Как найти пересекающиеся прямые в треугольнике

Ззамечательные точки треугольника — свойства, применение и примеры решения

Замечательные точки треугольника не просто так описываются таким прилагательным. Для многих учеников, а начинают знакомиться с этим понятием в 8 классе, эта тема кажется наиболее интересной и простой в курсе геометрии, поэтому многочисленные теоремы и свойства запоминаются достаточно просто.

Итак, какие же четыре точки называются замечательными? Перечислим их:

точку пересечения медиан треугольника;

точку пересечения биссектрис треугольника;

точку пересечения высот треугольника;

точку пересечения серединных перпендикуляров сторон треугольника.

Все точки обладают своими особенностями и свойствами, про всех есть свои теоремы и следствия из них. Кроме того, существует свойство, которое справедливо сразу для четырёх этих точек. Вне зависимости от того, медиана ли это, биссектриса или высота, все они пересекаются в одной точке.

Замечательные точки характерны не только для треугольников. Например, в трапеции так же четыре замечательные точки.

Теперь рассмотрим основные положения, связанные с замечательными точками треугольника.

Точка пересечения медиан треугольника

Из курса геометрии известно определение медианы треугольника.

На данном рисунке она обозначена прямой m, которая исходит из вершины А и заканчивается точкой М, являющейся центром стороны ВС.

Теперь сделаем чертёж треугольника, на котором укажем замечательную точку пересечения медиан.

Для начала постройте абсолютно любой треугольник и обозначьте его буквами А, В и С.

На отрезке АВ отметьте центр С1, на стороне ВС центр А1, на АС центр В1.

Проведите 3 медианы из вершин. Из угла А – медиана АА1,из угла В — медиана ВВ1, из угла С — медиана СС1.

Должно получиться так, как показано на рисунке: три проведённые линии пересекаются в одной точке G (что является их свойством).

Изучим следующее свойство точки пересечения трёх медиан треугольника.

Отрезки медианы треугольника, разделённой замечательной точкой, относятся друг к другу как 2:1. Проследим это свойство на примере используемого нами рисунка:

A1G = 2AG, B1G = 2BG, C1G = 2CG.

Точка пересечения биссектрис треугольника

Прежде чем мы приступим к изучению следующей точки, рассмотрим теорему о биссектрисе, проведённой из вершины неразвёрнутого угла, и докажем её.

Рассмотрим пример. Дано:

угол ВАС Точка пересечения серединных перпендикуляров сторон треугольника

Для начала вспомним определение серединного перпендикуляра. Теорема о серединном перпендикуляре:

Сделаем краткое доказательство. Соединим концы отрезка с вершиной серединного отрезка. Докажем равенство полученных треугольников, из чего следует АD = DB.

Построим эту точку.

В треугольнике АВС отмечаем середины его сторон. Проводим три серединных перпендикуляра КО, LO, МО и отмечаем точку их пересечения О.

Точка пересечения высот треугольника

Проведём три высоты в ∆АВС, все они пересекутся в т. Н. Точка Н по отношению к ∆АВС – ортоцентр.

Свойство высот треугольника:

если все три высоты треугольника или их продолжения пересекаются в одной точке, то это ортоцентр;

СH * HНС
= АH * АНА = ВH * ВНВ.

Ортоцентр может располагаться внутри треугольника, снаружи или совпадать с одной из вершин.

На рисунке показано расположение ортоцентра в остроугольном, прямоугольном и тупоугольном треугольниках.

Пример решения задач с построением

Замечательные точки треугольника замечательные именно потому, что они имеют много полезных для решения задач свойств. Рассмотрим пример решения задачи на эту тему.

Серединный перпендикуляр в ∆АВС, опущенный к АС, пересекает ВС в т. В. Найти BD, DC, если AD = 5 см BC = 9 см.

Сделаем дополнительное построение – серединный отрезок КD к прямой АС. Тогда DK это и высота, и медиана в ∆АВС. Если в треугольнике проведена прямая, которая является высотой и медианой, то он равнобедренный. Значит, AD = DC = 5 см.

ВD =ВС — DC = 4 см.

Ответ: DC = 5 см, ВD = 4 см.

Треугольник. Медиана, биссектриса, высота, средняя линия.

теория по математике 📈 планиметрия

Треугольник – это геометрическая фигура, состоящая из трех точек на плоскости, которые не лежат на одной прямой, и трех последовательно соединяющих их отрезков.

Точки называют вершинами треугольника, а отрезки – сторонами. Вершины треугольника обозначают заглавными латинскими буквами.

Виды треугольников по углам

Треугольники классифицируются по углам: остроугольные; тупоугольные; прямоугольные.

Виды треугольников по сторонам

Треугольники классифицируются по сторонам: разносторонний; равнобедренный; равносторонний.

Медиана, биссектриса, высота, средняя линия треугольника

Медиана

Отрезок, соединяющий вершину треугольника с серединой противоположной стороны, называется медианой треугольника.

В любом треугольнике можно провести три медианы, так как сторон – три. На рисунке показаны медианы треугольника АВС: AF, EC, BD.

По данному рисунку также видно, что медианы треугольника пересекаются в одной точке – точке О. Это справедливо для любого треугольника.

Биссектриса

Биссектрисой треугольника называется луч, исходящий из вершины угла треугольника и делящий его пополам.

В любом треугольнике можно провести три биссектрисы, так как углов – три. На рисунке показаны биссектрисы треугольника ЕDC: DD1, EE1 и CC1.

По рисунку также видно, что биссектрисы имеют одну точку пересечения. Это справедливо для любого треугольника.

Высота

Высота треугольника – это перпендикуляр, проведенный из вершины треугольника к противоположной стороне.

На рисунке показаны высоты треугольника АВС: АН1, ВН2 и СН3.

По рисунку видно, что высоты треугольника пересекаются в одной точке. Это также справедливо для любого треугольника.

Средняя линия

Средней линией треугольника называется отрезок, соединяющий середины двух его сторон.

Средней линией треугольника называется отрезок, соединяющий середины двух его сторон. На рисунке показаны три средние линии треугольника АВС: MN, KN и MK.

Средняя линия обладает следующими свойствами: она параллельна противоположной стороне; она равна половине противоположной стороны. Так, на данном рисунке MN параллельна АС, KN параллельна АВ, MK параллельна ВС. Также MN=0,5АС, KN=0,5АВ и MK=0,5ВС. Например, если известно, что сторона АС=20 см, то средняя линия МN равна половине АС, то есть МN=10 см. Или, например, если средняя линия МК=12 см, то сторона ВС будет в два раза больше, то есть ВС=24 см.

Выполним чертеж окружности, описанной около треугольника АВС, покажем на нём все дополнительные элементы.

При построении прямой АО образовалась точка пересечения этой прямой с окружностью, обозначим её буквой Е и соединим с точкой В и с точкой С. Получим вписанные углы АВЕ и АСЕ, опирающиеся на диаметр АЕ, следовательно угол АВЕ и АСЕ равны по 90 0 .

Рассмотрим треугольники АВЕ и АВF: у них углы АВЕ и АFВ прямые, угол ЕАВ – общий, следовательно, эти треугольники подобны.

Составим отношение сторон:

A E A B . . = A B A F . . откуда по свойству пропорции АВ 2 =АЕ ∙ АF

Рассмотрим треугольники АСЕ и ADF, у которых углы АСЕ и AFD прямые, а угол FAD – общий. Значит, треугольники АСЕ и ADF подобны.

Составим отношение сторон:

A E A D . . = A C A F . . ; откуда выразим AD= A E ∙ A F А C . . = A E ∙ A F A C . .

Теперь рассмотрим наши два полученных равенства: АВ 2 =АЕ ∙ АF и AD= A E ∙ A F A C . .

Видим, что 36 2 =АЕ ∙ АF (подставили вместо АВ значение 36), также у нас известно, что АС=54. Найдем из второго равенства AD= A E ∙ A F A C . . = 36 2 54 . . = 24

Теперь найдем CD=AC-AD=54-24=30

pазбирался: Даниил Романович | обсудить разбор | оценить

На клетчатой бумаге с размером клетки 1х1 изображен треугольник АВС. Найти длину его средней линии, параллельной стороне АС.

Для решения задачи надо вспомнить свойство средней линии: она параллельна основанию и равна его половине. Следовательно, чтобы найти длину средней линии, надо сторону треугольника разделить пополам. Найдем сторону треугольника, которой параллельна средняя линия, т.е. АС, сосчитав клетки, получим, что АС равна 8. Значит, средняя линия равна 8:2=4.

pазбирался: Даниил Романович | обсудить разбор | оценить

В треугольнике АВС известно, что угол ВАС равен 84 0 , АD – биссектриса. Найдите угол ВАD. Ответ дайте в градусах.

Ключевое слово в данной задаче – биссектриса. Вспоминаем, что она делит угол пополам. Нам надо найти величину угла ВАD, следовательно он равен половине угла ВАС, то есть 84 0 :2=42 0

pазбирался: Даниил Романович | обсудить разбор | оценить

Урок геометрии «Замечательные точки и линии треугольника»

Разделы: Математика

Цели урока.

  • Обобщить и систематизировать знания по ранее изученному материалу.
  • Познакомить учащихся с теоремами Чевы и Менелая.
  • Сформировать умения решать ключевые задачи темы.
  • Удивительно, но треугольник, несмотря на свою кажущуюся простоту, является неисчерпаемым объектом изучения — никто даже в наше время не осмелится сказать, что изучил и знает все свойства треугольника. Действительно, кто не слышал о Бермудском треугольнике, в котором бесследно исчезают корабли и самолёты? А ведь сам треугольник таит в себе немало интересного и загадочного.

    Тема нашего сегодняшнего урока “Замечательные точки и линии треугольника”.

    Вспомним материал, который изучали ранее на уроках. С какими замечательными точками треугольника мы были знакомы ранее? (Учащиеся отвечают)

    К числу таких точек, изучаемых в школьном курсе геометрии относятся:

    • точка пересечения биссектрис (центр вписанной окружности);
    • точка пересечения серединных перпендикуляров (центр описанной окружности треугольника);
    • центр пересечения высот треугольника (ортоцентр);
    • точка пересечения медиан (центроид).

    Если рассмотреть дополнительно биссектрисы трех пар внешних углов треугольника, то получается еще три замечательные точки – центры вневписанных окружностей:

    В треугольнике ABC точка D делит сторону BC в отношении BD:DC= 1: 3, а точка O делит AD в отношении AO:OD=5:2. В каком отношении прямая BO делит отрезок AC? (Подсказка: сделать дополнительное построение и использовать теорему Фалеса).

    ABC, DBC, BD : DC= 1:3

    OAD, AO : OD= 5:2

    BO AC= E

    Проведем DM ll BE . По теореме Фалеса . Тогда AE= 5k, EM= 2k, где k — коэффициент пропорциональности. Аналогично , откуда MC= 3EM=6k; EC= 2k+6k= 8k; .

    Ответ: AE : EC= 5:8

    Для решения этой задачи пришлось выполнить дополнительное построение. Эту задачу можно решить без дополнительного построения, причем достаточно просто и быстро. Но для этого нам понадобится следующее утверждение:

    Теорема (Менелая). Пусть на сторонах AB, BC и на продолжении стороны AC ABC взяты соответственно точки C1, A1, B1, не совпадающие с вершинами треугольника. Если точки A1, B1, C1 лежат на одной прямой, то выполняется равенство

    ..=1 ()

    Точка C1 – середина стороны AB треугольника ABC. Точка O – середина отрезка CC1. В каком отношении делит прямая AO сторону BC?

    Точка A1 делит сторону BC треугольника ABC в отношении 1:2. Точка B1 делит сторону AC в отношении 2:1. Прямая A1B1 пересекает продолжение стороны AB в точке C1. Найдите отношение AB:BC1.

    Мы знаем, что медианы треугольника пересекаются в одной точке, биссектрисы треугольника пересекаются в одной точке, высоты треугольника (или их продолжения) пересекаются в одной точке. Поставим теперь общий вопрос. Рассмотрим ABC и отметим на его сторонах BC, AC и AB (или их продолжениях) соответственно точки L, M, K. При каком расположении этих точек прямые AL, BM и CK пересекутся в одной точке?

    Ответ на этот вопрос нашел в 1678 году итальянский инженер-гидравлик Джованни Чева (1698–1734 гг.). Чева создал учение о секущих, положившее начало новой синтетической геометрии. Известна его работа “О взаимном расположении пересекающихся прямых” (1678 г.) и теорема Чевы о соотношениях отрезков в треугольнике.

    Ответ на этот вопрос нашел в 1678 году итальянский инженер-гидравлик Джованни Чева (1698–1734 гг.). Чева создал учение о секущих, положившее начало новой синтетической геометрии. Известна его работа “О взаимном расположении пересекающихся прямых” (1678 г.) и теорема Чевы о соотношениях отрезков в треугольнике (Учащиеся смотрят доказательство этой теоремы http://files.school-collection.edu.ru/dlrstore/c1b2c70a-eea7-4ea4-843c-
    4c043be6009f/%5BG89D_8-03-02-34%5D_%5BML_004-2%5D.swf)

    Точки C1 и A1 делят стороны AB и BC треугольника ABC в отношении 1:2. Прямые CC1 и AA1 пересекаются в точке O. Найдите отношение, в котором прямая BO делит сторону CA.

    Решение: По условию задачи

    Используя теорему Чевы, находим

    Точки C1, B1, A1 делят стороны AB, AC, BC, соответственно, в отношениях 4:1, 2:1, 1:2. Выясните, пересекаются ли прямые AA1, BB1, CC1 в одной точке (Да).

    Сегодня на уроке мы с вами рассмотрели две замечательные теоремы планиметрии – теоремы Чевы и Менелая. Применение теорем Чевы и Менелая для позволяет получить решение многих стандартных и известных задач не менее простые и компактные, но и более эффективные.

    Точки пересечения треугольников определяются в следующем порядке:

    1.) Согласно заданию строятся точки по координатам.

    Точки пересечения треугольников

    2.) Теперь важным шагом является определение плоскости относительно которой будем искать точки пересечения треугольников.

    Вы можете сказать: «можно найти точки относительно плоскости АВС», но нет. Почему!? Я объясню, посмотрев на рисунок, расположенный внизу, можно увидеть что треугольник D2E2F2, а точнее две стороны пересекают треугольник А2В2С2 в четырех точках, соответственно используем треугольник D2E2F2,как опорную плоскость. 

    • Сторона D2E2 пересекает плоскость А2В2С2 в точках 12 и 22, эти точки переносим на нижнее изображение: на стороны относительно которых они были найдены и обозначаем 11 и 21.
    • Точки 11 и 21 соединяются.
    • Прямая 1121 пересекает сторону D1E1 в точке, обозначим Р1 (первая точка найдена).

    Точки пересечения треугольников_2

    3.) Сторона E2F2 пересекает стороны B2C2 и A2C2 в точках 42 и 32. Опускаем их на нижний рисунок и обозначаем 41 и 31.

    Точки пересечения треугольников_3

    4.) Соединяются точки 31 и 41.

    Точки пересечения треугольников_4

    5.) Продливается прямая 3141 до пересечения с отрезком E1F1. В месте пересечения ставим точку и обозначаем Н.

    Точки пересечения треугольников_5

    6.) Точки P1 и H соединяются. Полученная прямая P1H пересекает отрезок А2С2 в точке K1 (найдена вторая точка).

    Точки пересечения треугольников_6

    7.) Переносятся точки P1 и K1, расположенные на отрезках D1E1 и E1F1, на отрезки D2E2 и E2F2. И обозначаются P2 и K2.

    Точки пересечения треугольников_7

    8.) Соединяются P2 и K2.

    Точки пересечения треугольников_8

    9.) А теперь главный момент: указать видимые и невидимые стороны.

    Посмотрите на рисунок снизу. На нем точки D, F, B, C и E находятся в двух проекциях «свободно», но не точка A. Соответственно, относительно ее и необходимо начинать чертить линии.

    Точки пересечения треугольников_9

    Пример выполненной работы на эту тему смотрите здесь.

    Немного добавлю по этой статье: «Точки пересечения треугольников»

    По своему опыту скажу: «чтобы начертить подобный чертеж, необходимо обладать пространственным воображением» и понимать, относительно какой плоскости отталкиваться для решения подобной задачи. Но благодаря этой статьи надеюсь у Вас получится разобраться с темой: пересечение плоских фигур.

    Просмотрели 425


    Построение линии пересечения двух треугольников.

    Построить линию пересечения треугольников ABC и EDK и показать видимость их в проекциях.
    Определить натуральную величину треугольника ABC.

    1. Строим проекции треугольника АВС.

    Рисунок 1. Построение проекций треугольника АВС

    2. Строим проекции треугольника EDK.

    Рисунок 2. Построение проекций треугольника EDK

    3. Находим точку пересечения стороны АС с треугольником EDK

     Рисунок 3. Точка пересечения отрезка АС с треугольником EDK

    4. Находим точку пересечения стороны АB с треугольником EDKи строим линию пересечения MN

    Построение линии пересечения двух треугольников

    5. С помощью конкурирующих точек 4 и 5 определяем видимость треугольников на фронтальной плоскости проекций.

    Рисунок 5. Видимость треугольников на фронтальной плоскости проекций.

    6. С помощью конкурирующих точек 6 и 7 определяем видимость треугольников на горизонтальной плоскости проекций.

    Рисунок 5. Видимость треугольников на горизонтальной плоскости проекций.

    7. В треугольнике ABCпроводим горизонталь CLи плоскопараллельным перемещением относительно горизонтальной плоскости проекций располагаем горизонталь перпендикулярно фронтальной плоскости проекций.

    Строим фронтальную проекцию треугольника ABC. Треугольник должен проецироваться в прямую линию.

    Рисунок 7. Пересечение двух плоскостей. Определение натуральной величины треугольника АВС

    8. Определяем действительную величину треугольника ABCи строим на нем линию пересечения MN.

    Рисунок 8. Определение натуральной величины треугольника ABC

    9. Оформление задачи.

    Построение линии пересечения двух треугольников. Готовый чертеж.

    № вар. ХА YА ZА ХB YB ZB ХC YC ZC ХD YD ZD ХE YE ZE ХK YK ZK Цена В корзину № вар.
    1 117 90 9 52 25 79 0 83 48 68 110 85 135 19 36 14 52 0 50 руб. в корзину 1
    2 120 90 10 50 25 80 0 85 50 70 110 85 135 20 35 15 50 0 50 руб. в корзину 2
    3 115 90 10 52 25 80 0 80 45 64 105 80 130 18 35 12 50 0 50 руб. в корзину 3
    4 120 92 10 50 20 75 0 80 46 70 115 85 135 20 32 10 50 0 50 руб. в корзину 4
    5 117 9 90 52 79 25 0 48 83 68 85 110 135 36 19 14 0 52 50 руб. в корзину 5
    6 115 7 85 50 80 25 0 50 85 70 85 110 135 20 20 15 0 50 50 руб. в корзину 6
    7 120 10 90 48 82 20 0 52 82 65 80 110 130 38 20 15 0 52 50 руб. в корзину 7
    8 116 8 88 50 78 25 0 46 80 70 85 108 135 36 20 15 0 52 50 руб. в корзину 8
    9 115 10 92 50 80 25 0 50 85 70 85 110 135 35 20 15 0 50 50 руб. в корзину 9
    10 18 10 90 83 79 25 135 48 82 67 85 110 0 36 19 121 0 52 50 руб. в корзину 10
    11 20 12 92 85 89 25 135 50 85 70 85 110 0 35 20 120 0 52 50 руб. в корзину 11
    12 15 10 85 80 80 20 130 50 80 70 80 108 0 35 20 120 0 50 50 руб. в корзину 12
    13 16 12 88 85 80 25 130 50 80 75 85 110 0 30 15 120 0 50 50 руб. в корзину 13
    14 18 12 85 85 80 25 135 50 80 70 85 110 0 35 20 120 0 50 50 руб. в корзину 14
    15 18 90 10 83 25 79 135 83 48 67 110 85 0 19 36 121 52 0 50 руб. в корзину 15
    16 18 40 75 83 117 6 135 47 38 67 20 0 0 111 48 121 78 86 50 руб. в корзину 16
    17 18 75 40 83 6 107 135 38 47 67 0 20 0 48 111 121 86 78 50 руб. в корзину 17
    18 117 75 40 52 6 107 0 38 47 135 0 20 86 48 111 15 68 78 50 руб. в корзину 18

    Начертательная геометрия решение задач

    Начертательная геометрия 1 курс готовые чертежи по вариантам

    Добавить комментарий

    В данной публикации мы рассмотрим, что такое точка пересечения двух прямых, и как найти ее координаты разными способами. Также разберем пример решения задачи по этой теме.

    • Нахождение координат точки пересечения

    • Пример задачи

    Нахождение координат точки пересечения

    Пересекающимися называются прямые, которые имеют одну общую точку.

    Точка пересечения двух прямых

    M – точка пересечения прямых. Она принадлежит им обоим, значит ее координаты одновременно должны удовлетворять обоим их уравнениях.

    Для нахождения координат этой точки на плоскости можно использовать два способа:

    • графический – чертим графики прямых на координатой плоскости и находим их точку пересечения (не всегда применимо);
    • аналитический – более универсальный метод. Мы объединяем уравнения прямых в систему. Затем решаем ее и получаем требуемые координаты. От количества решений зависит то, каким образом ведут себя прямые по отношению друг к другу:
      • одно решение – пересекаются;
      • множество решений – совпадают;
      • нет решений – параллельны, т.е. не пересекаются.

    Пример задачи

    Найдем координаты точки пересечения прямых y = x + 6 и y = 2x – 8.

    Решение

    Составим систему уравнений и решим ее:

    Пример системы линейных уравнений

    В первом уравнении выразим x через y:
    x = y – 6

    Теперь подставим полученное выражение во второе уравнение вместо x:
    y = 2 (y – 6) – 8
    y = 2y – 12 – 8
    y – 2y = -12 – 8
    -y = -20
    y = 20

    Значит, x = 20 – 6 = 14

    Таким образом, общая точка пересечения заданных прямых имеет координаты (14, 20).

    Содержание

    1. Чертежик
    2. Метки
    3. Точки пересечения треугольников пошаговое выполнение
    4. Немного добавлю по этой статье: «Точки пересечения треугольников»
    5. Построить линию пересечения треугольников ABC и EDK и показать видимость их в проекциях. Определить натуральную величину треугольника ABC.
    6. Построение линии пересечения плоскостей, заданных различными способами
    7. Пересечение плоскостей, заданных следами
    8. Пересечение плоскостей треугольников
    9. Чертежик
    10. Метки
    11. Линия пересечения плоскостей двух треугольников

    Чертежик

    Метки

    Точки пересечения треугольников пошаговое выполнение

    Точки пересечения треугольников определяются в следующем порядке:

    1.) Согласно заданию строятся точки по координатам.

    2.) Теперь важным шагом является определение плоскости относительно которой будем искать точки пересечения треугольников.

    Вы можете сказать: «можно найти точки относительно плоскости АВС», но нет. Почему!? Я объясню, посмотрев на рисунок, расположенный внизу, можно увидеть что треугольник D2E2F2, а точнее две стороны пересекают треугольник А2В2С2 в четырех точках, соответственно используем треугольник D2E2F2,как опорную плоскость.

    • Сторона D2E2 пересекает плоскость А2В2С2 в точках 1 2 и 2 2, эти точки переносим на нижнее изображение: на стороны относительно которых они были найдены и обозначаем 1 1 и 2 1.
    • Точки 1 1 и 2 1 соединяются.
    • Прямая 1 1 2 1 пересекает сторону D1E1 в точке, обозначим Р1 (первая точка найдена).

    3.) Сторона E2F2 пересекает стороны B2C2 и A2C2 в точках 4 2 и 3 2. Опускаем их на нижний рисунок и обозначаем 4 1 и 3 1.

    4.) Соединяются точки 3 1 и 4 1.

    5.) Продливается прямая 3 1 4 1 до пересечения с отрезком E1F1. В месте пересечения ставим точку и обозначаем Н.

    6.) Точки P1 и H соединяются. Полученная прямая P1H пересекает отрезок А2С2 в точке K1 (найдена вторая точка).

    7.) Переносятся точки P1 и K1, расположенные на отрезках D1E1 и E1F1, на отрезки D2E2 и E2F2. И обозначаются P2 и K2.

    8.) Соединяются P2 и K2.

    9.) А теперь главный момент: указать видимые и невидимые стороны.

    Посмотрите на рисунок снизу. На нем точки D, F, B, C и E находятся в двух проекциях «свободно», но не точка A. Соответственно, относительно ее и необходимо начинать чертить линии.

    Пример выполненной работы на эту тему смотрите здесь.

    Немного добавлю по этой статье: «Точки пересечения треугольников»

    По своему опыту скажу: «чтобы начертить подобный чертеж, необходимо обладать пространственным воображением» и понимать, относительно какой плоскости отталкиваться для решения подобной задачи. Но благодаря этой статьи надеюсь у Вас получится разобраться с темой: пересечение плоских фигур.

    Источник

    Построить линию пересечения треугольников ABC и EDK и показать видимость их в проекциях.
    Определить натуральную величину треугольника ABC.

    1. Строим проекции треугольника АВС.

    2. Строим проекции треугольника EDK.

    3. Находим точку пересечения стороны АС с треугольником EDK

    4. Находим точку пересечения стороны А B с треугольником EDK и строим линию пересечения MN

    5. С помощью конкурирующих точек 4 и 5 определяем видимость треугольников на фронтальной плоскости проекций.

    6. С помощью конкурирующих точек 6 и 7 определяем видимость треугольников на горизонтальной плоскости проекций.

    7. В треугольнике ABC проводим горизонталь CL и плоскопараллельным перемещением относительно горизонтальной плоскости проекций располагаем горизонталь перпендикулярно фронтальной плоскости проекций.

    Строим фронтальную проекцию треугольника ABC . Треугольник должен проецироваться в прямую линию.

    8. Определяем действительную величину треугольника ABC и строим на нем линию пересечения MN.

    Источник

    Построение линии пересечения плоскостей, заданных различными способами

    Две плоскости пересекаются друг с другом по прямой линии. Чтобы её построить, необходимо определить две точки, принадлежащие одновременно каждой из заданных плоскостей. Рассмотрим, как это делается, на следующих примерах.

    Найдем линию пересечения плоскостей общего положения α и β для случая, когда пл. α задана проекциями треугольника ABC, а пл. β – параллельными прямыми d и e. Решение этой задачи осуществляется путем построения точек L1 и L2, принадлежащих линии пересечения.

    1. Вводим вспомогательную горизонтальную плоскость γ1. Она пересекает α и β по прямым. Фронтальные проекции этих прямых, 1»C» и 2»3», совпадают с фронтальным следом пл. γ1. Он обозначен на рисунке как f0γ1 и расположен параллельно оси x.
    2. Определяем горизонтальные проекции 1’C’ и 2’3′ по линиям связи.
    3. Находим горизонтальную проекцию точки L1 на пересечении прямых 1’C’ и 2’3′. Фронтальная проекция точки L1 лежит на фронтальном следе плоскости γ.
    4. Вводим вспомогательную горизонтальную плоскость γ2. С помощью построений, аналогичных описанным в пунктах 1, 2, 3, находим проекции точки L2.
    5. Через L1 и L2 проводим искомую прямую l.

    Стоит отметить, что в качестве пл. γ удобно использовать как плоскости уровня, так и проецирующие плоскости.

    Пересечение плоскостей, заданных следами

    Найдем линию пересечения плоскостей α и β, заданных следами. Эта задача значительно проще предыдущей. Она не требует введения вспомогательных плоскостей. Их роль выполняют плоскости проекций П1 и П2.

    1. Находим точку L’1, расположенную на пересечении горизонтальных следов h0α и h0β. Точка L»1 лежит на оси x. Её положение определяется при помощи линии связи, проведенной из L’1.
    2. Находим точку L»2 на пересечении фронтальных следов пл. α и β. Точка L’2 лежит на оси x. Её положение определяется по линии связи, проведенной из L»2.
    3. Проводим прямые l’ и l» через соответствующие проекции точек L1 и L2, как это показано на рисунке.

    Таким образом, прямая l, проходящая через точки пересечения следов плоскостей, является искомой.

    Пересечение плоскостей треугольников

    Рассмотрим построение линии пересечения плоскостей, заданных треугольниками ABC и DEF, и определение их видимости методом конкурирующих точек.

    1. Через прямую DE проводим фронтально-проецирующую плоскость σ: на чертеже обозначен ее след f. Плоскость σ пересекает треугольник ABC по прямой 35. Отметив точки 3»=A»B»∩f и 5»=A»С»∩f, определяем положение (∙)3′ и (∙)5′ по линиям связи на ΔA’B’C’.
    2. Находим горизонтальную проекцию N’=D’E’∩3’5′ точки N пересечения прямых DE и 35, которые лежат во вспомогательной плоскости σ. Проекция N» расположена на фронтальном следе f на одной линии связи с N’.

    Через прямую BC проводим фронтально-проецирующую плоскость τ: на чертеже обозначен ее след f. С помощью построений, аналогичных тем, что описаны в пунктах 1 и 2 алгоритма, находим проекции точки K.

  • Через N и K проводим искомую прямую NK – линию пересечения ΔABC и ΔDEF.
  • Фронтально-конкурирующие точки 4 и 5, принадлежащие ΔDEF и ΔABC соответственно, находятся на одной фронтально-проецирующей прямой, но расположены на разном удалении от плоскости проекций π2. Так как (∙)5′ находится ближе к наблюдателю, чем (∙)4′, то отсек ΔABC с принадлежащей ему (∙)5 является видимым в проекции на пл. π2. С противоположной стороны от линии N»K» видимость треугольников меняется.

    Горизонтально-конкурирующие точки 6 и 7, принадлежащие ΔABC и ΔDEF соответственно, находятся на одной горизонтально-проецирующей прямой, но расположены на разном удалении от плоскости проекций π1. Так как (∙)6» находится выше, чем (∙)7», то отсек ΔABC с принадлежащей ему (∙)6 является видимым в проекции на пл. π1. С противоположной стороны от линии N’K’ видимость треугольников меняется.

    Источник

    Чертежик

    Метки

    Линия пересечения плоскостей двух треугольников

    Линия пересечения плоскостей двух треугольников начинают с построения точек по координатам. (на рисунке 1 представлены построенные плоскости)

    1. Построение по координатам.

    2. Выбираете какая из сторон плоскостей будет секущей . В данном случае возьмем Е2D2 ,принадлежащая плоскости Е2D2F2, которая пересекает плоскость А2В2С2 в точка 12 и 22.

    Полученные точки, проецируют на стороны плоскости, которым они принадлежат, т.е С1В1 и А1В1.

    Т.к. секущей является ЕD, то необходимо чтобы прямая 1121 пересекла секущую. В данном случае в точке К1.(Первая точка найдена)

    3. Одной точки мало будет. Повторим действия, описанные в пункте 2, но с отрезком E2F2.

    E2F2 пересекает А2В2С2 в точках 32 и 42. Проецируете на стороны А1С1 и А1В1.

    Т.к. секущей является EF, то необходимо чтобы прямая 3141 пересекла секущую, но такого нет (не хватает немного отрезка). Для этого прямая 3141 продливается пока не пересечется с E1F1. Обозначаете точку (обозначил Н1).(Но Н1 не является точкой пересечения, потому как на виде сверху принадлежит только одной плости)

    4. Соединяются точки К1 и Н1. Ближайшая точка, принадлежащая этой прямой и двум плоскостям, находится на стороне А1В1 плоскости А1В1С1, обозначаем Р1. (Вторая точка найдена)

    5. Найденные точки необходимо спроецировать на стороны плоскости, которым они принадлежат.

    5. Обводите соответсвующими линиями контуры плоскостей, воспользовавшись методом конкурирующих точек.

    Источник

    Понравилась статья? Поделить с друзьями:
  • Low level fatal error ark survival evolved как исправить
  • Как найти групповой чат в вайбере
  • Как найти файл по автозагрузке
  • Как найти длину дуги сектора окружности формула
  • Рынок на савеловском как найти