46).

эллипсоид вращения — уже дает представление о том, как устроен эллипсоид общего вида. Чтобы получить его уравнение, достаточно равномерно сжать эллипсоид вращения . вдоль оси Оу с коэффициентом — ≤ 1, т. с. заменить в его уравнении у на y 5).

Гиперболоиды

вокруг оси Oz (рис. 47), получим поверхность, называемую однополостным гиперболоидом вращения. Его уравнение имеет вид

получается тем же способом, что и в случае эллипсоида вращения.

5) Эллипсоид вращения («) можно получить равномерным сжатием сферы х 2 + у 2 + z 2 = а 2 вдоль оси Оz с коэффициентом — ≤ 1.

Путем равномерного сжатия этой поверхности вдоль оси Оу с коэффициентом ≤ 1 получим однополостный гиперболоид общего вида. Его уравнение

получается тем же способом, что и в разобранном выше случае эллипсоида. Путем вращения вокруг оси Oz сопряженной гиперболы

получим двуполостный гиперболоид вращения (рис.48). Его уравнение

Путем равномерного сжатия этой поверхности вдоль оси Оу с коэффициентом ≤ 1 приходим к двуполостному гиперболоиду общего вида. Заменой у на у получаем его уравнение

Эллиптический параболоид

вокруг оси Oz (рис.49), получаем параболоид вращения. Его уравнение имеет вид

Путем сжатия параболоида вращения вдоль оси Оу с коэффициентом получаем эллиптический параболоид. Его уравнение

получается из уравнения параболоида вращения

путем замены у на . Если р Гиперболический параболоид

Гиперболическим параболоидом называется поверхность, уравнение которой в некоторой прямоугольной декартовой системе координат Oxyz имеет вид

где р > 0, q > 0. Вид этой поверхности определим, применив так называемый метод сечений, который заключается в следующем: параллельно координатным плоскостям проводятся плоскости, пересекающие исследуемую поверхность, и по изменению конфигурации возникающих в результате плоских кривых делается вывод о структуре самой поверхности.

Начнем с сечений плоскостями z = h = const, параллельными координатной плоскости Оху. При h > 0 получаем гиперболы

при h

при h = 0 — пару пересекающихся прямых

Заметим, что эти прямые являются асимптотами для всех гипербол (т. е. при любом h ≠ 0). Спроектируем получаемые кривые на плоскость Ох у. Получим следующую картину (рис. 51). Уже это рассмотрение позволяет сделать заключение о седлообразном строении рассматриваемой поверхности (рис. 52).

Рассмотрим теперь сечения плоскостями

у = h.

Заменяя в уравнении поверхности у на h, получаем уравнения парабол (рис.53).

Аналогичная картина возникает при рассечении заданной поверхности плоскостями

х = h.

В этом случае также получаются параболы

ветви которых направлены вниз (а не вверх, как для сечения плоскостями у = h) (рис. 54).

Используя последние два типа сечений, приходим к заключению, что гиперболический параболоид можно получить путем параллельного переноса параболы х2 = 2pz вдоль параболы у2 = -2qz, или наоборот (рис. 55).

Замечание:

Методом сeчeний можно разобраться в строении и всех ранее рассмотренных поверхностей второго порядка. Однако путем вращения кривых второго порядка и последующего равномерного сжатия к пониманию их структуры можно прийти проще и значительно быстрее.

Оставшиеся поверхности второго порядка по существу уже рассмотрены ранее. Это цилиндры:

представление о котором можно получить либо путем вращения пары пересекающихся прямых

вокруг оси Oz и последующего сжатия, либо методом сечений. Конечно, в обоих случаях получим, что исследуемая поверхность имеет вид, указанный на рис. 59.

Дополнение к поверхностям второго порядка

Решение заданий и задач по предметам:

Дополнительные лекции по высшей математике:

Образовательный сайт для студентов и школьников

Копирование материалов сайта возможно только с указанием активной ссылки «www.lfirmal.com» в качестве источника.

© Фирмаль Людмила Анатольевна — официальный сайт преподавателя математического факультета Дальневосточного государственного физико-технического института

Поверхности второго порядка: их виды, уравнения, примеры

Общее уравнение поверхности второго порядка и инварианты поворота и переноса декартовой прямоугольной системы координат

Общее уравнение поверхности второго порядка имеет вид

Для определения вида поверхности второго порядка по общему уравнению и приведения общего уравнения к каноническому, нам понадобятся выражения, которые называются инвариантами. Инварианты — это определители и суммы определителей, составленные из коэффициентов общего уравнения, которые не меняются при переносе и повороте системы координат. Эти инварианты следующие:

Следующие два выражения, называемые семиинвариантами, являются инвариантами поворота декартовой прямоугольной системы координат:

В случае, если I 3 = 0 , K 4 = 0 , семиинвариант K 3 будет также и инвариантом переноса; в случае же I 3 = 0 , K 4 = 0 , I 2 = 0 , K 3 = 0 семиинвариант K 2 = 0 будет также и инвариантом переноса.

Виды поверхностей второго порядка и приведение общего уравнения поверхности второго порядка к каноническому

I. Если I 3 ≠ 0 , то общее уравнение поверхности второго порядка при помощи поворота и переноса прямоугольной системы координат может быть приведено к следующему виду:

,

где λ 1 , λ 2 , λ 3 — корни характеристического уравнения

.

В зависимости от того, какие знаки у чисел λ 1 , λ 2 , λ 3 и K 4 /I 3 , определяется вид поверхности второго порядка.

Эллипсоид

Если числа λ 1 λ 2 , λ 3 одного знака, а K 4 /I 3 имеет знак им противоположный, то общее уравнение поверхности второго порядка определяет эллипсоид.

После решения характеристического уравнения общее уравнение можно переписать в следующем виде:

.

Тогда полуоси эллипсоида будут

, , .

Поэтому каноническое уравнение эллипсоида имеет вид

.

Мнимый эллипсоид

Если числа λ 1 λ 2 , λ 3 и K 4 /I 3 одного знака, то общее уравнение поверхности второго порядка определяет мнимый эллипсоид.

После решения характеристического уравнения общее уравнение можно привести к каноническому уравнению мнимого эллипсоида:

,

, , .

Мнимый конус

Если числа λ 1 λ 2 , λ 3 , а K 4 = 0 , то общее уравнение поверхности второго порядка определяет мнимый конус.

После решения характеристического уравнения общее уравнение можно привести к каноническому уравнению мнимого конуса:

,

, , .

Однополостный гиперболоид

Если два корня характеристического уравнения имеют один знак, а третий корень и K 4 /I 3 имеют знак, им противоположный, то общее уравнение поверхности второго порядка определяет однополостный гиперболоид.

Обозначая в этом случае через λ 1 и λ 2 корни характеристического уравнения, имеющие один знак, общее уравнение можно переписать в виде:

.

, , ,

то каноническое уравнение однополостного гиперболоида будет иметь вид

.

Двуполостный гиперболоид

Если два корня характеристического уравнения и K 4 /I 3 имеют один и тот же знак, а третий корень характеристического уравнения им противоположный, то общее уравнение поверхности второго порядка определяет двуполостный гиперболоид.

Обозначая в этом случае через λ 1 и λ 2 корни, имеющие один знак, общее уравнение можно переписать в виде:

.

Последняя запись и есть каноническое уравнение двуполостного гиперболоида.

Конус

Если два корня характеристического уравнения имеют один знак, третий корень имеет знак, им противоположный, а K 4 = 0 , то общее уравнение поверхности второго порядка определяет конус.

Считая, что одинаковый знак имеют корни λ 1 и λ 2 , общее уравнение можно переписать в виде:

,

известном как каноническое уравнение конуса.

II. Если I 3 = 0 , а K 4 ≠ 0 , то общее уравнение поверхности второго порядка при помощи поворота и переноса прямоугольной системы координат может быть приведено к следующему виду:

,

где λ 1 и λ 2 — отличные от нуля корни характеристического уравнения.

Эллиптический параболоид

Если λ 1 и λ 2 имеют один знак, то общее уравнение поверхности второго порядка определяет эллиптический параболоид.

Общее уравнение можно переписать в виде:

.

Выбирая перед корнем знак, противоположный знаку λ 1 и λ 2 , и полагая

,

,

получим каноническое уравнение эллиптического параболоида:

.

Гиперболический параболоид

Если λ 1 и λ 2 имеют разные знаки, то общее уравнение поверхности второго порядка определяет гиперболический параболоид.

Обозначая через λ 1 положительный корень, а через λ 2 — отрицательный и беря перед корнем знак минус, переписываем уравнение в виде:

.

, ,

получим каноническое уравнение гиперболического параболоида:

.

III. Если I 3 = 0 , а K 4 = 0 , I 2 ≠ 0 то общее уравнение поверхности второго порядка при помощи поворота и переноса прямоугольной системы координат может быть приведено к следующему виду:

,

где λ 1 и λ 2 — отличные от нуля корни характеристического уравнения.

Эллиптический цилиндр

Если λ 1 и λ 2 одного знака, а K 3 /I 2 имеет знак, им противоположный, то общее уравнение поверхности второго порядка определяет эллиптический цилиндр.

Переписываем уравнение, получившееся после решения характеристического уравнения, в виде:

.

, ,

получим каноническое уравнение эллиптического цилиндра:

.

Мнимый эллиптический цилиндр

Если λ 1 , λ 2 и K 3 /I 2 одного знака, то общее уравнение поверхности второго порядка определяет мнимый эллиптический цилиндр.

Переписываем уравнение, получившееся после решения характеристического уравнения, в виде:

.

Последняя запись — каноническое уравнение мнимого эллиптического цилиндра.

Мнимые пересекающиеся плоскости

Если λ 1 и λ 2 имеют один знак, а K 3 = 0 , то общее уравнение поверхности второго порядка определяет две мнимые пересекающиеся плоскости.

Переписываем уравнение, получившееся после решения характеристического уравнения, в виде:

.

, ,

получим каноническое уравнение мнимых пересекающихся плоскостей:

.

Гиперболический цилиндр

Если λ 1 и λ 2 имеют разные знаки, а K 3 ≠ 0 , то общее уравнение поверхности второго порядка определяет гиперболический цилиндр.

Переписываем уравнение, получившееся после решения характеристического уравнения, в виде:

,

, .

Таким образом, каноническое уравнение гиперболического цилиндра:

.

Пересекающиеся плоскости

Если λ 1 и λ 2 имеют разные знаки, а K 3 = 0 , то общее уравнение поверхности второго порядка определяет две пересекающиеся плоскости.

Переписываем уравнение, получившееся после решения характеристического уравнения, в виде:

,

, .

Таким образом, пересекающихся плоскостей:

.

IV. Если I 3 = 0 , K 4 = 0 , I 2 = 0 , K 3 ≠ 0 , то общее уравнение поверхности второго порядка при помощи поворота и переноса прямоугольной системы координат может быть приведено к следующему виду:

,

где λ 1 = I 1 — отличный от нуля корень характеристического уравнения.

Параболический цилиндр

Уравнение, получившееся после решения характеристического уравнения, можно переписать в виде:

,

.

Это уравнение параболического цилиндра, в каноническом виде оно записывается так:

.

V. Если I 3 = 0 , K 4 = 0 , I 2 = 0 , K 3 = 0 , то общее уравнение поверхности второго порядка при помощи поворота и переноса прямоугольной системы координат может быть приведено к следующему виду:

,

.

Параллельные плоскости

Если K 2 , то общее уравнение поверхности второго порядка определяет две параллельные плоскости.

,

перепишем его в виде

.

Мнимые параллельные плоскости

Если K 2 > 0 , то общее уравнение поверхности второго порядка определяет две мнимые параллельные плоскости.

,

перепишем его в виде

.

Совпадающие плоскости

Если K 2 = 0 , то общее уравнение поверхности второго порядка определяет две совпадающие плоскости:

.

Решение примеров на определение вида поверхности второго порядка

Пример 1. Определить вид и составить каноническое уравнение поверхности, заданной относительно прямоугольной системы координат общим уравнением

Решение. Найдём I 3 :

(как вычислить определитель).

I 1 = 1 + 5 + 1 = 7 ,

Следовательно, данная поверхность — однополостный гиперболоид.

.

Составляем и решаем характеристическое уравнение:

;

.

,

, , .

Пример 2. Определить вид и составить каноническое уравнение поверхности, заданной относительно прямоугольной системы координат общим уравнением

Решение. Найдём I 3 :

.

.

Следовательно, общее уравнение определяет эллиптический параболоид.

.

I 1 = 2 + 2 + 3 = 7 .

Решаем характеристическое уравнение:

.

.

,

, .

Пример 3. Определить вид и составить каноническое уравнение поверхности, заданной относительно прямоугольной системы координат общим уравнением

,

,

,

I 1 = 5 + 2 + 5 = 12 .

Так как I 3 = К 4 = 0 , I 2 > 0 , I 1 K 3 , то данное общее уравнение определяет эллиптический цилиндр.

.

.

Определить вид поверхности второго порядка самостоятельно, а затем посмотреть решение

Пример 4. Определить вид и составить каноническое уравнение поверхности, заданной относительно прямоугольной системы координат общим уравнением

источники:

http://lfirmal.com/poverhnosti-vtorogo-poryadka/

http://function-x.ru/surfaces_of_the_second_order.html

1.
Так как поверхности второго порядка
часто встречаются в технической практике,
то вопрос об их взаимном пересечении
заслуживает особого рассмотрения.

Линия
пересечения двух поверхностей второго
порядка является кривой четвертого
порядка,
т. е. эта кривая пересекается с плоскостью
в четырех точках (действительных и
мнимых). В частных случаях линия
пересечения поверхностей второго
порядка может распадаться, причем особый
интерес представляет случай ее распадения
на пару плоских кривых второго порядка.

Для
примера рассмотрим пересечение сферы
с конической
поверхностью второго порядка, имеющей
круговое основание АВ,
расположенное
на данной сфере (рис. 153). В этом случае
линия пересечения распадается на две
окружности: данную окружность АВ
и окружность CD,
которые изображаются на
виде спереди
в виде отрезков прямых, так как плоскость
симметрии конической поверхности
параллельна фронтальной
плоскости.

Выясним
условия, при которых линия пересечения
двух поверхностей второго порядка
распадается на пару плоских кривых
второго порядка.

Если
две поверхности имеют в какой-либо их
общей точке одну и ту же касательную
плоскость, то они касаются между собой
в этой
точке. Когда две пересекающиеся
поверхности имеют две точки, в которых
они касаются друг друга, то говорят, что
такие поверхности имеют двойное
прикосновение
.

Линия
пересечения двух поверхностей второго
порядка, имеющих двойное прикосновение,
распадается на пару кривых второго
порядка, плоскости которых проходят
через прямую, соединяющую точки
прикосновения.

Рассмотрим
пример, иллюстрирующий это положение.

Пример
1.
Построить
линию пересечения двух цилиндрических
поверхностей вращения одинакового
диаметра (рис. 154).

Данные
поверхности имеют двойное прикосновение
в точках
А
и В,
так как в этих
точках обе поверхности имеют общие
касательные плоскости Ф1
и Ф2.
Поэтому линия
их пересечения распадается на пару
кривых второго порядка, которые должны
проходить через точки прикосновения А
и В
и точки С,
F
и D,
Е
пересечения
контурных образующих.

Нетрудно
видеть, что линия пересечения в данном
случае будет представлять собой два
одинаковых эллипса, большими осями
которых будут CF
и DE,
а малыми –
АВ.
Эти эллипсы
изображаются на виде спереди отрезками
прямых СF
и DЕ,
а на виде сверху –
окружностью, совпадающей с вырожденным
видом цилиндрической поверхности.

Рис.
153 Рис. 154

2.
Теорема о
двойном прикосновении позволяет весьма
просто строить круговые сечения тех
поверхностей второго порядка, которые
их имеют. Для этого следует провести
сферу, имеющую двойное прикосновение
с данной поверхностью. Тогда линия их
пересечения распадается на пару плоских
кривых. Но так как плоские кривые,
расположенные на сфере, –
окружности, то этим самым будут найдены
круговые сечения поверхности второго
порядка.

Итак,
для построения
круговых сечений поверхностей второго
порядка следует провести сферу, имеющую
двойное прикосновение с данной
поверхностью, тогда линия их пересечения
даст пару круговых сечений данной
поверхности.

Рассмотрим
примеры.

Пример
2.
Построить
круговые сечения эллиптического цилиндра
(рис. 155).

Из
какой-либо точки О
оси цилиндра описываем сферу так, чтобы
она касалась двух образующих цилиндра
и пересекала бы его. Точки касания М
и N
будут точками
соприкосновения обеих поверхностей,
так как в них можно провести общие
касательные плоскости Ф1
и Ф2.
Таким образом, имеем двойное прикосновение
поверхностей второго порядка и,
следовательно, линия пересечения
распадается на пару плоских кривых, в
данном случае –
на пару окружностей АВ
и CD,
расположенных
в наклонных плоскостях. Полученные два
круговых сечения цилиндра входят в две
серии круговых сечений цилиндра,
параллельных между собой.

Рис.
155

Пример
3.
Построить
круговые сечения эллиптического конуса

(рис. 156).

Как
и в предыдущем примере, описываем сферу
с центром в точке О
на оси конуса так, чтобы она имела двойное
прикосновение с конусом. В точках М
и N
у обеих
поверхностей общие касательные плоскости
Б1
и Б2.
Тогда линия пересечения распадается
на пару окружностей АВ
и CD,
расположенных
в наклонных плоскостях. Полученные
круговые сечения входят в две серии
круговых сечений конуса, параллельных
между собой.

Рис.
156

Пример
4.
Построить
круговые сечения трехосного эллипсоида

(рис. 157).

Описываем
сферу с центром в точке О
и радиусом, равным
средней полуоси эллипсоида. Тогда имеем
двойное прикосновение в точках М
и N
и, следовательно,
линия пересечения распадается на пару
окружностей АВ
и CD.
Полученные два круговых сечения проходят
через центр эллипсоида и поэтому
называются центральными. Они входят в
две серии круговых сечений эллипсоида,
параллельных между собой.

3.
Не всегда удается непосредственно
обнаружить двойное прикосновение у
пересекающихся поверхностей второго
порядка, тогда для установления распадения
линии их пересечения пользуются следующим
положением.

Если
две поверхности второго порядка описаны
около третьей поверхности второго
порядка (или вписаны в нее), то линия их
пересечения распадается на две плоские
кривые второго порядка.

Это
положение, известное как теорема
Монжа
,
является следствием из положения о
двойном прикосновении. Покажем это на
следующем примере.

Рис.
157

Пример
5.
Построить
линию пересечения конической и
цилиндрической поверхностей, описанных
около одной и той же сферы (рис. 158).

Линией
прикосновения конической поверхности
и сферы будет
окружность 12,
а цилиндрической
поверхности и сферы –
окружность 34.
Точки М
и N
пересечения
этих окружностей и будут точками двойного
прикосновения конической и цилиндрической
поверхностей, так как в этих точках у
этих поверхностей будет общая касательная
плоскость. Таким образом, имеем двойное
прикосновение данных поверхностей и,
следовательно, линия их пересечения
распадается на пару плоских кривых
второго порядка. В рассматриваемом
примере линия пересечения распадается
на пару эллипсов АВ
и CD,
которые на виде спереди изображаются
отрезками прямых АВ
и СD.

4.
В заключение рассмотрим применение
теоремы Монжа при конструировании
трубопроводов, выполняемых из листового
материала.

Пример
6
. Построить
переходные конические поверхности,
соединяющие данные цилиндрические
трубы I,
II
и III,
оси которых находятся в одной фронтальной
плоскости (рис. 159).

Рис.
158

Если
вписать в каждую из данных труб сферу,
то каждая пара сфер, вписанных в трубы
I,
II
и I,
III,
определит
переходные конические поверхности IV
и V,
касательные к этим сферам. При построении
линий пересечения данных и переходных
поверхностей следует учесть теорему
Монжа, из которой следует, что искомые
линии пересечения будут плоскими

кривыми (эллипсами). На виде спереди
эти линии будут отрезками
прямых АС,
ВС,
СD,
EF
и GН,
определяемыми точками пересечения
очерковых образующих.

Рис.
159

Соседние файлы в папке ИВТ 1с

  • #
  • #
  • #
  • #
  • #
  • #

Понравилась статья? Поделить с друзьями:
  • Как составить программу изучения английского языка самостоятельно
  • Плотность застройки как найти
  • Как правильно составить циклограмму заместителя директора
  • Как найти площадь прямоугольного параллелепипеда задачи
  • Вальгус как исправить ребенку 3 года