Наш онлайн калькулятор, построенный на основе системы Wolfram Alpha, предназначен для решения задачи нахождения точек
пересечения графика функции с осями координат.
При проведении исследования функции, возникает задача нахождения точек пересечения этой функции с осями координат. Рассмотрим на конкретном примере алгоритм решения такой задачи. Для простоты будем работать с функцией одной переменной:
График данной функции представлен на рисунке:
Как следует из рисунка, наша функция пересекает ось
в двух точках, а ось
— в одной.
Сначала найдём точки пересечения функции
с осью
. Сразу отметим, что в этих точках координата
. Поэтому для их поиска, нам нужно
решить уравнение:
Это
квадратное уравнение
имеет два корня:
Таким образом, мы нашли две точки пересечения нашей функции с осью абсцисс:
и
. Стоит отметить, что задача поиска пересечений функции с осью
эквивалентна задаче нахождения
нулей функции.
Теперь найдём точку пересечения с осью ординат. В этой точке координата
. Поэтому для их поиска, просто подставляем значение
в нашу функцию:
Таким образом, мы нашли точку пересечения нашей функции с осью ординат
.
Данный калькулятор предназначен для определения точек пересечения графика функции с осями координат.
В точке пересечения функции с осью Ox координата y всегда равна нулю, а в точке пересечения с осью Oy координата x=0.
Для того чтобы найти точки пересечения графика функции с осью ординат (Oy), необходимо подставить в уравнения функции x=0 , тем самым, найти y. Аналогично, чтобы найти точки пересечения графика функции с осью абсцисс (Ox), необходимо подставить в уравнение функции y=0 и найти x.
Нахождение координат точек пересечения функции с осями используется для анализа функции и построения ее графика.
Для того чтобы получить ответ, введите функцию в ячейку. Основные примеры ввода функций для данного калькулятора указаны ниже.
Для получения полного хода решения нажимаем в ответе Step-by-step.
×
Пожалуйста напишите с чем связна такая низкая оценка:
×
Для установки калькулятора на iPhone — просто добавьте страницу
«На главный экран»
Для установки калькулятора на Android — просто добавьте страницу
«На главный экран»
bold{mathrm{Basic}} | bold{alphabetagamma} | bold{mathrm{ABGamma}} | bold{sincos} | bold{gedivrightarrow} | bold{overline{x}spacemathbb{C}forall} | bold{sumspaceintspaceproduct} | bold{begin{pmatrix}square&square\square&squareend{pmatrix}} | bold{H_{2}O} | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Подпишитесь, чтобы подтвердить свой ответ
Подписаться
Войдите, чтобы сохранять заметки
Войти
Номер Строки
Примеры
-
перехватывает:y=frac{x^2+x+1}{x}
-
перехватывает:f(x)=x^3
-
перехватывает:f(x)=ln (x-5)
-
перехватывает:f(x)=frac{1}{x^2}
-
перехватывает:y=frac{x}{x^2-6x+8}
-
перехватывает:f(x)=sqrt{x+3}
-
перехватывает:f(x)=cos(2x+5)
-
перехватывает:f(x)=sin(3x)
- Показать больше
Описание
Шаг за шагом найти пересечения осей функций
function-intercepts-calculator
ru
Блог-сообщения, имеющие отношение к Symbolab
Functions
A function basically relates an input to an output, there’s an input, a relationship and an output. For every input…
Read More
Введите Задачу
Сохранить в блокнот!
Войти
Исследование функции по-шагам
Примеры исследуемых функций
- График логарифмической функции
-
y = log(x)/x
- График показательной функции
-
y = 2^x - 3^x
- График степенной функции
-
f(x) = x^5 - x^4 + x^2 - x + 1
- График гиперболы
-
f(x) = (x - 1)/(x + 1)
-
y = 1/x
- График квадратичной функции
-
x^2 - x + 5
- График тригонометрической функции
-
sin(x) - 2*cos(x) + 3*sin(2*x)
- Функция Гомпертца
-
e/2*e^(-e^-x)
-
e^(-e^-x)
-
-1/2*e^(-e^-x)
-
e^(-1/4*e^(-x))
-
e^(-e^(-2*x))
- Логистическая кривая
-
1/(1 + exp(-x))
Что исследует?
- Область определения функции. Умеет определять только точки, в которых знаменатель функции обращается в нуль
- Умеет определять точки пересечения графика функции с осями координат
- Экстремумы функции: интервалы (отрезки) возрастания и убывания функции, а также локальные (или относительные) и глобальные (или абсолютные) минимумы и максимумы функции
- Точки перегибов графика функции: перегибы: интервалы выпуклости, вогнутости (впуклости)
- Вертикальные асимптоты: область определения функции, точки, где знаменатель функции обращается в нуль
- Горизонтальные асимптоты графика функции
- Наклонные асимптоты графика функции
- Четность и нечетность функции
Подробнее про Исследование функции
.
Указанные выше примеры содержат также:
- модуль или абсолютное значение: absolute(x) или |x|
-
квадратные корни sqrt(x),
кубические корни cbrt(x) -
тригонометрические функции:
синус sin(x), косинус cos(x), тангенс tan(x), котангенс ctan(x) - показательные функции и экспоненты exp(x)
-
обратные тригонометрические функции:
арксинус asin(x), арккосинус acos(x), арктангенс atan(x),
арккотангенс acot(x) -
натуральные логарифмы ln(x),
десятичные логарифмы log(x) -
гиперболические функции:
гиперболический синус sh(x), гиперболический косинус ch(x),
гиперболический тангенс и котангенс tanh(x), ctanh(x) -
обратные гиперболические функции:
гиперболический арксинус asinh(x), гиперболический арккосинус acosh(x),
гиперболический арктангенс atanh(x), гиперболический арккотангенс acoth(x) -
другие тригонометрические и гиперболические функции:
секанс sec(x), косеканс csc(x), арксеканс asec(x),
арккосеканс acsc(x), гиперболический секанс sech(x),
гиперболический косеканс csch(x), гиперболический арксеканс asech(x),
гиперболический арккосеканс acsch(x) -
функции округления:
в меньшую сторону floor(x), в большую сторону ceiling(x) -
знак числа:
sign(x) -
для теории вероятности:
функция ошибок erf(x) (интеграл вероятности),
функция Лапласа laplace(x) -
Факториал от x:
x! или factorial(x) - Гамма-функция gamma(x)
- Функция Ламберта LambertW(x)
-
Тригонометрические интегралы: Si(x),
Ci(x),
Shi(x),
Chi(x)
Правила ввода
Можно делать следующие операции
- 2*x
- — умножение
- 3/x
- — деление
- x^2
- — возведение в квадрат
- x^3
- — возведение в куб
- x^5
- — возведение в степень
- x + 7
- — сложение
- x — 6
- — вычитание
- Действительные числа
- вводить в виде 7.5, не 7,5
Постоянные
- pi
- — число Пи
- e
- — основание натурального логарифма
- i
- — комплексное число
- oo
- — символ бесконечности
Исследовать функцию онлайн и построить ее график.
С помощью данных калькуляторов можно по шагам провести исследование функции онлайн, и построить график функции онлайн с асимптотами.
Для этого скопируйте исследуемую функцию в каждый калькулятор, как показано в примере, и получите ответ. Если что пишите в комментариях
1. Находим область определения функции.
2. Выясняем, не является ли функция:
а) четной, нечетной • Функции, не являющиеся ни четными, ни нечетными (neither even nor odd), называются функциями общего вида.
б) периодической
3. Находим точки пересечения графика функции с осями координат и интервалы знакопостоянства функции.
Для того, чтобы найти точки пересечения с осью Ох выбираем знак «=», для нахождения интервалов на которых функция положительна — зак «>», для интервалов на которых функция отрицательна — знак «<«.
4. Находим вертикальные, наклонные, горизонтальные асимптоты графика функции.
5. Находим точки экстремума
6. Найти точки перегиба графика функции и интервалы его выпуклости и вогнутости.
7. Построить график функции, используя все полученные результаты исследования.
143,486 total views, 13 views today