Расчёт периметра прямоугольного треугольника по катетам
Калькулятор рассчитывает периметр прямоугольного треугольника по катетам.
Введите первый катет
Введите второй катет
Периметром треугольника называется сумма всех длин его сторон.
Формула периметра прямоугольного треугольника по катетам
Подставим в формулу периметра
Получится
Где b, c — катеты
Разберём пример
Дан прямоугольный треугольник с катетами 4 и 3 найти его периметр
По теореме Пифагора найдём гипотенузу
Подставим в формулу периметра
Похожие калькуляторы
Содержание:
- Формула
- Примеры вычисления периметра прямоугольного треугольника
Формула
Чтобы найти периметр прямоугольного треугольника нужно найти сумму длин его сторон.
Таким образом, если $ABC$ — прямоугольный треугольник, в
котором
$a$ и
$b$ — длинны катетов, а
$c$ — длина гипотенузы, то периметр находится по формуле:
$$P_{Delta A B C}=a+b+c$$
Примеры вычисления периметра прямоугольного треугольника
Пример
Задание. В прямоугольном треугольнике катеты равны 3 дм и 4 дм, а гипотенуза —
5 дм. Найти его периметр.
Решение. Найдем периметр этого треугольника по формуле
$$P_{Delta A B C}=a+b+c$$
Подставляя заданные длины сторон, получим:
$P_{Delta A B C}=a3+4+5=12$ (дм)
Ответ. $P_{Delta A B C}=12$ (дм)
236
проверенных автора готовы помочь в написании работы любой сложности
Мы помогли уже 4 430 ученикам и студентам сдать работы от решения задач до дипломных на отлично! Узнай стоимость своей работы за 15 минут!
Пример
Задание. В прямоугольном треугольнике
$ABC$ длина гипотенузы и одного из катетов соответственно равны
13 м и 12 м. Найти периметр $Delta A B C$.
Решение. Введем обозначение
$a$ и
$b$ — дины катетов,
$c$ — длина гипотенузы. По условию
$c=13$ м и
$a=12$ м. Длину
$b$ второго катета найдем по теореме Пифагора:
$$b=sqrt{c^{2}-a^{2}}$$
Подставляя заданные длины сторон, получим
$b=sqrt{13^{2}-12^{2}}=sqrt{169-144}=sqrt{25}=5$ (м)
Теперь по формуле
$$P_{Delta A B C}=a+b+c$$
можем найти искомый периметр:
$P_{Delta A B C}=13+12+5=30$ (м)
Ответ. $P_{Delta A B C}=30$ (м)
Читать дальше: как найти периметр равнобедренного треугольника.
Выбирайте формулу в зависимости от известных величин.
1. Как найти периметр треугольника, зная три стороны
Просто посчитайте сумму всех сторон.
- P — искомый периметр;
- a, b, c — стороны треугольника.
2. Как найти периметр треугольника, зная его площадь и радиус вписанной окружности
Умножьте площадь треугольника на 2.
Разделите результат на радиус вписанной окружности.
- P — искомый периметр;
- S — площадь треугольника;
- r — радиус вписанной окружности.
3. Как вычислить периметр треугольника, зная две стороны и угол между ними
Сначала найдите неизвестную сторону треугольника с помощью теоремы косинусов:
- Умножьте одну сторону на вторую, на косинус угла между ними и на 2.
- Посчитайте сумму квадратов известных сторон и отнимите от неё число, полученное в предыдущем действии.
- Найдите корень из результата.
Теперь прибавьте к найденной стороне две ранее известные стороны.
- P — искомый периметр;
- b, c — известные стороны треугольника;
- ɑ — угол между известными сторонами;
- a — неизвестная сторона треугольника.
4. Как найти периметр равностороннего треугольника, зная одну сторону
Умножьте сторону на 3.
- P — искомый периметр;
- a — любая сторона треугольника (напомним, в равностороннем треугольнике все стороны равны).
5. Как вычислить периметр равнобедренного треугольника, зная боковую сторону и основание
Умножьте боковую сторону на 2.
Прибавьте к результату основание.
- P — искомый периметр;
- a — боковая сторона треугольника (в равнобедренном треугольнике боковые стороны равны);
- b — основание треугольника (это сторона, которая отличается длиной от остальных).
6. Как найти периметр равнобедренного треугольника, зная боковую сторону и высоту
Найдите квадраты боковой стороны и высоты.
Отнимите от первого числа второе.
Найдите корень из результата и умножьте его на 2.
Прибавьте к полученному числу две боковые стороны.
- P — искомый периметр;
- a — боковая сторона треугольника;
- h — высота (перпендикуляр, опущенный на основание треугольника со стороны противоположной вершины; в равнобедренном треугольнике высота делит основание пополам).
7. Как вычислить периметр прямоугольного треугольника, зная катеты
Найдите квадраты катетов и посчитайте их сумму.
Извлеките корень из полученного числа.
Прибавьте к результату оба катета.
- P — искомый периметр;
- a, b — катеты треугольника (стороны, которые образуют прямой угол).
8. Как найти периметр прямоугольного треугольника, зная катет и гипотенузу
Посчитайте квадраты гипотенузы и катета.
Отнимите от первого числа второе.
Найдите корень из результата.
Прибавьте катет и гипотенузу.
- P — искомый периметр;
- a — любой катет прямоугольника;
- c — гипотенуза (сторона, которая лежит напротив прямого угла).
Периметр прямоугольного треугольника
4.3
Средняя оценка: 4.3
Всего получено оценок: 75.
4.3
Средняя оценка: 4.3
Всего получено оценок: 75.
Нахождение периметра прямоугольного треугольника мало чем отличается от нахождения периметра любой другой фигуры. Здесь не существует специализированной формулы, разница только лишь в подходах к решению задач.
Формула для нахождения периметра прямоугольного треугольника
Как уже говорилось ранее, специализированных формул периметра прямоугольного треугольника нет. Чтобы найти периметр нужно просто просуммировать длины всех трех сторон.
Но для треугольника действуют тригонометрические отношения, теорема Пифагора и ряд специальных формул площади. Эти формулы открывают целый набор подходов к решению задач, которые не характерны для произвольной фигуры. Рассмотрим несколько вариантов нахождения периметра прямоугольного треугольника.
Задача 1
- В прямоугольном треугольнике площадь равняется 24, а один из катетов равен 6. Найти периметр треугольника.
Площадь прямоугольного треугольника можно найти как половину произведения катетов. Значение площади уже есть, значит, нужно найти второй катет и гипотенузу. Обозначим катеты латинскими буквами a и b, а гипотенузу буквой c. Пусть а=6.
Тогда: $$S={1over 2}*a*b=24$$
$$S={1over 2}*6*b=24$$
$$3b=24$$
b=8
Две из трех сторон известны, а гипотенузу всегда можно найти через теорему Пифагора.
$$c^2=a^2+b^2$$
$$c=sqrt{a^2+b^2}$$
$$c=sqrt{36+64}=10$$
Найдем периметр, как сумму длин всех сторон:
P=a+b+c=10+8+6=24
Задача 2
- В прямоугольном треугольнике АВС катет АВ=8, а острый угол равен 30 градусам. Найти периметр прямоугольного треугольника.
Если в задаче дается острый угол прямоугольного треугольника, значит в любом случае в решении нужно использовать тригонометрические функции. Иначе для нахождения результата просто не хватит данных.
В этой задаче есть два возможных варианта. Острый угол может быть расположен у известного катета, а может противолежать ему. В любом случае придется использовать тригонометрические функции, но результаты могут разница. Обычно в задаче этот момент прописывается, но иногда от решающего требуется предоставить оба варианта решения. Это ясно из условия, в котором не говорится, какой из острых углов дан.
Рассмотрим вариант, при котором дан острый угол при известном катете. Тогда воспользуемся функцией косинуса:
$$Cos(BAC)={ABover AC}={sqrt{3}over2}$$
$$AC={ABover {cos(BAC)}}$$
$$AC={8over{sqrt{3}over 2}}={16oversqrt{3}}=9,24$$ – значение округлим до сотых
BC найдем через значение тангенса.
$$tg(BAC)={BCover AB}={1oversqrt{3}}$$
$$BC=AB*{1oversqrt{3}}={ABoversqrt{3}}$$
$$BC={8oversqrt{3}}=4,62$$
Вычисление периметра произведем по общей формуле:
P=8+9,24+4,62=21,86
Если острый угол противолежит известному катету, то решение будет выглядеть немного иначе.
Найдем BC через значение тангенса.
$$tg(ACB)={ABover BC}={1oversqrt{3}}$$
$$BC={ABover {1oversqrt{3}}}=AB*sqrt{3}=8*sqrt{3}=13,86$$
Гипотенузу найдем через значение синуса.
$$sin(ACB)={ABover AC}={1over 2}$$
$$AC={ABover sin(ACB)}={ABover {1over 2}}=2*AB=2*8=16$$
Если в расчетах присутствуют округления, то лучше округленный результат не использовать в дальнейших вычислениях. То есть, если мы посчитали BC, то AC лучше найти через синус, а не через косинус или теорему Пифагора, если есть такая возможность. Использование точных значений избавляет от больших погрешностей в результатах.
Что мы узнали?
Мы узнали, что отличия между формулой периметра для прямоугольного и произвольного треугольника нет. Разница в пути решения. Найти периметр прямоугольного треугольника можно через теорему Пифагора, площадь или тригонометрические функции, можно комбинировать различные методы между собой. Главное, это возможность решения задачи без дополнительных построений.
Тест по теме
Доска почёта
Чтобы попасть сюда — пройдите тест.
Пока никого нет. Будьте первым!
Оценка статьи
4.3
Средняя оценка: 4.3
Всего получено оценок: 75.
А какая ваша оценка?
Периметр треугольника калькулятор онлайн умеет вычислять периметр восемью способами:
- По трем сторонам.
- По площади и радиусу вписанной окружности.
- По двум сторонам и углу между ними.
- По стороне равностороннего треугольника.
- По боковой стороне и основанию равнобедренного треугольника.
- По боковой стороне и высоте равнобедренного треугольника.
- По катетам прямоугольного треугольника.
- По одному катету и гипотенузе прямоугольного треугольника.
Сделав расчет периметра на этом онлайн калькуляторе Вы получите не только ответ, но и детальное, пошаговое решение с выводом формул и промежуточных действий.
Периметр треугольника- это сумма трех сторон.
Периметр может быть найден и по другим формулам, вывод которых основан на поиске длины неизвестной стороны.
Как найти периметр треугольника?
Найти периметр треугольника очень просто на нашем онлайн калькуляторе. Так же периметр может быть найден самостоятельно по формулам. Выбор нужной формулы зависит от того какие данные известны.
1) По трем сторонам
где a,b,c — стороны треугольника.
2) По площади и радиусу вписанной окружности
где S — площадь треугольника, r — радиус вписанной окружности.
3) По двум сторонам и углу между ними
где b,c — стороны треугольника, α° — угол между ними.
4) По стороне равностороннего треугольника
где a — сторона равностороннего треугольника.
5) По боковой стороне и основанию равнобедренного треугольника
где a — боковая сторона и b — основание равнобедренного треугольника.
6) По боковой стороне и высоте равнобедренного треугольника
где a — боковая сторона и h — высота равнобедренного треугольника.
7) По катетам прямоугольного треугольника
где a,b — катеты прямоугольного треугольника.
По одному катету и гипотенузе прямоугольного треугольника.
где а — катет и с — гипотенуза прямоугольного треугольника.
Скачать все формулы в формате Word