Как найти периметр окружности через стороны

Как рассчитать периметр круга или длину окружности

На данной странице калькулятор поможет рассчитать периметр круга или длину окружности онлайн. Для расчета задайте радиус или диаметр.

Круг – множество точек плоскости, удаленных от заданной точки этой плоскости (центр круг) на расстояние, не превышающее заданное (радиус круга).

Окружность – замкнутая плоская кривая, все точки которой одинаково удалены от данной точки (центра), лежащей в той же плоскости, что и кривая.

Онлайн калькулятор периметра круга. Как узнать длину круга, окружности.

Вычислить периметр круга через:

Длина радиуса R:

Что такое длина окружности или периметр круга и как ее вычислить? Для того что бы это понять нам необходимо разобраться с тем чему равна длина окружности.

Длина окружности всегда равна числу π (Пи)

Давайте с вами разберемся что же такое число пи. Π – это постоянная величина равная 3,14159265…

Но обычно Пи приравнивают к 3,14 и это число используют для математических расчетов в которых не требуется оооооооооочень точное вычисление.

Откуда же взялось это число и почему оно всегда равно одному и тому же? Для того что бы нам понять что такое число пи нам необходимо разобрать простой пример. Допустим у нас имеется окружность с диаметром равному единицы, так вот длина окружности — это число «пи».

Иными словами Пи ≈ 3,14 диаметрам круга или окружности.

Теперь зная и понимая что такое π мы можем с легкостью высчитать периметр или длину окружности которая равна

P = D * π
или
P = 2 πR
где R –это радиус, а D – это диаметр

Формула периметра круга

Определение круга часто звучит, как часть плоскости, которая ограничена окружностью. Окружность круга является плоской замкнутой кривой. Все точки, расположенные на кривой, удалены от центра круга на одинаковое расстояние. В круге его длина и периметр одинаковы. Соотношение длины любой окружности и ее диаметра постоянное и обозначается числом π = 3,1415 .

Определение периметра круга

Периметр круга радиуса r равен удвоенному произведению радиуса r на число π(

Формула периметра круга

Периметр круга радиуса (r) :

[ LARGE

= 2 cdot pi cdot r ]

[ LARGE

= pi cdot d ]

( P ) – периметр (длина окружности).

Окружностью будем называть такую геометрическую фигуру, которая будет состоять из всех таких точек, которые находятся на одинаковом расстоянии от какой-либо заданной точки.

Центром окружности будем называть точку, которая задается в рамках определения 1.

Радиусом окружности будем называть расстояние от центра этой окружности до любой ее точки.

В декартовой системе координат ( xOy ) мы также можем ввести уравнение любой окружности. Обозначим центр окружности точкой ( X ) , которая будет иметь координаты ( (x_0,y_0) ) . Пусть радиус этой окружности равняется ( τ ) . Возьмем произвольную точку ( Y ) , координаты которой обозначим через ( (x,y) ) (рис. 2).

По формуле расстояния между двумя точками в заданной нами системе координат, получим:

С другой стороны, ( |XY| ) — это расстояние от любой точки окружности до выбранного нами центра. То есть, по определению 3, получим, что ( |XY|=τ ) , следовательно

Таким образом, мы и получаем, что уравнение (1) является уравнением окружности в декартовой системе координат.

Длина окружности (периметр круга)

Будем выводить длину произвольной окружности ( C ) с помощью её радиуса, равного ( τ ) .

Будем рассматривать две произвольные окружности. Обозначим их длины через ( C ) и ( C’ ) , у которых радиусы равняются ( τ ) и ( τ’ ) . Будем вписывать в эти окружности правильные ( n ) -угольники, периметры которых равняются ( ρ ) и ( ρ’ ) , длины сторон которых равняются ( α ) и ( α’ ) , соответственно. Как мы знаем, сторона вписанного в окружность правильного ( n ) – угольника равняется

Тогда, будем получать, что

Получаем, что отношение ( frac<ρ><ρ’>=frac<2τ> <2τ’>) будет верным независимо от значения числа сторон вписанных правильных многоугольников. То есть

С другой стороны, если бесконечно увеличивать число сторон вписанных правильных многоугольников (то есть ( n→∞ ) ), будем получать равенство:

Из последних двух равенств получим, что

Видим, что отношение длины окружности к его удвоенному радиусу всегда одно и тоже число, независимо от выбора окружности и ее параметров, то есть

Эту постоянную принять называть числом «пи» и обозначать ( π ) . Приближенно, это число будет равняться ( 3,14 ) (точного значения этого числа нет, так как оно является иррациональным числом). Таким образом

Окончательно, получим, что длина окружности (периметр круга) определяется формулой

источники:

http://tamali.net/calculator/2d/circle/perimeter/

http://calcsbox.com/post/formula-perimetra-kruga.html

Автор статьи

Наталья Игоревна Восковская

Эксперт по предмету «Математика»

Задать вопрос автору статьи

Очевидно, что границей любого круга является окружность. Поэтому понятие периметра круга совпадает с таким понятием, как длина окружности. Поэтому вначале вспомним, что является окружностью, и какие понятия с ней связаны.

Понятие окружности

Определение 1

Окружностью будем называть такую геометрическую фигуру, которая будет состоять из всех таких точек, которые находятся на одинаковом расстоянии от какой-либо заданной точки.

Определение 2

Центром окружности будем называть точку, которая задается в рамках определения 1.

Определение 3

Радиусом окружности будем называть расстояние от центра этой окружности до любой ее точки (Рис. 1).

Логотип baranka

Сдай на права пока
учишься в ВУЗе

Вся теория в удобном приложении. Выбери инструктора и начни заниматься!

Получить скидку 3 000 ₽

В декартовой системе координат $xOy$ мы также можем ввести уравнение любой окружности. Обозначим центр окружности точкой $X$, которая будет иметь координаты $(x_0,y_0)$. Пусть радиус этой окружности равняется $τ$. Возьмем произвольную точку $Y$, координаты которой обозначим через $(x,y)$ (рис. 2).

По формуле расстояния между двумя точками в заданной нами системе координат, получим:

$|XY|=sqrt{(x-x_0)^2+(y-y_0)^2}$

«Как найти периметр круга» 👇

С другой стороны, $|XY|$ — это расстояние от любой точки окружности до выбранного нами центра. То есть, по определению 3, получим, что $|XY|=τ$, следовательно

$sqrt{(x-x_0)^2+(y-y_0)^2}=τ$

$(x-x_0)^2+(y-y_0)^2=τ^2$ (1)

Таким образом, мы и получаем, что уравнение (1) является уравнением окружности в декартовой системе координат.

Длина окружности (периметр круга)

Будем выводить длину произвольной окружности $C$ с помощью её радиуса, равного $τ$.

Будем рассматривать две произвольные окружности. Обозначим их длины через $C$ и $C’$, у которых радиусы равняются $τ$ и $τ’$. Будем вписывать в эти окружности правильные $n$-угольники, периметры которых равняются $ρ$ и $ρ’$, длины сторон которых равняются $α$ и $α’$, соответственно. Как мы знаем, сторона вписанного в окружность правильного $n$ – угольника равняется

$α=2τsinfrac{180^0}{n}$

Тогда, будем получать, что

$ρ=nα=2nτfrac{sin180^0}{n}$

$ρ’=nα’=2nτ’frac{sin180^0}{n}$

Значит

$frac{ρ}{ρ’}=frac{2nτsinfrac{180^0}{n}}{2nτ’frac{sin180^0}{n}}=frac{2τ}{2τ’}$

Получаем, что отношение $frac{ρ}{ρ’}=frac{2τ}{2τ’}$ будет верным независимо от значения числа сторон вписанных правильных многоугольников. То есть

$lim_{ntoinfty}(frac{ρ}{ρ’})=frac{2τ}{2τ’}$

С другой стороны, если бесконечно увеличивать число сторон вписанных правильных многоугольников (то есть $n→∞$), будем получать равенство:

$lim_{ntoinfty}(frac{ρ}{ρ’})=frac{C}{C’}$

Из последних двух равенств получим, что

$frac{C}{C’}=frac{2τ}{2τ’}$

То есть

$frac{C}{2τ}=frac{C’}{2τ’}$

Видим, что отношение длины окружности к его удвоенному радиусу всегда одно и тоже число, независимо от выбора окружности и ее параметров, то есть

$frac{C}{2τ}=const$

Эту постоянную принять называть числом «пи» и обозначать $π$. Приближенно, это число будет равняться $3,14$ (точного значения этого числа нет, так как оно является иррациональным числом). Таким образом

$frac{C}{2τ}=π$

Окончательно, получим, что длина окружности (периметр круга) определяется формулой

$C=2πτ$

Пример задач

Пример 1

Найти периметр круга, который вписан в квадрат со стороной, равной $α$.

Решение.

Пусть нам дан квадрат $ABCD$, в который вписана окружность с центром $O$. Изобразим рисунок по условию задачи (рис. 3).

Очевидно, что центр окружности будет совпадать с центром квадрата, в которой она вписана. Так как квадрат описан вокруг окружности, то его стороны будут касательными к ней, то есть радиус, проведенный, к примеру, к стороне $AB$ будет перпендикулярен к ней. Значит, диаметр окружности равняется стороне квадрата. То есть

$τ=frac{α}{2}$

По формуле периметра круга, получим, что

$C=2πcdot frac{α}{2}=πα$

Ответ: $πα$.

Пример 2

Найти периметр круга, который описан у прямоугольного треугольника с катетами, равными $α$ и $β$.

Решение.

Пусть нам дан треугольник $ABC$ с прямым углом $C$, у которой описана окружность с центром $O$. Как мы знаем, диаметром такой окружности является гипотенуза такого треугольника. То есть $|AO|=|OB|=|OC|=τ$ (рис. 4).

По теореме Пифагора, гипотенуза равняется

$|AB|=sqrt{α^2+β^2}$

То есть

$|AO|=τ=frac{sqrt{α^2+β^2}}{2}$

Периметр круга, по формуле, равняется

$C=2πcdot frac{sqrt{α^2+β^2}}{2}=πsqrt{α^2+β^2}$

Ответ: $πsqrt{α^2+β^2}$.

Находи статьи и создавай свой список литературы по ГОСТу

Поиск по теме

Длина (периметр) окружности калькулятор онлайн умеет вычислять длину восемью способами:

  1. По радиусу.
  2. По диаметру.
  3. По площади окружности.
  4. По диагонали вписанного прямоугольника.
  5. По стороне описанного квадрата.
  6. По сторонам и площади описанного треугольника.
  7. По площади вписанного треугольника.
  8. По стороне вписанного многогранника.

Сделав расчет периметра на этом онлайн калькуляторе Вы получите не только ответ, но и детальное, пошаговое решение с выводом формул и промежуточных действий.

Длина окружности или периметр окружности — это длина кривой из множества точек которая ограничивает собой круг.
Длина окружности может быть найдена по длине пути, который проедет круг сделав один полный оборот.
 

Как найти длину окружности?

Найти длину окружности очень просто на нашем онлайн калькуляторе. Так же длина может быть найдена самостоятельно по формулам. Выбор нужной формулы зависит от того какие данные известны.

1) По радиусу


где R — радиус окружности.

2) По диаметру


где D — диаметр окружности.

3) По площади окружности


ггде S — площадь окружности.

4) По диагонали вписанного прямоугольника


где d — диагональ вписанного прямоугольника.

5) По стороне описанного квадрата


где a — сторона описанного квадрата.

6) По сторонам и площади описанного треугольника


где a,b,c — стороны описанного треугольника, S — его площадь.

7) По площади вписанного треугольника


где p — полупериметр вписанного треугольника, S — его площадь.

8) По стороне вписанного многогранника


где a — сторона вписанного многогранника, N — количество сторон.

Скачать все формулы в формате Word

Способы расчета периметра круга и длины окружности

Содержание:

  • Периметр круга — что это, определение
  • Как рассчитать периметр круга или длину окружности

    • Через радиус
    • Через диаметр
  • Примеры решения задач

Периметр круга — что это, определение

Определение

Круг — это геометрическое множество точек на плоскости, расстояние от которых до данной точки, называемой центром круга, не превосходит заданного неотрицательного числа.

Оределение

Окружность — замкнутая кривая на плоскости, все точки которой равноудалены от центра окружности.

Эти определения плотно связаны друг с другом. Круг — это часть плоскости, ограниченная окружностью. Окружность — это граница круга.

Осторожно! Если преподаватель обнаружит плагиат в работе, не избежать крупных проблем (вплоть до отчисления). Если нет возможности написать самому, закажите тут.

Определение

Радиус — расстояние от центра окружности до любой ее точки. Это отрезок, который соединяет центр круга с его границей.

Определение

Диаметр — это отрезок, соединяющий две точки окружности и проходящий через ее центр. Он равен двум радиусам.

Круг

 

Определение

Периметр — это длина окружности, ограничивающей круг.

Понятия «периметр круга» и «длина окружности» считаются синонимичными.

Как рассчитать периметр круга или длину окружности

Чтобы вычислить периметр круга, необходимо ввести постоянную величину — число Пи. Оно равно отношению длины окружности к ее диаметру. Это отношение идентично для всех окружностей и равно (pi=3,14159…)

Чтобы произвести расчет периметра круга, достаточно помнить это число до двух знаков после запятой:

(pi=3,14)

Помимо этого, для вычисления необходимо знать длину радиуса или диаметра.

Через радиус

Длину окружности L можно найти по формуле через радиус:

(L=2pi R)

где (pi ) — число Пи, R — радиус.

Через диаметр

Длину окружности L можно найти по формуле через диаметр. Поскольку диаметр D равен двум радиусам:

(L=pi D)

Примеры решения задач

Задача

Каков периметр круга, если его радиус равен 0,5 см?

Решение

По формуле, (L= 2pi R). Отсюда:

(L=2pi R=2cdot0,5pi=piapprox3,14)

Ответ: 3,14 см.

Задача

Какова длина окружности, если ее диаметр равен 2 см?

Решение

По формуле, (L=pi D). Отсюда:

(L=pi D=picdot2approx3,14cdot2=6,28)

Ответ: 6,28 см.

Насколько полезной была для вас статья?

Рейтинг: 3.00 (Голосов: 2)

Выделите текст и нажмите одновременно клавиши «Ctrl» и «Enter»

Текст с ошибкой:

Расскажите, что не так

Поиск по содержимому

При помощи нашего калькулятора вы легко сможете узнать периметр круга или длину окружности.

Что такое длина окружности или периметр круга и как ее вычислить? Для того что бы это понять нам необходимо разобраться с тем чему равна длина окружности.

Длина окружности всегда равна числу π (Пи)

Давайте с вами разберемся что же такое число пи. Π – это постоянная величина равная 3,14159265…

Но обычно Пи приравнивают к 3,14 и это число используют для математических расчетов в которых не требуется оооооооооочень точное вычисление.

Откуда же взялось это число и почему оно всегда равно одному и тому же? Для того что бы нам понять что такое число пи нам необходимо разобрать простой пример. Допустим у нас имеется окружность с диаметром равному единицы, так вот длина окружности — это число «пи».

Иными словами Пи ≈ 3,14 диаметрам круга или окружности.

Теперь зная и понимая что такое π мы можем с легкостью высчитать периметр или длину окружности которая равна

P = D * π
или
P = 2 πR
где R –это радиус, а D – это диаметр

Понравилась статья? Поделить с друзьями:
  • Как составить комплексную образовательную программу
  • Как найти пищевые отходы
  • Как найти сис в предложении
  • Как найти высоту боковой грани тетраэдра
  • Как найти американца на фейсбук