Как найти пересечение треугольников на чертеже

Построение линии пересечения двух треугольников.

Построить линию пересечения треугольников ABC и EDK и показать видимость их в проекциях.
Определить натуральную величину треугольника ABC.

1. Строим проекции треугольника АВС.

Рисунок 1. Построение проекций треугольника АВС

2. Строим проекции треугольника EDK.

Рисунок 2. Построение проекций треугольника EDK

3. Находим точку пересечения стороны АС с треугольником EDK

 Рисунок 3. Точка пересечения отрезка АС с треугольником EDK

4. Находим точку пересечения стороны АB с треугольником EDKи строим линию пересечения MN

Построение линии пересечения двух треугольников

5. С помощью конкурирующих точек 4 и 5 определяем видимость треугольников на фронтальной плоскости проекций.

Рисунок 5. Видимость треугольников на фронтальной плоскости проекций.

6. С помощью конкурирующих точек 6 и 7 определяем видимость треугольников на горизонтальной плоскости проекций.

Рисунок 5. Видимость треугольников на горизонтальной плоскости проекций.

7. В треугольнике ABCпроводим горизонталь CLи плоскопараллельным перемещением относительно горизонтальной плоскости проекций располагаем горизонталь перпендикулярно фронтальной плоскости проекций.

Строим фронтальную проекцию треугольника ABC. Треугольник должен проецироваться в прямую линию.

Рисунок 7. Пересечение двух плоскостей. Определение натуральной величины треугольника АВС

8. Определяем действительную величину треугольника ABCи строим на нем линию пересечения MN.

Рисунок 8. Определение натуральной величины треугольника ABC

9. Оформление задачи.

Построение линии пересечения двух треугольников. Готовый чертеж.

№ вар. ХА YА ZА ХB YB ZB ХC YC ZC ХD YD ZD ХE YE ZE ХK YK ZK Цена В корзину № вар.
1 117 90 9 52 25 79 0 83 48 68 110 85 135 19 36 14 52 0 50 руб. в корзину 1
2 120 90 10 50 25 80 0 85 50 70 110 85 135 20 35 15 50 0 50 руб. в корзину 2
3 115 90 10 52 25 80 0 80 45 64 105 80 130 18 35 12 50 0 50 руб. в корзину 3
4 120 92 10 50 20 75 0 80 46 70 115 85 135 20 32 10 50 0 50 руб. в корзину 4
5 117 9 90 52 79 25 0 48 83 68 85 110 135 36 19 14 0 52 50 руб. в корзину 5
6 115 7 85 50 80 25 0 50 85 70 85 110 135 20 20 15 0 50 50 руб. в корзину 6
7 120 10 90 48 82 20 0 52 82 65 80 110 130 38 20 15 0 52 50 руб. в корзину 7
8 116 8 88 50 78 25 0 46 80 70 85 108 135 36 20 15 0 52 50 руб. в корзину 8
9 115 10 92 50 80 25 0 50 85 70 85 110 135 35 20 15 0 50 50 руб. в корзину 9
10 18 10 90 83 79 25 135 48 82 67 85 110 0 36 19 121 0 52 50 руб. в корзину 10
11 20 12 92 85 89 25 135 50 85 70 85 110 0 35 20 120 0 52 50 руб. в корзину 11
12 15 10 85 80 80 20 130 50 80 70 80 108 0 35 20 120 0 50 50 руб. в корзину 12
13 16 12 88 85 80 25 130 50 80 75 85 110 0 30 15 120 0 50 50 руб. в корзину 13
14 18 12 85 85 80 25 135 50 80 70 85 110 0 35 20 120 0 50 50 руб. в корзину 14
15 18 90 10 83 25 79 135 83 48 67 110 85 0 19 36 121 52 0 50 руб. в корзину 15
16 18 40 75 83 117 6 135 47 38 67 20 0 0 111 48 121 78 86 50 руб. в корзину 16
17 18 75 40 83 6 107 135 38 47 67 0 20 0 48 111 121 86 78 50 руб. в корзину 17
18 117 75 40 52 6 107 0 38 47 135 0 20 86 48 111 15 68 78 50 руб. в корзину 18

Начертательная геометрия решение задач

Начертательная геометрия 1 курс готовые чертежи по вариантам

Добавить комментарий

Точки пересечения треугольников определяются в следующем порядке:

1.) Согласно заданию строятся точки по координатам.

Точки пересечения треугольников

2.) Теперь важным шагом является определение плоскости относительно которой будем искать точки пересечения треугольников.

Вы можете сказать: «можно найти точки относительно плоскости АВС», но нет. Почему!? Я объясню, посмотрев на рисунок, расположенный внизу, можно увидеть что треугольник D2E2F2, а точнее две стороны пересекают треугольник А2В2С2 в четырех точках, соответственно используем треугольник D2E2F2,как опорную плоскость. 

  • Сторона D2E2 пересекает плоскость А2В2С2 в точках 12 и 22, эти точки переносим на нижнее изображение: на стороны относительно которых они были найдены и обозначаем 11 и 21.
  • Точки 11 и 21 соединяются.
  • Прямая 1121 пересекает сторону D1E1 в точке, обозначим Р1 (первая точка найдена).

Точки пересечения треугольников_2

3.) Сторона E2F2 пересекает стороны B2C2 и A2C2 в точках 42 и 32. Опускаем их на нижний рисунок и обозначаем 41 и 31.

Точки пересечения треугольников_3

4.) Соединяются точки 31 и 41.

Точки пересечения треугольников_4

5.) Продливается прямая 3141 до пересечения с отрезком E1F1. В месте пересечения ставим точку и обозначаем Н.

Точки пересечения треугольников_5

6.) Точки P1 и H соединяются. Полученная прямая P1H пересекает отрезок А2С2 в точке K1 (найдена вторая точка).

Точки пересечения треугольников_6

7.) Переносятся точки P1 и K1, расположенные на отрезках D1E1 и E1F1, на отрезки D2E2 и E2F2. И обозначаются P2 и K2.

Точки пересечения треугольников_7

8.) Соединяются P2 и K2.

Точки пересечения треугольников_8

9.) А теперь главный момент: указать видимые и невидимые стороны.

Посмотрите на рисунок снизу. На нем точки D, F, B, C и E находятся в двух проекциях «свободно», но не точка A. Соответственно, относительно ее и необходимо начинать чертить линии.

Точки пересечения треугольников_9

Пример выполненной работы на эту тему смотрите здесь.

Немного добавлю по этой статье: «Точки пересечения треугольников»

По своему опыту скажу: «чтобы начертить подобный чертеж, необходимо обладать пространственным воображением» и понимать, относительно какой плоскости отталкиваться для решения подобной задачи. Но благодаря этой статьи надеюсь у Вас получится разобраться с темой: пересечение плоских фигур.

Просмотрели 405


Как найти видимость треугольников

Построить линию пересечения треугольников ABC и EDK и показать видимость их в проекциях.
Определить натуральную величину треугольника ABC.

1. Строим проекции треугольника АВС.

2. Строим проекции треугольника EDK.

3. Находим точку пересечения стороны АС с треугольником EDK

4. Находим точку пересечения стороны А B с треугольником EDK и строим линию пересечения MN

5. С помощью конкурирующих точек 4 и 5 определяем видимость треугольников на фронтальной плоскости проекций.

6. С помощью конкурирующих точек 6 и 7 определяем видимость треугольников на горизонтальной плоскости проекций.

7. В треугольнике ABC проводим горизонталь CL и плоскопараллельным перемещением относительно горизонтальной плоскости проекций располагаем горизонталь перпендикулярно фронтальной плоскости проекций.

Строим фронтальную проекцию треугольника ABC . Треугольник должен проецироваться в прямую линию.

8. Определяем действительную величину треугольника ABC и строим на нем линию пересечения MN.

Определение видимости на чертеже.

В начертательной геометрии плоскости считаются непрозрачными, поэтому необходимо на проекциях определить видимость.

Для определения видимости на чертеже используем метод конкурирующих точек, сущность которого заключается в выборе двух скрещивающихся прямых.

Для определения видимости на фронтальной плоскости проекций V поступают так. Выбираем две скрещивающиеся прямые В²С² и М²N², фронтальные проекции которых пересекаются в точках 1 и 3. По горизонтальной проекции определяем, что проекция точки 3¢, лежащая на проекции прямой M¢N¢, будет закрывать проекцию точки 1¢, лежащую на проекции прямой В¢С¢, т. к она будет ближе к наблюдателю. На чертеже направление взгляда наблюдателя показано стрелкой. Следовательно, на фронтальной плоскости проекций проекция М²N² будет закрывать проекцию В²С². Границей видимости является проекция точки пересечения К².

Для определения видимости на горизонтальной плоскости проекций Н выбираем две скрещивающиеся прямые А¢С¢ и M¢N¢, горизонтальные проекции которых пересекаются в точках 4¢ и 5¢. По фронтальной проекции определяем, что проекция точки 5², лежащая на проекции прямой М²N², будет закрывать проекцию точки 4², лежащую на проекции прямой А²С², т. к. она будет ближе к наблюдателю. На чертеже направление взгляда наблюдателя показано стрелкой. Следовательно, на горизонтальной плоскости проекций проекция M¢N¢ будет закрывать проекцию А¢С¢. Границей видимости является проекция точки пересечения К¢.

Задача 3. Построение линии пересечения двух плоскостей, одна из которых занимает частное положение.

Даны две плоскости: плоскость ∆АВС – плоскость общего положения, плоскость ∆DЕК – плоскость частного положения, которая расположена перпендикулярно фронтальной плоскости проекций (рис. 3).

Рис. 3. Построение линии пересечения двух плоскостей, одна из которых занимает
частное положение

Фронтальная проекция ∆DЕК совпадает с фронтальным следом плоскости и фронтальной проекцией линии пересечения треугольников.

(KL) ‑ линия пересечения двух треугольников. Проекции этой линии пересечения – фронтальную и горизонтальную строят исходя из свойства принадлежности точек K и L сторонам (АВ) и (ВС), соответственно. Видимость треугольников на горизонтальной плоскости проекций определяем методом конкурирующих точек, рассмотренном в задаче 2.

Задача 4. Построение линии пересечения двух плоскостей общего положения.

Даны две плоскости общего положения, заданные треугольниками АВС и DЕК. Построить линию пересечения двух треугольников, определить видимость треугольников на проекциях.

Прямая линия, получаемая при взаимном пересечении двух плоскостей, определяется двумя точками, каждая из которых одновременно принадлежит обеим плоскостям. Общие точки определяются решением основной позиционной задачи начертательной геометрии – построение точки пересечения прямой с плоскостью (см. рис. 2).

Для решения данной задачи проводят вспомогательные плоскости-посредники частного положения (проецирующие плоскости). Решение задачи приведено на рис. 4.

Алгоритм решения задачи:

1. Определяют первую точку линии пересечения двух треугольников – точку М.

1.1. Фронтально-проецирующая плоскость a проведена через сторону и задана на чертеже фронтальным следом aV.

1.2. Плоскость a пересекает плоскость треугольника АВС по прямой (1,2), на чертеже строят две проекции этой прямой.

1.3. Прямая (1,2) пересекает сторону в точке М, строят две проекции точки М² и М¢.

2. Определяют вторую точку искомой линии пересечения двух треугольников – точку N.

2.1. Горизонтально-проецирующая плоскость b проведена через сторону АВ и задана на чертеже горизонтальным следом bН.

2.2. Плоскость b пересекает плоскость треугольника DЕК по прямой (3,4), на чертеже строят две проекции этой прямой.

2.3. Прямая (3,4) пересекает АВ в точке N, строят две проекции точки N² и N¢.

Плоскости треугольников АВС и DЕК пересекаются по прямой MN.

Рис. 4. Построение линии пересечения двух треугольников

3. Видимость плоских фигур на проекциях определяют методом конкурирующих точек.

Для определения видимости на фронтальной плоскости проекций V выбираем две скрещивающиеся прямые D²K² и A²B², фронтальные проекции которых пересекаются в точках 1² и 5². По горизонтальной проекции определяем, что проекция точки 5¢, лежащая на проекции прямой D¢K¢, будет закрывать проекцию точки 1¢, лежащую на проекции прямой А¢В¢, т. к. она будет ближе к наблюдателю. Следовательно, на фронтальной плоскости проекция D²K² будет закрывать проекцию A²B². Границей видимости является проекция линии пересечения M²N².

Для определения видимости на горизонтальной плоскости проекций Н выбираем две скрещивающиеся прямые А¢В¢ и D¢Е¢, горизонтальные проекции которых пересекаются в точках 3¢ и 6¢. По фронтальной проекции определяем, что проекция точки 3², лежащая на проекции прямой D²Е², будет закрывать проекцию точки 6², лежащую на проекции прямой A²B², т.к. она будет ближе к наблюдателю. Следовательно, на горизонтальной плоскости проекция D¢Е¢ будет закрывать проекцию А¢В¢. Границей видимости является проекция линии пересечения N¢M¢.

Задача 5. Построить две проекции линии пересечения плоскости a ‑ общего положения, заданной следами и плоскости b ‑ общего положения, заданной параллельными прямыми а и b.

Для решения данной задачи проводят вспомогательные плоскости-посредники частного положения (плоскости уровня), пересекающие заданные плоскости по прямым, недостающие проекции которых легко строятся и пересекаются в пределах чертежа.

Графическое решение задачи приведено на рис. 5.

Рис. 5. Построение линии пересечения двух плоскостей

Вспомогательная горизонтальная плоскость-посредник γ задана следом γV и пересекает плоскость a по горизонтали, проходящей через точку 3, а плоскость b по горизонтали (1, 2). Горизонтальные проекции этих горизонталей пересекаются в точке К. Строят фронтальную проекцию точки К, используя свойство принадлежности точки прямой линии. Точка К принадлежит обеим плоскостям a и b. Вторая точка N, общая для двух плоскостей a и b, определяется второй вспомогательной плоскостью-посредником частного положения δ (на чертеже задана следом δV). Искомая прямая (КN) является линией пересечения двух плоскостей a и b.

ПРИЛОЖЕНИЕ 1

СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ

1. Гордон В.О., Семенцов-Огиевский М. А. Курс начертательной геометрии. Учеб. пособие. М.: Высшая школа. 2007.272 с.

2. Самохвалов Ю. И. Начертательная геометрия. Учебное пособие. Екатеринбург: Изд-во УГГУ. 2011. 121 с.

3. Самохвалов Ю. И., Шангина Е. И. Начертательная геометрия. Инженерная графика. Учебно-методическое пособие. Екатеринбург: Изд-во УГГУ. 2011. 96 с.

Определение видимости в начертательной геометрии с примерами

Определение видимости:

Точки, расположенные на одной проецирующей прямой, называются конкурирующими.

Точки, расположенные на одной горизонтально-проецирующей прямой, называются конкурирующими относительно горизонтальной плоскости проекций. Из двух точек A и B (рис. 7.1,а), конкурирующих на горизонтальной проекций, видима та, высота которой больше (B-видима, A-плоскости невидима).

Рис. 7.1. Конкурирующие точки:
а — относительно горизонтальной плоскости проекций;
б — относительно фронтальной плоскости проекций

Точки, расположенные на одной фронтально-проецирующей прямой, называются конкурирующими относительно фронтальной плоскости проекций. Из двух точек C и D (рис. 7.1,б), конкурирующих относительно фронтальной плоскости проекций, видима та точка, у которой больше глубина (C- видима, D — невидима).

Рассмотрим определение видимости на комплексном чертеже на примере тетраэдра (рис. 7.2).

Рис. 6.17. Определение видимости ребер тетраэдра на комплексном чертеже:
а — относительно горизонтальной плоскости проекций;
б — относительно фронтальной плоскости проекций

Для определения видимости на горизонтальной плоскости проекций нужно найти точки, конкурирующие относительно П1 (рис. 7.2,а). Ребра SA, SC, AB и BC являются очерковыми, следовательно, видимыми. Остается выяснить видимость ребер AC и SB. Точки 1 ∈ SB и 2 ∈ACявляются конкурирующими на П1, поскольку находятся на горизонтально-проецирующем луче. Фронтальная проекция точки 1 лежит выше (высота точки 1 больше), поэтому она видима на П1, следовательно, видимо и реброSB, а ребро AC невидимо. Если хотя бы одно ребро грани невидимо, вся грань ABCневидима на П1.

Видимость на фронтальной проекции (рис. 7.2,б) определяется с помощью конкурирующих точек 3 ∈ SCи 4 ∈AB. Горизонтальная проекция точки 3 лежит ниже (глубина точки 3 больше), следовательно, точка 3 и ребро SCна фронтальной плоскости проекции видимы, а точка 4, ребро AB и грань ASB невидимы на П2.

Рекомендую подробно изучить предметы:
  1. Инженерная графика
  2. Начертательная геометрия
  3. Компас
  4. Автокад
  5. Черчение
  6. Проекционное черчение
  7. Аксонометрическое черчение
  8. Строительное черчение
  9. Техническое черчение
  10. Геометрическое черчение
Ещё лекции с примерами решения и объяснением:
  • Конструктивное отображение пространства
  • Чертежи точки, отрезка прямой
  • Чертежи плоскости
  • Взаимное положение двух плоскостей, прямой линии и плоскости
  • Пересечение поверхностей вращения плоскостью
  • Виды, разрезы, сечения
  • Геометрические тела
  • Комплексный чертеж

При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org

Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи

Сайт пишется, поддерживается и управляется коллективом преподавателей

Whatsapp и логотип whatsapp являются товарными знаками корпорации WhatsApp LLC.

Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.

Определение видимости в начертательной геометрии с примерами

Определение видимости:

Точки, расположенные на одной проецирующей прямой, называются конкурирующими.

Точки, расположенные на одной горизонтально-проецирующей прямой, называются конкурирующими относительно горизонтальной плоскости проекций. Из двух точек A и B (рис. 7.1,а), конкурирующих на горизонтальной проекций, видима та, высота которой больше (B-видима, A-плоскости невидима).

Рис. 7.1. Конкурирующие точки:
а — относительно горизонтальной плоскости проекций;
б — относительно фронтальной плоскости проекций

Точки, расположенные на одной фронтально-проецирующей прямой, называются конкурирующими относительно фронтальной плоскости проекций. Из двух точек C и D (рис. 7.1,б), конкурирующих относительно фронтальной плоскости проекций, видима та точка, у которой больше глубина (C- видима, D — невидима).

Рассмотрим определение видимости на комплексном чертеже на примере тетраэдра (рис. 7.2).

Рис. 6.17. Определение видимости ребер тетраэдра на комплексном чертеже:
а — относительно горизонтальной плоскости проекций;
б — относительно фронтальной плоскости проекций

Для определения видимости на горизонтальной плоскости проекций нужно найти точки, конкурирующие относительно П1 (рис. 7.2,а). Ребра SA, SC, AB и BC являются очерковыми, следовательно, видимыми. Остается выяснить видимость ребер AC и SB. Точки 1 ∈ SB и 2 ∈ACявляются конкурирующими на П1, поскольку находятся на горизонтально-проецирующем луче. Фронтальная проекция точки 1 лежит выше (высота точки 1 больше), поэтому она видима на П1, следовательно, видимо и реброSB, а ребро AC невидимо. Если хотя бы одно ребро грани невидимо, вся грань ABCневидима на П1.

Видимость на фронтальной проекции (рис. 7.2,б) определяется с помощью конкурирующих точек 3 ∈ SCи 4 ∈AB. Горизонтальная проекция точки 3 лежит ниже (глубина точки 3 больше), следовательно, точка 3 и ребро SCна фронтальной плоскости проекции видимы, а точка 4, ребро AB и грань ASB невидимы на П2.

Рекомендую подробно изучить предметы:
  1. Инженерная графика
  2. Начертательная геометрия
  3. Компас
  4. Автокад
  5. Черчение
  6. Проекционное черчение
  7. Аксонометрическое черчение
  8. Строительное черчение
  9. Техническое черчение
  10. Геометрическое черчение
Ещё лекции с примерами решения и объяснением:
  • Конструктивное отображение пространства
  • Чертежи точки, отрезка прямой
  • Чертежи плоскости
  • Взаимное положение двух плоскостей, прямой линии и плоскости
  • Пересечение поверхностей вращения плоскостью
  • Виды, разрезы, сечения
  • Геометрические тела
  • Комплексный чертеж

При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org

Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи

Сайт пишется, поддерживается и управляется коллективом преподавателей

Whatsapp и логотип whatsapp являются товарными знаками корпорации WhatsApp LLC.

Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.

Построить линию пересечения треугольников ABC и EDK и показать видимость их в проекциях.
Определить натуральную величину треугольника ABC.

1. Строим проекции треугольника АВС.

2. Строим проекции треугольника EDK.

3. Находим точку пересечения стороны АС с треугольником EDK

4. Находим точку пересечения стороны А B с треугольником EDK и строим линию пересечения MN

5. С помощью конкурирующих точек 4 и 5 определяем видимость треугольников на фронтальной плоскости проекций.

6. С помощью конкурирующих точек 6 и 7 определяем видимость треугольников на горизонтальной плоскости проекций.

7. В треугольнике ABC проводим горизонталь CL и плоскопараллельным перемещением относительно горизонтальной плоскости проекций располагаем горизонталь перпендикулярно фронтальной плоскости проекций.

Строим фронтальную проекцию треугольника ABC . Треугольник должен проецироваться в прямую линию.

8. Определяем действительную величину треугольника ABC и строим на нем линию пересечения MN.

источники:

http://www.evkova.org/-opredelenie-vidimosti

http://student-com.ru/%D0%BF%D0%BE%D1%81%D1%82%D1%80%D0%BE%D0%B5%D0%BD%D0%B8%D0%B5-%D0%BB%D0%B8%D0%BD%D0%B8%D0%B8-%D0%BF%D0%B5%D1%80%D0%B5%D1%81%D0%B5%D1%87%D0%B5%D0%BD%D0%B8%D1%8F-%D0%B4%D0%B2%D1%83%D1%85-%D1%82%D1%80%D0%B5%D1%83%D0%B3%D0%BE%D0%BB%D1%8C%D0%BD%D0%B8%D0%BA%D0%BE%D0%B2.html

Содержание

  1. Чертежик
  2. Метки
  3. Точки пересечения треугольников пошаговое выполнение
  4. Немного добавлю по этой статье: «Точки пересечения треугольников»
  5. Построить линию пересечения треугольников ABC и EDK и показать видимость их в проекциях. Определить натуральную величину треугольника ABC.
  6. Построение линии пересечения плоскостей, заданных различными способами
  7. Пересечение плоскостей, заданных следами
  8. Пересечение плоскостей треугольников
  9. Чертежик
  10. Метки
  11. Линия пересечения плоскостей двух треугольников

Чертежик

Метки

Точки пересечения треугольников пошаговое выполнение

Точки пересечения треугольников определяются в следующем порядке:

1.) Согласно заданию строятся точки по координатам.

2.) Теперь важным шагом является определение плоскости относительно которой будем искать точки пересечения треугольников.

Вы можете сказать: «можно найти точки относительно плоскости АВС», но нет. Почему!? Я объясню, посмотрев на рисунок, расположенный внизу, можно увидеть что треугольник D2E2F2, а точнее две стороны пересекают треугольник А2В2С2 в четырех точках, соответственно используем треугольник D2E2F2,как опорную плоскость.

  • Сторона D2E2 пересекает плоскость А2В2С2 в точках 1 2 и 2 2, эти точки переносим на нижнее изображение: на стороны относительно которых они были найдены и обозначаем 1 1 и 2 1.
  • Точки 1 1 и 2 1 соединяются.
  • Прямая 1 1 2 1 пересекает сторону D1E1 в точке, обозначим Р1 (первая точка найдена).

3.) Сторона E2F2 пересекает стороны B2C2 и A2C2 в точках 4 2 и 3 2. Опускаем их на нижний рисунок и обозначаем 4 1 и 3 1.

4.) Соединяются точки 3 1 и 4 1.

5.) Продливается прямая 3 1 4 1 до пересечения с отрезком E1F1. В месте пересечения ставим точку и обозначаем Н.

6.) Точки P1 и H соединяются. Полученная прямая P1H пересекает отрезок А2С2 в точке K1 (найдена вторая точка).

7.) Переносятся точки P1 и K1, расположенные на отрезках D1E1 и E1F1, на отрезки D2E2 и E2F2. И обозначаются P2 и K2.

8.) Соединяются P2 и K2.

9.) А теперь главный момент: указать видимые и невидимые стороны.

Посмотрите на рисунок снизу. На нем точки D, F, B, C и E находятся в двух проекциях «свободно», но не точка A. Соответственно, относительно ее и необходимо начинать чертить линии.

Пример выполненной работы на эту тему смотрите здесь.

Немного добавлю по этой статье: «Точки пересечения треугольников»

По своему опыту скажу: «чтобы начертить подобный чертеж, необходимо обладать пространственным воображением» и понимать, относительно какой плоскости отталкиваться для решения подобной задачи. Но благодаря этой статьи надеюсь у Вас получится разобраться с темой: пересечение плоских фигур.

Источник

Построить линию пересечения треугольников ABC и EDK и показать видимость их в проекциях.
Определить натуральную величину треугольника ABC.

1. Строим проекции треугольника АВС.

2. Строим проекции треугольника EDK.

3. Находим точку пересечения стороны АС с треугольником EDK

4. Находим точку пересечения стороны А B с треугольником EDK и строим линию пересечения MN

5. С помощью конкурирующих точек 4 и 5 определяем видимость треугольников на фронтальной плоскости проекций.

6. С помощью конкурирующих точек 6 и 7 определяем видимость треугольников на горизонтальной плоскости проекций.

7. В треугольнике ABC проводим горизонталь CL и плоскопараллельным перемещением относительно горизонтальной плоскости проекций располагаем горизонталь перпендикулярно фронтальной плоскости проекций.

Строим фронтальную проекцию треугольника ABC . Треугольник должен проецироваться в прямую линию.

8. Определяем действительную величину треугольника ABC и строим на нем линию пересечения MN.

Источник

Построение линии пересечения плоскостей, заданных различными способами

Две плоскости пересекаются друг с другом по прямой линии. Чтобы её построить, необходимо определить две точки, принадлежащие одновременно каждой из заданных плоскостей. Рассмотрим, как это делается, на следующих примерах.

Найдем линию пересечения плоскостей общего положения α и β для случая, когда пл. α задана проекциями треугольника ABC, а пл. β – параллельными прямыми d и e. Решение этой задачи осуществляется путем построения точек L1 и L2, принадлежащих линии пересечения.

  1. Вводим вспомогательную горизонтальную плоскость γ1. Она пересекает α и β по прямым. Фронтальные проекции этих прямых, 1»C» и 2»3», совпадают с фронтальным следом пл. γ1. Он обозначен на рисунке как f0γ1 и расположен параллельно оси x.
  2. Определяем горизонтальные проекции 1’C’ и 2’3′ по линиям связи.
  3. Находим горизонтальную проекцию точки L1 на пересечении прямых 1’C’ и 2’3′. Фронтальная проекция точки L1 лежит на фронтальном следе плоскости γ.
  4. Вводим вспомогательную горизонтальную плоскость γ2. С помощью построений, аналогичных описанным в пунктах 1, 2, 3, находим проекции точки L2.
  5. Через L1 и L2 проводим искомую прямую l.

Стоит отметить, что в качестве пл. γ удобно использовать как плоскости уровня, так и проецирующие плоскости.

Пересечение плоскостей, заданных следами

Найдем линию пересечения плоскостей α и β, заданных следами. Эта задача значительно проще предыдущей. Она не требует введения вспомогательных плоскостей. Их роль выполняют плоскости проекций П1 и П2.

  1. Находим точку L’1, расположенную на пересечении горизонтальных следов h0α и h0β. Точка L»1 лежит на оси x. Её положение определяется при помощи линии связи, проведенной из L’1.
  2. Находим точку L»2 на пересечении фронтальных следов пл. α и β. Точка L’2 лежит на оси x. Её положение определяется по линии связи, проведенной из L»2.
  3. Проводим прямые l’ и l» через соответствующие проекции точек L1 и L2, как это показано на рисунке.

Таким образом, прямая l, проходящая через точки пересечения следов плоскостей, является искомой.

Пересечение плоскостей треугольников

Рассмотрим построение линии пересечения плоскостей, заданных треугольниками ABC и DEF, и определение их видимости методом конкурирующих точек.

  1. Через прямую DE проводим фронтально-проецирующую плоскость σ: на чертеже обозначен ее след f. Плоскость σ пересекает треугольник ABC по прямой 35. Отметив точки 3»=A»B»∩f и 5»=A»С»∩f, определяем положение (∙)3′ и (∙)5′ по линиям связи на ΔA’B’C’.
  2. Находим горизонтальную проекцию N’=D’E’∩3’5′ точки N пересечения прямых DE и 35, которые лежат во вспомогательной плоскости σ. Проекция N» расположена на фронтальном следе f на одной линии связи с N’.

Через прямую BC проводим фронтально-проецирующую плоскость τ: на чертеже обозначен ее след f. С помощью построений, аналогичных тем, что описаны в пунктах 1 и 2 алгоритма, находим проекции точки K.

  • Через N и K проводим искомую прямую NK – линию пересечения ΔABC и ΔDEF.
  • Фронтально-конкурирующие точки 4 и 5, принадлежащие ΔDEF и ΔABC соответственно, находятся на одной фронтально-проецирующей прямой, но расположены на разном удалении от плоскости проекций π2. Так как (∙)5′ находится ближе к наблюдателю, чем (∙)4′, то отсек ΔABC с принадлежащей ему (∙)5 является видимым в проекции на пл. π2. С противоположной стороны от линии N»K» видимость треугольников меняется.

    Горизонтально-конкурирующие точки 6 и 7, принадлежащие ΔABC и ΔDEF соответственно, находятся на одной горизонтально-проецирующей прямой, но расположены на разном удалении от плоскости проекций π1. Так как (∙)6» находится выше, чем (∙)7», то отсек ΔABC с принадлежащей ему (∙)6 является видимым в проекции на пл. π1. С противоположной стороны от линии N’K’ видимость треугольников меняется.

    Источник

    Чертежик

    Метки

    Линия пересечения плоскостей двух треугольников

    Линия пересечения плоскостей двух треугольников начинают с построения точек по координатам. (на рисунке 1 представлены построенные плоскости)

    1. Построение по координатам.

    2. Выбираете какая из сторон плоскостей будет секущей . В данном случае возьмем Е2D2 ,принадлежащая плоскости Е2D2F2, которая пересекает плоскость А2В2С2 в точка 12 и 22.

    Полученные точки, проецируют на стороны плоскости, которым они принадлежат, т.е С1В1 и А1В1.

    Т.к. секущей является ЕD, то необходимо чтобы прямая 1121 пересекла секущую. В данном случае в точке К1.(Первая точка найдена)

    3. Одной точки мало будет. Повторим действия, описанные в пункте 2, но с отрезком E2F2.

    E2F2 пересекает А2В2С2 в точках 32 и 42. Проецируете на стороны А1С1 и А1В1.

    Т.к. секущей является EF, то необходимо чтобы прямая 3141 пересекла секущую, но такого нет (не хватает немного отрезка). Для этого прямая 3141 продливается пока не пересечется с E1F1. Обозначаете точку (обозначил Н1).(Но Н1 не является точкой пересечения, потому как на виде сверху принадлежит только одной плости)

    4. Соединяются точки К1 и Н1. Ближайшая точка, принадлежащая этой прямой и двум плоскостям, находится на стороне А1В1 плоскости А1В1С1, обозначаем Р1. (Вторая точка найдена)

    5. Найденные точки необходимо спроецировать на стороны плоскости, которым они принадлежат.

    5. Обводите соответсвующими линиями контуры плоскостей, воспользовавшись методом конкурирующих точек.

    Источник

    Содержание:

    Позиционными задачами называются задачи на построение элементов, общих для взаимодействующих объектов, и задачи на взаимное положение геометрических объектов. Первая группа задач включает задачи на принадлежность и задачи на пересечение. Ко второй группе задач относятся задачи на параллельность геометрических объектов.

    Задачи на перпендикулярность объектов относят к метрическим задачам, которые будут рассмотрены в следующем разделе. Позиционные задачи, в которых участвуют поверхности, будут рассмотрены в главе «Поверхности».

    Классификация позиционных задач, относящихся к элементарным геометрическим объектам (точка, прямая, плоскость), представлена на рисунке 4.1. Позиционные задачи в начертательной геометрии с примерами

    Позиционные задачи

    Задачи, связанные с определением взаимного расположения геометрических объектов в пространстве, традиционно называют позиционными.

    Поскольку Начертательная геометрия изучает объекты расширенного Евклидова пространства Позиционные задачи в начертательной геометрии с примерами

    В линейной алгебре утверждается, что для всех объектов пространства справедливо выражение (в соответствии с рисунком 4.1)
    Позиционные задачи в начертательной геометрии с примерами
    где N— размерность рассматриваемого пространства,

    Позиционные задачи в начертательной геометрии с примерами— размерность объектов этого пространства, р — размерность пересечения этих объектов.

    Позиционные задачи в начертательной геометрии с примерами

    Очевидно, все позиционные задачи, с точки зрения линейной алгебры, можно свести к определению вида и размерности пересечения.

    Полагая, что рассматриваемое
    пространство трехмерно, при вычислении размерности пересечения исходное выражение примет видПозиционные задачи в начертательной геометрии с примерами

    Заметим, что этот подход позволяет определить только и только размерность
    Рассмотрим вопрос о принадлежности точки прямой, точки и прямой -плоскости. Особенность решения этих вопросов заключается в том, что прямая и точка на чертеже задаются проекциями, а плоскость — соответствием трех пар точек.

    Задачи на принадлежность

    Эта группа задач содержит три типовые задачи — точка принадлежит прямой, точка принадлежит плоскости, прямая принадлежит плоскости, суть решения которых основана на свойствах проецирования. Если точка принадлежит прямой, то проекции этой точки принадлежат одноименным проекциям прямой. Позиционные задачи в начертательной геометрии с примерами

    Точка принадлежит плоскости, если она принадлежит прямой, находящейся в этой плоскости (рисунок 4.2а). Прямая принадлежит плоскости, если она проходит через две точки, принадлежащих плоскости. Поэтому для того, чтобы указать в плоскости какую-либо точку, необходимо сначала указать в плоскости прямую, а затем на этой прямой указать положение точки.

    Позиционные задачи в начертательной геометрии с примерами

    На рисунках 4.3 показано построение прямой в плоскостях, заданных треугольником и следами. Если плоскость задана треугольником, то целесообразно упомянутые точки взять на сторонах треугольника. Если плоскость задана следами, то в качестве двух точек целесообразно взять следы прямой. Это основано на следующем свойстве: если плоскость задана следами и в ней находится прямая, то следы прямой лежат на одноименных следах плоскости.

    На рисунке 4.4 представлено построение точек в плоскости, заданной следами и точки в плоскости, заданной треугольником. В первом случае точка А построена с помощью горизонтали. На этом же рисунке показано построение точек (К и L), находящихся на следах плоскости. Во втором случае точка К построена с помощью прямой 1-2. Позиционные задачи в начертательной геометрии с примерами

    С рассматриваемым вопросом тесно связан вопрос о проведении плоскости частного положения (например, проецирующих плоскостей) через прямую.

    Если прямая принадлежит плоскости частного положения и плоскость задается следами, то одна из проекций прямой будет совпадать с собирательным следом плоскости в соответствие с рисунком 4.5.

    На рисунке 4.6 в эпюрной форме показано проведение через прямую фронтально проецирующей плоскости а и горизонтально проецирующей плоскости Позиционные задачи в начертательной геометрии с примерами

    Позиционные задачи в начертательной геометрии с примерами

    Задачи на пересечение

    Задача на пересечение двух прямых рассмотрена ранее в разделе «Пересекающиеся прямые».

    Наиболее важной позиционной задачей является задача о пересечении прямой с плоскостью. При решении задачи могут встретиться следующие случаи пересечения:

    1. Прямая общего положения пересекается с плоскостью частного положения;
    2. Прямая частного положения (например, проецирующая) пересекается с плоскостью общего положения;
    3. Прямая общего положения пересекается с плоскостью общего положения.

    Решение первых двух задач не представляет особых трудностей (рисунок 4.7). На рисунке 4.7а дано построение точки встречи прямой общего положения с горизонтально-проецирующей плоскостью, а на рисунке 4.76 — горизонтально-проецирующей прямой с плоскостью общего положения. Последняя задача решена с помощью вспомогательной прямой 1-2. Позиционные задачи в начертательной геометрии с примерами

    Для решения задачи о пересечении прямой с плоскостью в общем положении разработана следующая методика (рисунок 4.8а):

    1. Через прямую проводят вспомогательную плоскость частного положения Позиционные задачи в начертательной геометрии с примерами(чаще всего проецирующую плоскость, заданную следами);
    2. Находят линию пересечения заданной а и вспомогательной плоскостей Позиционные задачи в начертательной геометрии с примерами(линия 1-2);
    3. Находят точку пересечения заданной прямой и найденной линии пересечения плоскостей. Полученная точка К — искомая.

    Позиционные задачи в начертательной геометрии с примерами

    Рисунок 4.8 — Пересечение прямой общего положения с плоскостью общего положения

    На рисунке 4.86 дана пространственная схема решения задачи, в которой прямая пересекается с плоскостью, заданной следами. В качестве вспомогательной плоскости взята горизонтально-проецирующая плоскость.

    На рисунке 4.9 дано решение задачи на пересечение прямой общего положения с плоскостью общего положения, заданной треугольником. В качестве вспомогательной плоскости использована горизонтально-проецирующая плоскость.

    Видимость проекций определена методом конкурирующих точек (прямых). Позиционные задачи в начертательной геометрии с примерами

    К главным задачам на пересечение относится также задача о пересечении двух плоскостей. Линия пересечения двух плоскостей — это прямая, принадлежащая как одной, так и другой плоскости. Следовательно, для построения линии пересечения двух плоскостей надо найти какие-либо две точки, каждая из которых принадлежит обеим плоскостям (рисунок 4.10). Позиционные задачи в начертательной геометрии с примерами

    Если плоскости заданы следами, то исходя из рисунка 4.106 линия пересечения таких плоскостей определяется точками пересечения одноименных следов. На рисунке 4.11 представлены решения задач о пересечении двух плоскостей, заданных следами. Во втором случае одна из плоскостей является плоскостью общего положения, а другая -фронтально-проецирующей. Позиционные задачи в начертательной геометрии с примерами

    Рисунок 4.11 — Пересечение плоскостей, заданных следами В случаях, если плоскости заданы разными способами, применяют общий метод построения линии пересечения, основанный на введении вспомогательных плоскостей (рисунок 4.12).

    Сущность метода заключается в том, что заданные плоскости Q и Р дважды пересекают вспомогательными плоскостями а и Позиционные задачи в начертательной геометрии с примерами(например, горизонтальными). Находят линии их пересечения с заданными плоскостями, далее находят точки 1 и 2 пересечения найденных линий и соединяют полученные точки прямой линией, которая является линией пересечения заданных плоскостей.

    Позиционные задачи в начертательной геометрии с примерами

    Если пересекающиеся плоскости являются плоскостями частного положения, или если одна из пересекающихся плоскостей является плоскостью частного положения, то задача упрощается. На рисунке 4.14 представлены примеры решения задач на пересечение упомянутых плоскостей. И более трудоемкой задачей является задача на пересечение двух плоскостей общего положения, заданных плоскими фигурами, например, треугольниками, многоугольниками и т.д.

    Позиционные задачи в начертательной геометрии с примерами

    При пересечении плоских фигур возможны два случая пересечения (рисунок 4.15): полное пересечение (а) и неполное пересечение (б). Позиционные задачи в начертательной геометрии с примерами

    Рисунок 4.15 — Полное и неполное пересечение плоских фигур

    В обоих случаях линия пересечения треугольников определяется двумя точками 1 и 2, каждая из которых определяется как точка пересечения стороны одного треугольника с плоскостью другого. Отсюда следует вывод:    для того, чтобы построить линию пересечения

    треугольников, необходимо дважды решить задачу о пересечении стороны одного треугольника с плоскостью другого треугольника (типовая задача о пересечении прямой с плоскостью). При этом пару пересекающихся объектов можно подбирать произвольно. В любом случае линия пересечения будет построена.

    Задачи на параллельность

    Задача на параллельность двух прямых была рассмотрена ранее в разделе «Параллельные прямые».

    Задачи на параллельность плоскостей основываются на положениях элементарной геометрии. Две плоскости параллельны, если две пересекающиеся прямые одной плоскости взаимно параллельны двум пересекающимся прямым другой плоскости (рисунок 4.16а).

    Если две параллельные плоскости заданы следами, то одноименные следы таких плоскостей параллельны друг другу (рисунок 4.166).

    Прямая будет параллельна плоскости в том случае, если она параллельна любой прямой, находящейся в этой плоскости. Позиционные задачи в начертательной геометрии с примерами

    Пример: Через прямую АВ провести профильно-проецирующую плоскость (рисунок 4.17).

    Позиционные задачи в начертательной геометрии с примерами

    Решение: Как было показано ранее горизонтальный и фронтальный следы профильно-проецирующей плоскости располагаются параллельно оси ОХ. Было также показано, что если прямая принадлежит плоскости, заданной следами, то следы прямой находятся на одноименных следах плоскости. Сказанное позволяет разработать план решения задачи:

    1. Найдем горизонтальный и фронтальный следы прямой;
    2. Через найденные следы прямой проведем одноименные следы плоскости.

    Пример: Через точку провести плоскость, параллельную заданной (рисунок 4.18). Позиционные задачи в начертательной геометрии с примерами

    Решение: Плоскость задана следами. Искомую плоскость целесообразно тоже задать следами. Чтобы обеспечить параллельность плоскостей, необходимо следы искомой плоскости провести параллельно одноименным следам заданной плоскости.

    Для того чтобы искомая плоскость проходила через заданную точку, необходимо через точку провести прямую (например, горизонталь), которая принадлежала бы искомой плоскости. Исходя из изложенного, определяется следующий план решения задачи:

    1. Проводим через заданную точку горизонталь h;
    2. Через фронтальный след горизонтали проводим фронтальный след искомой плоскости параллельно фронтальному следу заданной плоскости;
    3. Горизонтальный след искомой плоскости проводим параллельно горизонтальному следу заданной плоскости.
    4. Через фронтальный след горизонтали проводим фронтальный след искомой плоскости параллельно фронтальному следу заданной плоскости;
    5. Горизонтальный след искомой плоскости проводим параллельно горизонтальному следу заданной плоскости.

    Пример: Построить линию пересечения треугольников АВС и EDK, определить видимость проекций (рисунок 4.19).  

    Построить линию пересечения треугольников АВС и EDK, определить видимость проекций (рисунок 4.19).

    Позиционные задачи в начертательной геометрии с примерами

    Решение: Предварительно намечаем две произвольные задачи на пересечение стороны одного треугольника с плоскостью другого (произвольно). Например, Позиционные задачи в начертательной геометрии с примерами

    Решаем первую задачу. Через ED проводим вспомогательную фронтально-проецирующую плоскость а (след плоскости Позиционные задачи в начертательной геометрии с примерами— Она пересекает треугольник АВС в двух точкахПозиционные задачи в начертательной геометрии с примерами на сторонах АВ и ВС. Находим горизонтальные проекции этих точек Позиционные задачи в начертательной геометрии с примерами и соединяем их. Линия 1-2 является линией пересечения вспомогательной плоскости с плоскостью треугольника АВС. Ищем точку пересечения линии 1-2 с прямой ED. Это точка Позиционные задачи в начертательной геометрии с примерами, которая лежит вне треугольника АВС, но является точкой линии пересечения треугольников.

    Аналогично решаем вторую задачу. В качестве вспомогательной плоскости берем горизонтально-проецирующую плоскость Позиционные задачи в начертательной геометрии с примерами В результате решения задачи получаем точку М.

    Далее соединяем полученные точки L и М. Однако не вся эта линия будет являться линией пересечения треугольников, а лишь участок MN, который принадлежит обоим треугольникам. Таким образом, в результате решения двух произвольно выбранных задач получили линию MN пересечения заданных треугольников.

    Определяем видимость проекций треугольников. При определении видимости проекций методом конкурирующих точек (прямых) необходимо учитывать следующие особенности:

    1. Плоскости треугольников считаются геометрически непрозрачными;
    2. В точках М и N линии пересечения видимость сторон треугольников меняется;
    3. Если при вершине какого-либо треугольника одна сторона видна (не видна), то и другая сторона будет видна (не видна).

    Учет перечисленных особенностей позволяет определить видимость проекций треугольников по анализу одного конкурирующего места на каждой проекции, что значительно ускоряет решение задачи.

    Отметим на фронтальной проекции любое конкурирующее место из шести (отмечено кружочком). Проведем через него линию связи и вдоль линии связи сравним ординаты конкурирующих прямых ЕК и АВ. Наибольшую ординату имеет прямая АВ. Она и будет видна на рассматриваемой фронтальной проекции. Видимость остальных сторон треугольников определяется с учетом особенностей, отмеченных выше.

    На горизонтальной проекции отметим конкурирующее место, в котором конкурируют прямые АВ и ED. Аналогично описанному определяем, что на горизонтальной проекции будет видна прямая АВ, так как у ней наибольшая аппликата. Видимость остальных сторон треугольников определим аналогично рассмотренному выше.

    Для усиления эффекта видимости треугольников на проекциях целесообразно один их треугольников заштриховать с учетом видимости или раскрасить оба треугольника.

    На рисунке 4.196 представлено наглядное аксонометрическое изображение пересекающихся треугольников в косоугольной фронтальной изометрии. Вершины треугольников строятся по заданным координатам точек, линия пересечения MN — по координатам, взятым с проекционного чертежа.

    Относительное положение прямой и плоскости

    Прямая по отношению к плоскости может занимать три различных
    положения:

    • •    прямая l лежит в плоскости (рис. 8.1,а);
    • •    прямая n параллельна плоскости (рис. 8.1, б);
    • •    прямая d пересекается с плоскостью (рис. 8.1,в).

    Позиционные задачи в начертательной геометрии с примерами

    Рис. 8.1. Относительное положение прямой и плоскости:
    а — l ⊂ α ; б — n || β ; в — d х γ

    Принадлежность точки и прямой линии плоскости

    Прямая линия принадлежит плоскости, если две точки этой прямой принадлежат плоскости (рис. 8.2).

    Точка принадлежит плоскости, если она принадлежит прямой, лежащей в этой плоскости (см. рис. 8.2).

    Позиционные задачи в начертательной геометрии с примерами

    Рис. 8.2. Принадлежность точки и прямой линии плоскости:

    Позиционные задачи в начертательной геометрии с примерами

    Параллельность прямой и плоскости

    Прямая параллельна плоскости, если она параллельна какой-либо прямой, лежащей в этой плоскости (рис. 8.3).
    Позиционные задачи в начертательной геометрии с примерами

    Рис. 8.3. Параллельность прямой и плоскости:
    Позиционные задачи в начертательной геометрии с примерами

    Линии уровня плоскости

    Прямые, лежащие в данной плоскости и параллельные одной из плоскостей проекций, называются линиями уровня плоскости.

    Прямая, лежащая в данной плоскости и параллельная горизонтальной плоскости проекций П1, называется горизонталью плоскости (рис. 8.4). Все горизонтали плоскости параллельны между собой, поскольку каждая из них может быть получена как линия пересечения данной плоскости общего положения и горизонтальной плоскости уровня.
    Позиционные задачи в начертательной геометрии с примерами

    Рис. 8.4. Горизонтали плоскости:
    Позиционные задачи в начертательной геометрии с примерами

    Рассмотрим построение горизонтали плоскости общего положения α(ABC) (рис. 8.5,а).

    Позиционные задачи в начертательной геометрии с примерами

    Рис. 8.5. Линии уровня плоскости:

    Позиционные задачи в начертательной геометрии с примерами

    Фронтальная проекция любой горизонтали всегда перпендикулярна линиям связи, поэтому построение горизонтали начинается с построения ее фронтальной проекции h2 Позиционные задачи в начертательной геометрии с примерами (A1A2) . Поскольку горизонталь лежит в плоскости, она пересекается с прямой (AB) в точке 1 ,ас прямой (BC) -в точке 2. Горизонтальные проекции точек 1 и 2 однозначно определят положение горизонтальной проекции горизонтали h1(11 — 21).

    Фронталь плоскости β( a||b )строится аналогично, но построение фронтали начинается с построения ее горизонтальной проекции (рис. 8.5,б). Все фронтали плоскости также параллельны между собой, поскольку каждая из них может быть получена как линия пересечения данной плоскости общего положения и фронтальной плоскости уровня.

    Таким образом, любую плоскость общего положения можно представить как совокупность параллельных линий уровня — горизонталей, фронталей или профильных прямых. Иными словами, плоскость общего положения, заданную любым способом, можно также задать параллельными линиями уровня или пересекающимися горизонталью и фронталью. Такой способ задания плоскостей наиболее удобен для решения ряда метрических задач.

    Пересечение прямой общего положения и плоскости частного положения

    Рассмотрим построение точки пересечения K фронтально-проецирующей плоскости γ(γ2)Позиционные задачи в начертательной геометрии с примерамиП2 и прямой a(α1,a2) общего положения (рис. 8.6).

    Позиционные задачи в начертательной геометрии с примерами

    Рис. 8.6. Пересечение прямой общего положения и плоскости частного положения:
    а- наглядное изображение;
    б — комплексный чертеж

    Поскольку K ⊂ γ(γ2), K2 ⊂ γ2, но одновременно к ⊂ a, следовательно, K 2 = γ 2 × a 2, а K 1 = (K 2 K 1) × a1.

    Пересечение двух плоскостей частного положения

    Линией пересечения двух фронтально-проецирующих плоскостей δ(δ2) и σ(σ2) является фронтально-проецирующая прямая l (рис. 8.7).

    Позиционные задачи в начертательной геометрии с примерами

    Рис. 8.7. Пересечение плоскостей частного положения:
    а-наглядное изображение; б — комплексная проекция

    линии пересечения двух фронтально-проецирующих плоскостей δ(δ2)и σ(σ2)определяется как точка пересечения фронтальных следов плоскостей δ2 и σ2: l22×σ2, а горизонтальная проекция строится по линии связи, перпендикулярно направлению оси x12.

    Пересечение плоскости общего положения и плоскости частного положения 

    Линией пересечения двух плоскостей (рис. 8.8) является прямая, для построения которой достаточно определить две точки, принадлежащие обеим плоскостям одновременно. 

    Позиционные задачи в начертательной геометрии с примерами

    Рис. 8.8. Пересечение плоскости общего положения с проецирующей плоскостью
    а — наглядное изображение; б — комплексный чертеж

    Позиционные задачи в начертательной геометрии с примерами

    Рассмотрим построение линии пересечения l плоскости общего положения α(a×b) и фронтально-проецирующей плоскости δ(δ2)(рис. 8.8, б). Линия, по которой пересекаются две плоскости, принадлежит обеим плоскостям одновременно, следовательно, для ее построения достаточно определить две точки, общие для пересекающихся плоскостей, или одну точку и направление линии пересечения.

    В данном случае, достаточно определить точки пересечения прямых а и b с плоскостью δ(δ2). Они однозначно определят линию пересечения l.

    Пересечение прямой общего положения и плоскости общего положения. Первая позиционная задача

    Задача об определении точки пересечения прямой общего положения с плоскостью общего положения называется первой позиционной задачей. На рис. 8.9 представлено наглядное изображение решения первой позиционной задачи.
    Позиционные задачи в начертательной геометрии с примерами

    Рис. 8.9. Пересечение прямой общего положения и плоскости общего положения

    Дано: а(ABC) — плоскость общего положения;
    a (a 1, a2) — прямая общего положения.
     

    Определить: K=a×α(ABC).
     

    Решение:

    1.    Прямую заключить во вспомогательную плоскость частного положения: αeβ.

    2.    Определить линию l как линию пересечения вспомогательной и заданной плоскостей l=α (ABC) Позиционные задачи в начертательной геометрии с примерамиβ.

    3.    Определить взаимное положение заданной прямой a и полученной прямой l.

    Поскольку прямые a и l лежат в одной плоскости, они могут пересекаться или быть параллельными. Точка пересечения K=a×l и является искомой точкой пересечения прямой а с плоскостью α(ABC). Если прямые a и l параллельны, то прямая а параллельна плоскости α(ABC).

    Определение точки пересечения прямой a(a1,a2) и плоскости α(ABC) на комплексном чертеже:

    1.    Заключить прямую a(a 12) во вспомогательную проецирующую плоскость β(β2) (рис. 8.10).

    2.    Определить линию пересечения l(1-2) вспомогательной плоскости β(β2) и заданной плоскости α(ABC):
    l = α(ABC)Позиционные задачи в начертательной геометрии с примерами β(β2); 122; l1=( 11-22).
    Позиционные задачи в начертательной геометрии с примерами

    Рис. 8.10. Пересечение прямой a(a1,a2 )и плоскости α( ABC)

    3.    Определить взаимное положение заданной прямой a и полученной прямой l. В данном случае, прямые а и lпересекаются в точке K, которая и является искомой точкой пересечения прямой a(a1,a2) и плоскости α(ABC):
    11×a 1=K1; K2∈a2; K= a(a1,a2)×α(ABC).

    4.    Считая плоскость непрозрачной, определить видимость прямой a(a1 ,a2) относительно плоскости α(ABC)

    Позиционные задачи в начертательной геометрии с примерами

    Рис. 8.11. Определение видимости относительно горизонтальной плоскости проекций:
    а — наглядное изображение;
    б — комплексный чертеж

    Для определения видимости относительно горизонтальной плоскости проекций необходимо найти конкурирующие точки — точки, горизонтальные проекции которых совпадают.

    Прямые a и (AB) в пространстве являются скрещивающимися (точки пересечения проекций не лежат на одной линии связи), поэтому для определения видимости прямой относительно плоскости достаточно определить видимость прямой a относительно прямой (AB) (8.11). Для этого рассмотрим две конкурирующие точки: 4 — на прямой a и 5 — на прямой (AB). Высота точки 5 больше, следовательно, на П1 видима прямая (AB), то есть плоскость, а прямая a — невидима.

    Позиционные задачи в начертательной геометрии с примерами

    Рис. 8.12. Определение видимости относительно фронтальной плоскости проекций:
    а — наглядное изображение; б — комплексный чертеж

    Видимость прямой а по отношению к плоскости α(ABC) на фронтальной плоскости проекций (рис. 8.12) определяется с помощью конкурирующих точек 2на прямой (AC) и 3-на прямой а. Глубина точки 3 больше, следовательно, видима будет прямая а.

    Пересечение двух плоскостей общего положения. Вторая основная позиционная задача

    Вторая позиционная задача — это задача об определении линии пересечения двух плоскостей. Наглядное изображение решения второй позиционной задачи показано на рис. 8.13.
    Позиционные задачи в начертательной геометрии с примерами

    Рис. 8.13. Пересечение двух плоскостей общего положения

    Алгоритм решения второй позиционной задачи состоит в следующем:

    1.    Заданные плоскости α(a||b) и β(c×d) пересечь вспомогательной плоскостью частного положения γ.

    2.    Определить линии пересечения m и n вспомогательной плоскости с каждой из заданных плоскостей:
    γ Позиционные задачи в начертательной геометрии с примерами α(a || b) = m ;
    γ Позиционные задачи в начертательной геометрии с примерами β(c X d) = n .

    3.    Определить точку M пересечения линий m и n. Точка M принадлежит прямой m, а, следовательно, и плоскости α (a||b). Точка M принадлежит прямой n, следовательно, и плоскости β(c×d). Таким образом, точка M принадлежит обеим плоскостям, то есть является одной из точек линии пересечения.

    4.    Вторую точку линии пересечения определяют аналогично, рассекая плоскости α(a||b) и β(c×d) вспомогательной плоскостью частного положения γ’.

    Определение линии пересечения двух плоскостей общего положения α(a||b) и β(c×d) на комплексном чертеже:

    1.    Пересечь данные плоскости вспомогательной    фронтально-проецирующей плоскостью γ(γ2)Позиционные задачи в начертательной геометрии с примерамиП2 (рис. 8.14).

    2.    Определить линии пересечения вспомогательной плоскости с каждой из заданных плоскостей:
    m =γ(γ2)Позиционные задачи в начертательной геометрии с примерамиα(a||b); m22;
    n =γ(γ2)Позиционные задачи в начертательной геометрии с примерамиβ(c×d); n22;

    3.    Определить точку пересечения прямых n и m:M=n× m.

    4.    Точка M ⊂ m Позиционные задачи в начертательной геометрии с примерами M ⊂ a(a || b); M ⊂ nПозиционные задачи в начертательной геометрии с примерамиM ⊂ β(c ×d) таким образом, точка M является одной из точек искомой линии пересечения плоскостей.

    5. Точка    M’    определяется аналогично, вспомогательной плоскости γ//2).

    Позиционные задачи в начертательной геометрии с примерамиПозиционные задачи в начертательной геометрии с примерами

    Рис. 8.14. Вторая позиционная задача

    6.    Через полученные точки M и M’ провести прямую l. Прямая l -искомая линия пересечения плоскостей α( a || b) и β( c × d).

    • Заказать чертежи

    Сечение поверхности плоскостью

    В сечении поверхности плоскостью получается плоская кривая линия, которую строят по отдельным точкам. Сначала строят опорные точки — точки смены видимости и экстремальные (крайние). Точки смены видимости принадлежат очерковым образующим поверхности. Экстремальными точками являются: самая близкая и самая удаленная, высшая и низшая и т. д. относительно плоскостей проекций.

    Если проекция линии пересечения этими точками не определяется полностью, то строят дополнительные, промежуточные между опорными, точки. При построении сечений секущая плоскость обычно считается прозрачной и определяется только видимость поверхности и линии сечения.

    Точка на поверхности

    Точка принадлежит поверхности, если она принадлежит какой-либо линии на этой поверхности. Для построения точек на поверхности или определения недостающих проекций строится сечение поверхности вспомогательной плоскостью. Вспомогательная плоскость выбирается таким образом, чтобы в сечении получались простые линии — прямые или окружности. Кроме того, окружность в сечении должна проецироваться на одну из плоскостей проекций без искажения.
    Позиционные задачи в начертательной геометрии с примерами

    Рис. 8.15. Точка на поверхности сферы:
     
    Позиционные задачи в начертательной геометрии с примерами

    Любая плоскость рассекает поверхность сферы по окружности (рис. 8.15), но без искажения на соответствующую плоскость проекций проецируются только окружности, лежащие в плоскостях уровня. Таким образом, для построения точки на поверхности сферы в качестве вспомогательных плоскостей используются только плоскости уровня.

    На поверхности конуса можно получить как окружности, так и прямые линии.
    Для построения горизонтальной проекции точки A на поверхности конуса (рис. 8.16, 8.17), конус рассекается горизонтальной плоскостью уровня α(α2), проходящей через точку A.

    В сечении конуса получается окружность радиуса r, которая проецируется на П1 без искажения — как окружность 11 с центром в точке 01 радиусом r1=r. Фронтальная проекция окружности -12 представляет собой отрезок [ 11 2 1].

    Позиционные задачи в начертательной геометрии с примерами

    Рис. 8.16. Точка на поверхности конуса

    Позиционные задачи в начертательной геометрии с примерами

    Рис. 8.17. Построение точки на поверхности конуса

    Горизонтальная проекция точки A строится на пересечении вертикальной линии связи (A2A1) и окружности l1. При этом фронтальной проекции A2 могут соответствовать две точки — A и A’.

    Поскольку любая плоскость, проходящая через вершину конуса, рассекает его по двум пересекающимся прямым, вспомогательную плоскость можно задать точкой A и осью вращения конуса (рис. 8.18).
    Позиционные задачи в начертательной геометрии с примерами

    Рис. 8.18. Точка на поверхности конуса

    Если необходимо определить фронтальную проекцию точки A, принадлежащей поверхности конуса (рис. 8.19,а), конус рассекается вспомогательной горизонтально-проецирующей плоскостью β(A, i), проходящей через ось вращения конуса и искомую точку. Плоскость β(A, i) пересекает основание конуса в точке 1. Вершина конуса S и точка 1 определят образующую конуса l, проходящую через точку A:

    Позиционные задачи в начертательной геометрии с примерами.
    Позиционные задачи в начертательной геометрии с примерами

    Рис. 8.19. Построение точки на поверхности конуса:
    а — определение фронтальной проекции;
    б — определение горизонтальной проекции

    Если необходимо определить горизонтальную проекцию точки A, принадлежащей поверхности конуса (рис. 8.19,б), конус рассекается вспомогательной фронтально-проецирующей плоскостью γ(γ2) eS. Плоскость γ(γ2) пересекает основание конуса в точках 3 и 4. Вершина конуса S и точка 3 определят образующую конуса m, проходящую через точку A:
    m2= γ2, m1=(S1,31); A1 Позиционные задачи в начертательной геометрии с примерамиm1;
    m’22, m’1=(S1,31); A’1βm,1.

    Таким образом, данной фронтальной проекции точки A2 могут соответствовать две точки — A и A/.

    Сечение поверхности вращения плоскостью частного положения

    Рассмотрим построение линии пересечения поверхности закрытого тора с фронтально-проецирующей плоскостью μ(μ2) (рис. 8.20). Сначала определяются опорные точки: 1 и 2 — точки пересечения плоскости μ(μ2) с плоскостью основания тора, точка 3 — точка пересечения плоскости μ(μ2) с очерковой образующей тора.

    Промежуточные точки 4 и 5 строятся при помощи вспомогательной плоскости уровня γ(γ2), которая рассекает поверхность тора по линии:
    l=ФmПозиционные задачи в начертательной геометрии с примерамиγ(γ2), 122; l — окружность радиуса r, а плоскость μ(μ2) — по фронтально-проецирующей прямой:
    P=μ(μ2)nγ(γ2); pПозиционные задачи в начертательной геометрии с примерамиП2; l ×p=4,5.

    Точки 4 и 5 пересечения полученных линий принадлежат секущей плоскости μ(μ2) и линии l поверхности тора, то есть принадлежат плоскости и поверхности одновременно, а следовательно, являются точками искомой линии пересечения m.

    Точки 6, 7, 8 и 9 определяются аналогично. Полученные точки соединяют плавной лекальной кривой и определяют видимость линии пересечения m относительно поверхности.

    Позиционные задачи в начертательной геометрии с примерами

    Рис. 8.20. Сечение поверхности вращения плоскостью частного положения

    При построении сечений поверхности плоскостью общего положения выполняют такое преобразование комплексного чертежа, при котором плоскость займет частное положение.

    Цилиндрические сечения

    В сечении цилиндрической поверхности вращения плоскостью могут быть получены следующие линии:

    Окружность, если секущая плоскость δ(δ2) перпендикулярна оси вращения цилиндра (рис. 8.21);

    Позиционные задачи в начертательной геометрии с примерами

    Рис. 8.21. Окружность

    Эллипс, если секущая плоскость α(α2) наклонена под произвольным углом к оси цилиндра (рис. 8.22);
     

    Позиционные задачи в начертательной геометрии с примерами

    Рис. 8.22. Эллипс

    Две параллельные прямые (образующие), если секущая плоскость ν(ν2)
    параллельна оси цилиндра (рис. 8.23)

    Позиционные задачи в начертательной геометрии с примерами

    Рис. 8.23. Параллельные прямые

    На плоскость, перпендикулярную оси вращения поверхности, окружность и эллипс на поверхности цилиндра проецируются в окружность, совпадающую с проекцией всей поверхности.

    Конические сечения

    Кривые линии, которые получаются в сечении прямого кругового конуса плоскостью, называются коническими сечениями. В зависимости от положения секущей плоскости по отношению к конической поверхности образуются
    следующие линии:
     

    Окружность, если секущая плоскость η(η2) перпендикулярна оси вращения конуса i (рис. 8.24).

    Позиционные задачи в начертательной геометрии с примерами

    Рис. 8.24. Окружность

    Две пересекающиеся прямые, если секущая плоскость β(β2) проходит через вершину поверхности конуса (рис. 8.25).

    Позиционные задачи в начертательной геометрии с примерами
    Рис. 8.25. Пересекающиеся прямые

    Эллипс (рис. 8.26), если секущая плоскость μ(μ2) пересекает все образующие, расположенные по одну сторону от вершины конуса.

    Точки A и B являются опорными и не требуют дополнительных построений (см. рис. 95.). Отрезок [AB] определяет большую ось эллипса. Для определения малой оси отрезок [A2B2] делят пополам. Так получается центр эллипса — точка O. Затем через точку O проводят вспомогательную плоскость σ(σ2), которая пересекает поверхность конуса по окружности:
    σ(σ2)Позиционные задачи в начертательной геометрии с примерамиФ к=l; 122; 11 — окружность;
    σ(σ2)Позиционные задачи в начертательной геометрии с примерами μ(μ2)=m; mПозиционные задачи в начертательной геометрии с примерамиПσ2;
    m1×l1=C1D1; [C1D1] — малая ось эллипса.

    Для построения фокуса проводят биссектрису угла Позиционные задачи в начертательной геометрии с примерамиS2B2A2, между образующей конуса и следом секущей плоскости μ2 до пересечения с осью конуса. Из полученной точки опускают перпендикуляр на след плоскости μ2. Эта точка F и является фокусом. Из точки A2 откладывают расстояние AF’=FB.

    Свойство эллипса: сумма расстояний от любой точки эллипса до его фокусов есть величина постоянная и равна большой оси эллипса АВ=FP+F’P.

    Позиционные задачи в начертательной геометрии с примерами

    Рис. 8.26. Эллипс

    Парабола (рис. 8.27), если секущая плоскость λ(λ2) параллельна одной из образующих поверхности конуса.

    Позиционные задачи в начертательной геометрии с примерами
    Рис. 8.27. Парабола

    Точка К — вершина параболы (см. рис. 96). Точки N и Mлежат на основании. Фокус параболы строится при проведении биссектрисы угла Позиционные задачи в начертательной геометрии с примерамиS2К2M2 и перпендикуляра на секущую плоскость λ(λ2). F2К22d2, d -директриса, dПозиционные задачи в начертательной геометрии с примерами λ(λ2).

    Свойство параболы: расстояние от любой точки параболы до ее фокуса равно расстоянию от этой точки до директрисы WD=WF.

    Гипербола (рис. 8.28), если секущая плоскость ω(ω2) пересекает обе половины поверхности конуса.

    Позиционные задачи в начертательной геометрии с примерами

    Рис. 8.28. Гипербола

    При пересечении конуса образуются две части гиперболы 5 и 5′. G и G’ -вершины гиперболы, F(F 1, F2) и F'(F 1‘, F2) — фокусы гиперболы, O(O 1, O2) -центр гиперболы, а и a′ — асимптоты гиперболы, получающиеся как прямые, параллельные образующим конуса S1 и S2, полученным при рассечении его плоскостью δ(δ2),параллельной плоскостиω(ω2).

    Свойство гиперболы: разность расстояний от любой точки гиперболы до ее фокусов есть величина постоянная, равная расстоянию между вершинами гиперболы RF-RF’=GG’.

    Пересечение прямой с поверхностью

    Прямая по отношению к поверхности может занимать следующие положения:

    • прямая касается поверхности (одна общая точка);
    • прямая пересекает поверхность (две и более общих точек);
    • прямая не пересекает и не касается поверхности (общих точек нет).

    Алгоритм решения задач об определении взаимного положения поверхности и прямой аналогичен решению первой позиционной задачи (рис. 8.29):

    1. Прямая заключается во вспомогательную плоскость частного положения.
    2. Определяется линия пересечения вспомогательной плоскости и заданной поверхности, то есть, строится сечение поверхности вспомогательной плоскостью.
    3. Определяется взаимное положение полученной линии (сечения) и заданной прямой. Точки пересечения являются искомыми точками пересечения прямой с поверхностью.
    4. Определяется видимость прямой относительно поверхности.

    Позиционные задачи в начертательной геометрии с примерами

    Рис. 8.29. Пересечение прямой с поверхностью

    Для построения точки пересечения поверхности сферы с горизонталью (рис. 8.30), горизонталь заключают во вспомогательную горизонтальную плоскость уровня γ(γ2).

    Сечение сферы горизонтальной плоскостью уровня представляет собой окружность l с центром в точке O2 и радиусом r=O2l2, которая проецируется на П1 без искажения. Затем определяются точки пересечения окружности l1 и заданной горизонтали h1 :
    h 1×11=A1, B1; A2, B2∈h2.

    Далее следует определить видимость прямой: между точками A и B прямая невидима на обеих проекциях, поскольку находится внутри сферы, фронтальная проекция горизонтали находится выше фронтальной проекции очерковой образующей сферы, поэтому горизонталь на П1 видима; точка A имеет большую глубину, чем очерковая образующая сферы, поэтому на фронтальной проекции горизонталь видима до точки A, а за точкой B — невидима.

    Позиционные задачи в начертательной геометрии с примерами

    Рис. 8.30. Пересечение прямой с поверхностью сферы

    Для построения точки пересечения поверхности закрытого тора с прямой общего положения (рис. 8.31), прямую заключают во вспомогательную фронтально-проецирующую плоскость δ(δ2). Далее строится сечение тора плоскостью δ(δ2):

    Точки 1 и 2 — точки пересечения с основанием и точка 3 — опорные точки на очерковой образующей определяются без дополнительных построений;

    Точки 4 и 5 также опорные (лежат на образующих, проекции которых совпадают с осью тора). Точки 4 и 5 определяются как точки на поверхности тора с помощью вспомогательной плоскости γ’.

    Промежуточные точки 6,7,8,9 определяются аналогично.

    Полученные точки соединяются плавной лекальной кривой m. Линия m -сечение тора плоскостью δ(δ2). Затем определяют точки A и B пересечения полученной линии m с прямой a и определяют видимость. Точки A и B -искомые точки пересечения прямой с поверхностью тора.

    Позиционные задачи в начертательной геометрии с примерами

    Рис. 8.31. Пересечение прямой общего положения с поверхностью тора

    1. a(a1, a2) ∈ δ(δ2);

    2. m = δ(δ2)Позиционные задачи в начертательной геометрии с примерамиΦт;
    γ(γ2) — вспомогательная плоскость;
    γ(γ2) Позиционные задачи в начертательной геометрии с примерами Фт = l; l2 = γ2, 11 — окружность;
    γ(γ2) Позиционные задачи в начертательной геометрии с примерами δ(δ2) = p; p Позиционные задачи в начертательной геометрии с примерами П2;
    l×p = 6, 7 — промежуточные точки сечения m;
    m×a = A, B — искомые точки пересечения прямой с поверхностью тора;

    3. Определить видимость прямой относительно поверхности тора.

    Принадлежность точки и прямой

    Вопрос о принадлежности точки прямой решается на основе свойств (особенностей) метода проецирования. Точка С лежит на прямой АВ, если ее проекции, в соответствии с рисунком 4.2, лежат на одноименных проекциях Прямой Позиционные задачи в начертательной геометрии с примерами

    Позиционные задачи в начертательной геометрии с примерами

    В геометрии принято считать, что прямая принадлежит плоскости, если две ее точки (действительные или несобственные) принадлежат этой плоскости (рисунки 4.3, 11.8)

    В соответствии с рисунком 4.3 прямая AВ лежит в плоскости Р. Это обуславливается тем, что точка A лежит на следе Позиционные задачи в начертательной геометрии с примерамиа точка В — на следе Позиционные задачи в начертательной геометрии с примерами

    Позиционные задачи в начертательной геометрии с примерами

    При условии, что одна из точек плоскости, через которые проходит прямая, лежит на следе и является несобственной (в соответствии с рисунками 4.4 и 4.5), прямая общего положения переходит в прямую частного положения (линию уровня).

    В плоскости различают горизонтальную линию уровня h (рисунки 4.4, 11.9) и фронтальную линию уровня Позиционные задачи в начертательной геометрии с примерами (рисунки 4.5, 11.9).

    В силу специального расположения следов Позиционные задачи в начертательной геометрии с примерами плоскости они (следы) являются линиями уровня. След Позиционные задачи в начертательной геометрии с примерамиявляется горизонталью, а Позиционные задачи в начертательной геометрии с примерамифронталью этой плоскости.

    Фронтали и горизонтали плоскости получили название главных линии плоскости.
    Позиционные задачи в начертательной геометрии с примерами

    Вопрос о принадлежности точки плоскости можно свести к предыдущей задаче. Достаточно добиться того, чтобы точка лежала на одной из прямых плоскости (рисунки 4.6, 11.8)

    Точка С лежит на прямой АВ (ее проекции, в соответствии с рисунком 4.2, лежат на одноименных проекциях прямой Позиционные задачи в начертательной геометрии с примерами Прямая Позиционные задачи в начертательной геометрии с примерами т.к. две ее точки принадлежат плоскости Позиционные задачи в начертательной геометрии с примерами Последнее утверждение очевидно вследствие того, что эти точки лежат на следах плоскости. Следовательно, можно утверждать что Позиционные задачи в начертательной геометрии с примерами (рисунок 4.6).

    Позиционные задачи в начертательной геометрии с примерами

    Пересечение плоскостей

    В соответствии с формулой р=2+2-3=1 пересечение двух плоскостей должно привести к появлению одномерного объекта, т.е. прямой линии. Для построения линии пересечения двух плоскостей общего положения (Р и Позиционные задачи в начертательной геометрии с примерами достаточно найти две точки, одновременно принадлежащие этим плоскостям. В случае задания плоскостей следами (в соответствие с рисунком 4.7) решение очевидно.

    Позиционные задачи в начертательной геометрии с примерами

    Пересечение горизонтальных следов Позиционные задачи в начертательной геометрии с примерами дает возможность определить положение одной общей точки М, а пересечение фронтальных следов Позиционные задачи в начертательной геометрии с примерамии

    Позиционные задачи в начертательной геометрии с примерами — другой общей точки N. Линия NM по определению лежит одновременно в двух плоскостях и, следовательно, она является линией пересечения.

    Если одна из плоскостей проецирующая (например, горизонтально-проецирующая, в соответствии с рисунком 4.8, 4.12), то линия пересечения Позиционные задачи в начертательной геометрии с примерамиможет быть найдена из тех же самых соображений. Характерным здесь является то, что одна из проекций линии пересечения попадает на след проецирующей плоскости. Если обе плоскости — проецирующие, то и линия их пересечения — проецирующая (рисунок 4.8).

    Позиционные задачи в начертательной геометрии с примерами

    При пересечении плоскости общего положения плоскостью уровня в сечении получается соответствующая линия уровня (рисунок 4.9).

    Позиционные задачи в начертательной геометрии с примерами

    Определение линии пересечения двух плоскостей для других случаев, например, при задании плоскостей треугольником (симплексом) и параллельными прямыми, базируется на следующей идее. Три плоскости всегда пересекаются в одной точке. Следовательно, введение дополнительной плоскости к двум, уже имеющимся, позволит определить точку, одновременно принадлежащую заданным плоскостям. Проиллюстрируем это на рисунке 4.10.
    Две плоскости, заданные параллельными и пересекающимися прямыми, пересекаются по прямой ЕК, найденной с помощью секущих плоскостей уровня S и Т. Плоскость S пересекает Позиционные задачи в начертательной геометрии с примерами по прямой 12, а плоскость (m//n) по прямой 34. На пересечении прямых 12 и 34 отмечается точка К. Аналогично строится точка Е, полученная с помощью секущей плоскости Т.

    Позиционные задачи в начертательной геометрии с примерами

    Пересечение прямой и плоскости

    Пересечением прямой и плоскости в пространстве является точка, что подтверждается и вычислением по формуле р=1 +2-3=0.
    Позиционные задачи в начертательной геометрии с примерами

    Прямая L в пространстве (в соответствии с рисунком 4.11) может рассматриваться как результат пересечения проецирующих плоскостей Позиционные задачи в начертательной геометрии с примерами и Р. При этом проекции прямой нужно рассматривать как соответствующие следы этих плоскостей Позиционные задачи в начертательной геометрии с примерами и Р.

    Восстановление одной из проецирующих плоскостей, например Позиционные задачи в начертательной геометрии с примерами в соответствии с рисунком 4.11 приведет к тому, что линия MN будет линией пересечения Позиционные задачи в начертательной геометрии с примерами и Р. В силу этой особенности линия MN оказывается в одной плоскости с линией L. В пересечении этих прямых и будет лежать искомая точка К. Ее (точки К) проекции лежат на проекциях линии L и, следовательно, она лежит на этой линии. С другой стороны, эта точка лежит на линии MN, принадлежащей плоскости Р, следовательно, искомая точка пересечения — К.

    Аналогичное решение этой задачи и в случае задания плоскости Р треугольником (симплексом). Восстановление одной из проецирующих плоскостей (например, Позиционные задачи в начертательной геометрии с примерами, в соответствии с рисунком 4.12) приведет к тому, что линия MN будет линией пересечения Позиционные задачи в начертательной геометрии с примерами и Р. В силу вышесказанного, в пересечении прямых MN и / будет лежать искомая точка К. Она одновременно принадлежит и плоскости Позиционные задачи в начертательной геометрии с примерамии t и, следовательно, К — искомая точка пересечения.

    Позиционные задачи в начертательной геометрии с примерами

    Параллельность

    Частным случаем пересечения прямых и плоскостей является взаимная параллельность. В трехмерном пространстве отсутствует полная параллельность. Понятие параллельности вводится с помощью признаков (условий).

    При параллельности пересечением является несобственный элемент.
    Признак параллельности прямых следует непосредственно из определения пересечения прямых (раздел 2.1). В соответствии с рисунком 4.13 одноименные проекции параллельных прямых попарно параллельны (параллельные прямые пересекаются в несобственной точке).

    Позиционные задачи в начертательной геометрии с примерами

    Признаком параллельности плоскостей является то, что две пересекающиеся прямые одной плоскости должны быть параллельны двум пересекающимся прямым другой плоскости (рисунок 4.14).
    Позиционные задачи в начертательной геометрии с примерами

    Такими прямыми могут быть следы. В этом случае одноименные следы должны быть параллельны между собой Позиционные задачи в начертательной геометрии с примерами

    В любом другом случае (в соответствии с рисунком 4.14) должна соблюдаться параллельность пересекающихся прямых, образующих плоскости,
    Позиционные задачи в начертательной геометрии с примерами
    Параллельность прямой и плоскости должны отвечать следующему условию: прямая параллельна плоскости, если она параллельна одной из прямых этой плоскости. В соответствии с вышесказанным и рисунком 4.15 проекции

    пространственной прямой должны быть параллельны соответствующим проекциям прямой, лежащей в плоскости.
    Позиционные задачи в начертательной геометрии с примерами

    Прямая n параллельна прямой m, лежащей в плоскости Позиционные задачи в начертательной геометрии с примерами Прямая АВ параллельна прямой MN, лежащей в плоскости Р, заданной следами.

    • Методы преобразования эпюра Монжа
    • Касательные плоскости
    • Пересечение поверхностей вращения плоскостью
    • Виды, разрезы, сечения
    • Метод замены плоскостей проекций
    • Проецирование прямой линии
    • Проецирование плоскости
    • Плоскость на эпюре Монжа

    Понравилась статья? Поделить с друзьями:
  • Как найти инфоповоды журналисту
  • Как найти лицензиара радмир
  • Как найти процент ндс в том числе
  • Слишком острая еда как исправить
  • Ошибки в реестре windows 10 как исправить программа