Как найти период частоты звука

Звуковая волна – период, длина, частота и скорость распространения


Калькуляторы онлайн перевода длины звуковой, инфразвуковой или ультразвуковой
волны в частоту и наоборот. Таблица соответствия
нот полного звукоряда частотам.

Звуковая волна – это механические колебания, которые в результате колебаний молекул вещества распространяются в какой-либо
среде (в газе, жидкости или твёрдом теле) и, достигнув органов слуха человека, воспринимаются им как звук. Источник, создающий
возмущение (колебания воздуха), называется источником звука.
Как уже было сказано, для распространения звука необходима какая-либо упругая среда. Поэтому в вакууме ори, не ори – тебя никто не
услышит, по причине того, что звуковые волны распространяться не смогут, так как там нечему колебаться.., да и слушать там, по большому
счёту, тоже некому.

Длина, скорость и частота электромагнитной волны

Так же, как и в случае с электромагнитными волнами, соотношение, связывающее длину звуковой волны с частотой колебаний,
в общем случае выглядит следующим образом:
λ (м) = V (м/сек) / F (Гц), где V (м/сек) — это скорость распространения
звука в среде.

Период колебаний также не претерпел никаких изменений и по-прежнему равен:

T(сек) = 1 / F (Гц) = λ (м) / V (м/сек).

Частота колебаний звукового сигнала F (Гц) – это параметр стабильный, практически не зависящий от среды распространения.

А вот скорость звука V (м/сек), а соответственно и длина звуковой волны – это величины, которые зависят
не только от плотности вещества, но и от его упругости, а в случае с жидкостями и газами ещё – и от температуры, и атмосферного
давления.

Зависимость скорости звуковой волны от свойств упругой среды легко прослеживается по следующей формуле:
V (м/сек) = √Eупр (паскаль) / ρ (кг/м3)
,
где Eупр представляет собой модуль объёмной упругости среды, а ρ – плотность среды.
Модуль упругости, так же как и плотность – это справочные величины, прописанные для конкретных материалов.

В качестве примера, ниже приведена таблица величины скорости распространения звука в различных средах:

    Среда         Скорость звука, м/сек    
    Воздух при 0°      331
Воздух при 30° 350
Вода 1450
Медь 3800
Дерево 4800
Железо 4900
Сталь 5600

Для газов параметры модуля объёмной упругости и плотности имеют ярко выраженную зависимость от температуры и атмосферного давления.
Если углубиться, то скорость звука в газах можно вычислить по следующей формуле:

V (м/сек) = √γ*Ратм / ρ ,
где

γ = cp/сv – это отношение удельной теплоёмкости при постоянном давлении
к удельной теплоёмкости при постоянном объёме, а Pатм – атмосферное давление,
которое связано с температурой газообразной среды.

Поэтому, чтобы никого сильно не грузить, приведу и приближённую зависимость скорости звука (при нормальном
атмосферном давлении) от температуры среды:
V (м/сек) = (331 + 0,6 * T°), где 331 м/сек – это скорость звука при 0°С,
а T° – температура в градусах Цельсия.

Теперь можно совместить формулы и получить простое соотношение, связывающее длину звуковой волны с частотой колебаний с учётом
температуры среды:

λ (м) = (331 + 0,6 * T°) / F (Гц).

Всё это без лишнего напряга несложно посчитать при помощи листа бумаги или деревянных счёт, ну а для пущего упрощения жизни человека,
приведу и пару он-лайн считалок для перевода одного из параметров в другой.
Калькуляторы предполагают расчёты длины и частоты звуковой волны для воздушной среды при нормальном атмосферном
давлении (760 мм ртутного столба).

Онлайн калькулятор расчёта длины звуковой волны по частоте

   Частота звуковых колебаний f  

     


   Температура Т(°С) (по умолчанию 20°)  
     

  

   Длина волны   
     

Онлайн калькулятор расчёта частоты по длине звуковой волны

   Длина волны λ при заданной Т  

     


   Температура Т(°С) (по умолчанию 20°)  
     

  

   Частота колебаний   
     

Полный диапазон звуковых частот условно находится в пределах:
16…20 000 Гц.
Ниже ( 0,001…16Гц ) – инфразвук.
Выше ( 20…100кГц ) – низкочастотный ультразвук,
ещё выше (100кГц…1МГц) – высокочастотный ультразвук.

А для интересующихся приведу таблицу соответствия нот стандартного музыкального звукоряда частотам.

Частота (Гц)
Октава Нота
До До — диез Ре Ми — бемоль Ми Фа Фа — диез Си Си- диез Ля Соль-бемоль Соль
C C# D Eb E F F# G G# A Bb B
0 16.35 17.32 18.35 19.45 20.60 21.83 23.12 24.50 25.96 27.50 29.14 30.87
1 32.70 34.65 36.71 38.89 41.20 43.65 46.25 49.00 51.91 55.00 58.27 61.74
2 65.41 69.30 73.42 77.78 82.41 87.31 92.50 98.00 103.8 110.0 116.5 123.5
3 130.8 138.6 146.8 155.6 164.8 174.6 185.0 196.0 207.7 220.0 233.1 246.9
4 261.6 277.2 293.7 311.1 329.6 349.2 370.0 392.0 415.3 440.0 466.2 493.9
5 523.3 554.4 587.3 622.3 659.3 698.5 740.0 784.0 830.6 880.0 932.3 987.8
6 1047 1109 1175 1245 1319 1397 1480 1568 1661 1760 1865 1976
7 2093 2217 2349 2489 2637 2794 2960 3136 3322 3520 3729 3951
8 4186 4435 4699 4978 5274 5588 5920 6272 6645 7040 7459 7902

    Очень часто походя употребляют такие вроде бы понятные термины, как спектр, фаза, частота и прочие. Но зачастую мы до конца не понимаем, что же это на самом деле такое.  Что значат эти термины на самом деле, как можно «пощупать» их истинное значение? Можно пойти в библиотеку и почитать там книги по теории радиотехники и цифровой обработке сигналов, но времени постоянно не хватает даже на более важные дела. Поэтому автор попытался дать читателю выжимки из радиотехнических учебников, объясненные «на пальцах» и самый минимум формул (если кто-то заинтересовался более «математическим» изложением материала).

Волновая форма сигнала (звука). Период. Частота

     Что такое звук? Это переменное звуковое (воздушное) давление на барабанную перепонку. Ухо воспринимает как звук только изменение давления. Когда звучит отдельная нота давление периодически то нарастает, то убывает и этот процесс циклически повторяется.

Период (T, сек) — длительность этого цикла. 

Частота (f, Гц, Герц) — количество периодов, помещающихся в одной секунде. 1 Герц — это 1 период за секунду.

f = 1 / T (формула частоты)

    Причем закон (форма) изменения звукового давления не изменяется от периода к периоду.

    Если у нас звучит мелодия, то волны, порождаемые разными нотами (которые то появляются, то исчезают), складываются друг с другом в общую волну, которая уже не имеет периода (цикла повтора).

    А что же такое шум?

    Шум — это сигнал (волновая форма не имеет периода), который в любой момент времени имеет случайное значение звукового давления. Шум не имеет периода.

   Звук, как известно распространяется с задержкой, которая зависит от расстояния от источника до человеческого уха. Как это происходит?

Длина волны

   Механические колебания источника звука (музыкального инструмента или динамика колонки) сжимают/разрежают (выталкивают/притягивают) воздух около себя. Сжатый воздух начинает расширятся прочь от источника звука, сжимая в свою очередь соседнюю воздушную область. Таким образом область сжатого воздуха путешествует от источника звука к уху.

     Расстояние, между областями одинакового сжатия воздуха называется длиной звуковой волны.

L = M / f (формула длины волны),

где

L — длина волны в метрах;

M — скорость звука (331,46 м/с) в метрах в секунду;

f — частота звука в Герцах.

   Длина волны для:

    20 Гц L20 = (331,46 м/с) / (20 Гц) = 16,5 м.

    100 Гц L100 = (331,46 м/с) / (100 Гц) = 3,3 м.

    1000 Гц L1000 = (331,46 м/с) / (1000 Гц) = 0,33 м = 33 см.

    10000 Гц L10000 = (331,46 м/с) / (10000 Гц) = 0,033 м = 3,3 см.

    20000 Гц L10000 = (331,46 м/с) / (20000 Гц) = 0,017 м = 1,7 см.

    Чтобы «надавить» на ухо, область сжатого звука должна затратить некоторое время, чтобы пройти путь от музыкального инструмента до уха. Этим и объясняется задержка звука.

     Расстояние  вносит  задержку распространения звука не зависящую от частоты, так как скорость звука на разных частотах одинакова.

   Dt = l / M (формула задержки распространения звука),

где

Dt — задержка в секундах;

l — расстояние в метрах;

M — скорость звука (331,46 м/с) в метрах в секунду.

      1 метр вносит задержку распространения звука

      Dt= (1 м) / (331,46 м/с) = 0,003 секунды или 3 миллисекунды (мс).

Автор: Юрий Корзунов (2010)

ПРОДОЛЖЕНИЕ…>>

Период, частота и амплитуда колебаний

Важнейшим
параметром, характеризующим механические,
звуковые, электрические, электромагнитные
и все другие виды колебаний, является
период
— время, в течение которого совершается
одно полное колебание. Если, например,
маятник часов-ходиков делает за 1 с два
полных колебания, период каждого
колебания равен 0,5с. Период колебаний
больших качелей около 2 с, а период
колебаний струны может составлять от
десятых до десятитысячных долей секунды.

I

Рисунок
2.4 — Колебание

где:
φ
– фаза колебания, I
– сила тока, Ia
– амплитудное значение силы тока
(амплитуда)

Т
– период колебания силы тока (период)

Другим
параметром, характеризующим колебания,
является частота
(от слова «часто») — число, показывающее,
сколько полных колебаний в секунду
совершают маятник часов, звучащее тело,
ток в проводнике и т.п. Частоту колебаний
оценивают единицей, носящей название
герц (сокращенно пишут Гц): 1 Гц—это одно
колебание в секунду. Если, например,
звучащая струна совершает 440 полных
колебаний в 1 с ( при этом она создает
тон «ля» третьей октавы), говорят, что
частота ее колебаний 440 Гц. Частота
переменного тока электроосветительной
сети 50 Гц. При этом токе электроны в
проводах сети в течение секунды текут
попеременно 50 раз в одном направлении
и столько же раз в обратном, т.е. совершают
за 1 с 50 полных колебаний.

Более
крупные единицы частоты — килогерц
(пишут кГц), равный 1000 Гц и мегагерц
(пишут МГц), равный 1000 кГц или 1 000 000 Гц.

Амплитуда

максимальное значение смещения или
изменения переменной величины при
колебательном или волновом движении.
Неотрицательная скалярная величина,
измеряется в единицах, зависящих от
типа волны или колебания.

Рисунок
2.5 — Синусоидальное колебание.

где,
y
— амплитуда волны, λ
— длина волны.

Например:

  • амплитуда
    для механического колебания тела
    (вибрация), для волн на струне или пружине
    — это расстояние и записывается в
    единицах длины;

  • амплитуда
    звуковых волн и аудио-сигналов обычно
    относится к амплитуде давления воздуха
    в волне, но иногда описывается как
    амплитуда смещения относительно
    равновесия (воздуха или диафрагмы
    говорящего). Её логарифм обычно измеряется
    в децибелах (дБ);

  • для
    электромагнитного излучения амплитуда
    соответствует величине электрического
    и магнитного поля.

Форма
изменения амплитуды называется огибающей
волной
.

Звуковые колебания

Как
возникают звуковые волны в воздухе?
Воздух состоит из невидимых глазам
частиц. При ветре они могут переноситься
на большие расстояния. Но они, кроме
того, могут и колебаться. Например, если
в воздухе сделать резкое движение
палкой, то мы почувствуем легкий порыв
ветра и одновременно услышим слабый
звук. Звук
это — результат колебаний частиц
воздуха, возбужденных колебаниями
палки.

Проведем
такой опыт. Оттянем струну, например,
гитары, а потом отпустим ее. Струна
начнет дрожать — колебаться около
своего первоначального положения покоя.
Достаточно сильные колебания струны
заметны на глаз. Слабые колебания струны
можно только почувствовать как легкое
щекотание, если прикоснуться к ней
пальцем. Пока струна колеблется, мы
слышим звук. Как только струна успокоится,
звук затихнет. Рождение звука здесь —
результат сгущения и разрежения частиц
воздуха. Колеблясь из стороны в сторону,
струна теснит, как бы прессует перед
собой частицы воздуха, образуя в некотором
его объеме области повышенного давления,
а сзади, наоборот, области пониженного
давления. Это и есть звуковые
волны
.
Распространяясь
в воздухе со скоростью около 340 м/с
,
они несут в себе некоторый запас энергии.
В тот момент, когда до уха доходит область
повышенного давления звуковой волны,
она надавливает на барабанную перепонку,
несколько прогибая ее внутрь. Когда же
до уха доходит разреженная область
звуковой волны, барабанная перепонка
выгибается несколько наружу. Барабанная
перепонка все время колеблется в такт
с чередующимися областями повышенного
и пониженного давления воздуха. Эти
колебания передаются по слуховому нерву
в мозг, и мы воспринимаем их как звук.
Чем больше амплитуды звуковых волн, тем
больше энергии несут они в себе, тем
громче воспринимаемый нами звук.

Звуковые
волны, как и водяные или электрические
колебания, изображают волнистой линией
— синусоидой. Ее горбы соответствуют
областям повышенного давления, а
впадины—областям пониженного давления
воздуха. Область повышенного давления
и следующая за нею область пониженного
давления образуют звуковую волну.

По
частоте колебаний звучащего тела можно
судить о тоне или высоте звука. Чем
больше частота, тем выше тон звука, и
наоборот, чем меньше частота, тем ниже
тон звука. Наше ухо способно реагировать
на сравнительно небольшую полосу
(участок) частот
звуковых
колебаний — примерно от 20 Гц до 20 кГц
.
Тем не менее эта полоса частот вмещает
всю обширнейшую гамму звуков, создаваемых
голосом человека, симфоническим
оркестром: от очень низких тонов, похожих
на звук жужжания жука, до еле уловимого
высокого писка комара. Колебания частотой
до
20 Гц, называемые инфразвуковыми
,
и свыше
20 кГц, называемые ультразвуковыми
,
мы не слышим. А если бы барабанная
перепонка нашего уха оказалась способной
реагировать и на ультразвуковые
колебания, мы могли бы тогда услышать
писк летучих мышей, голос дельфина.
Дельфины издают и слышат ультразвуковые
колебания с частотами до 180 кГц.

Но
нельзя путать высоту, т.е. тон звука с
его силой. Высота звука зависит не от
амплитуды, а от частоты колебаний.
Толстая и длинная струна музыкального
инструмента, например, создает низкий
тон звука, т.е. колеблется медленнее,
чем тонкая и короткая струна, создающая
высокий тон звука (рис. 1).

Рисунок
2.6 — Звуковые волны

Чем
больше частота колебаний струны, тем
короче звуковые волны и выше тон звука.

В
электро — и радиотехнике используют
переменные токи частотой от нескольких
герц до тысяч гигагерц. Антенны
широковещательных радиостанций,
например, питаются токами частотой
примерно от 150 кГц до 100 МГц.

Эти
быстропеременные колебания, называемые
колебаниями радиочастоты, и являются
тем средством, с помощью которого
осуществляется передача звуков на
большие расстояния без проводов.

Весь
огромный диапазон переменных токов
принято подразделять на несколько
участков — поддиапазонов.


Токи частотой от 20 Гц до 20 кГц,
соответствующие колебаниям, воспринимаемым
нами как звуки разной тональности,
называют токами
(или колебаниями) звуковой
частоты
,
а токи частотой выше 20 кГц — токами
ультразвуковой частоты
.


Токи частотой от 100 кГц до 30 МГц называют
токами
высокой частоты
,


Токи частотой выше 30 МГц — токами
ультравысокой и сверхвысокой частоты.

Соседние файлы в папке Связь1

  • #
  • #
  • #

Как найти частоту звуковых колебаний

Звуком называют волны механических деформаций, распространяющиеся в любой достаточно упругой среде (жидкостях, твердых телах, газах). Как и другие волны, звук характеризуется, в частности, частотой колебаний. В зависимости от начальных условий найти частоту звука можно разными способами.

Как найти частоту звуковых колебаний

Вам понадобится

  • — калькулятор;
  • — физический справочник;
  • — тахометр;
  • — звуковой датчик;
  • — осциллограф.

Инструкция

Найдите частоту звуковых колебаний, если известна длина их волн и скорость звука в среде, где они распространяются. Вычисления следует производить по формуле F=V/L. Здесь V — скорость звука в среде, а L — длина волны (известная величина). Значения скоростей звука для разных сред можно узнать из физических справочников. Так, для воздуха при нормальных условиях (температуре в районе 20°C и давлении, близком к атмосферному) это значение составляет 341 м/с. Поэтому, например, звуковые колебания в воздухе с длиной волны в 0,25 м будут иметь частоту 341/0,25=1364 Гц.

Найти частоту звуковых колебаний, зная их период, можно по простой формуле: F=1/T. Обратите внимание на то, что для получения корректных значений частоты, представленных в герцах, период T должен быть выражен системе СИ, то есть иметь размерность в секундах.

Для получения частоты звуковых колебаний, распространяющихся в реальной среде, осуществите физический эксперимент. Примените специализированное устройство — тахометр. Сегодня тахометры, как правило, имеют высокую точность измерений и отображают информацию в готовом виде на цифровом индикаторе.

При отсутствии тахометра для нахождения частоты звука можно воспользоваться микрофоном или другим звуковым датчиком с достаточной чувствительностью, а также осциллографом. Подключите датчик к осциллографу и создайте условия для получения сигнала (например, поместите датчик в исследуемую среду). Подберите чувствительность осциллографа так, чтобы колебания на экране отображались с достаточной амплитудой. Путем подстройки частоты развертки добейтесь отображения устойчивой картинки. Узнайте период звуковых колебаний, ориентируясь на шкалу прибора. Найдите частоту, используя способ, описанный во втором шаге.

Обратите внимание

При вычислениях, связанных с получением значений частоты звука, всегда переводите все известные значения в систему СИ.

Полезный совет

Если дополнительно требуется найти циклическую частоту звуковых колебаний, рассчитайте ее по формуле w=2*PI*F, где F — частота, выраженная в герцах, полученная одним из описанных способов.

Войти на сайт

или

Забыли пароль?
Еще не зарегистрированы?

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

  • Как найти период и частоту колебаний
  • Как найти резонансную частоту
  • Как измерить частоту

При решении задач на нахождение периода и частоты колебаний, а также длины волны используйте следующие физические и математические константы: – скорость света в вакууме: c=299792458 м/с (некоторые исследователи, в частности, креационисты, считают, что в прошлом данная физическая константа могла иметь другую величину);

– скорость звука в воздухе при атмосферном давлении и нуле градусов по Цельсию: Fзв=331 м/с;

– число «пи» (до пятидесятого знака): π=3,14159265358979323846264338327950288419716939937510 (безразмерная величина).

Амплитуда колебаний (лат. amplitude — величина) — это наибольшее отклонение колеблющегося тела от положения равновесия.

Для маятника это максимальное расстояние, на которое удаляется ша­рик от своего положения равновесия (рисунок ниже). Для колебаний с малыми амплитудами за такое расстояние можно принимать как длину дуги 01 или 02, так и длины этих отрезков.

Амплитуда колебаний измеряется в единицах длины — метрах, санти­метрах и т. д. На графике колебаний амплитуда определяется как макси­мальная (по модулю) ордината синусоидальной кривой, (см. рис. ниже).

Период колебаний.

Период колебаний — это наименьший промежуток времени, через который система, соверша­ющая колебания, снова возвращается в то же состояние, в котором она находилась в начальный момент времени, выбранный произвольно.

Другими словами, период колебаний (Т) — это время, за которое совершается одно полное ко­лебание. Например, на рисунке ниже это время, за которое грузик маятника перемещается из крайней правой точки через точку равновесия О в крайнюю левую точку и обратно через точку О снова в крайнюю правую.

За полный период колебаний, таким образом, тело проходит путь, равный четы­рем амплитудам. Период колебаний измеряется в единицах времени — секундах, минутах и т. д. Период колебаний может быть определен по известному графику колебаний, (см. рис. ниже).

Понятие «период колебаний», строго говоря, справедливо, лишь когда значения колеблющей­ся величины точно повторяются через определенный промежуток времени, т. е. для гармоничес­ких колебаний. Однако это понятие применяется также и для случаев приблизительно повторяю­щихся величин, например, для затухающих колебаний.

Формулы для вычисления периода простейших колебательных систем

Период колебаний пружинного маятника определим как:

[T=2pi sqrt{frac{m}{k}} left(3right),]

на упругой пружине, жесткость которой равна $k,$ подвешен груз массой $m$.

Период колебаний математического маятника зависит от ускорения свободного падения ($g$) и длины подвеса ($l$)

[T=2pi sqrt{frac{l}{g}}left(4right).]

Формула для вычисления периода колебаний физического маятника представляет собой выражение:

[T=2pi sqrt{frac{J}{mga}left(5right),}]

где $J$ — момент инерции маятника относительно оси вращения; $a$ — расстояние от центра масс тела до оси вращения.

Единицами измерения периода служат единицы времени, например секунды.

[left[Tright]=c.]

Частота колебаний.

Частота колебаний — это число колебаний, совершаемых за единицу времени, например, за 1 с.

Единица частоты в СИ названа герцем (Гц) в честь немецкого физика Г. Герца (1857-1894). Если частота колебаний (v) равна 1 Гц, то это значит, что за каждую секунду совершается одно колебание. Частота и период колебаний связаны соотношениями:

.

В теории колебаний пользуются также понятием циклической, или круговой частоты ω. Она связана с обычной частотой v и периодом колебаний Т соотношениями:

.

Циклическая частота — это число колебаний, совершаемых за 2π секунд.

Частота гармонических колебаний

При работе с колебательными процессами нередки случаи, когда для характеристики «скорости» удобнее рассматривать не период одного колебания, а количество колебаний за единицу времени. Такая величина называется частотой колебаний, и обозначается греческой буквой $nu$ («ню»). Она равна отношению числа колебаний ко времени, за которое они происходят:

$$nu={Nover t},$$

где:

  • N – число колебаний;
  • t – время, за которое колебания произошли (сек).

Поскольку единицей времени в системе СИ является секунда, то единицей частоты является «колебание в секунду», или Герц (Гц).

Период и частота колебаний – формула зависимости

Рис. 3. Частота колебаний.

Период и частота переменного тока

Время, в течение которого совершается одно полное изме­нение ЭДС, то есть один цикл колебания или один полный оборот радиуса-вектора, называется периодом колебания пере­менного тока (рисунок 1).

Рисунок 1. Период и амплитуда синусоидального колебания. Период — время одного колебания; Аплитуда — его наибольшее мгновенное значение.

Период выражают в секундах и обозначают буквой Т.

Так же используются более мелкие единицы измерения периода это миллисекунда (мс)- одна тысячная секунды и микросекунда (мкс)- одна миллионная секунды.

1 мс =0,001сек =10 -3 сек.

1 мкс=0,001 мс = 0,000001сек =10 -6 сек.

Число полных изменений ЭДС или число оборотов ради­уса-вектора, то есть иначе говоря, число полных циклов колеба­ний, совершаемых переменным током в течение одной секунды, называется частотой колебаний переменного тока.

Частота обо­значается буквой f и выражается в периодах в секунду или в герцах.

Одна тысяча герц называется килогерцом (кГц), а миллион герц — мегагерцом (МГц). Существует так же единица гигагерц (ГГц) равная одной тысячи мегагерц.

1000 Гц = 10 3 Гц = 1 кГц;

1000 000 Гц = 10 6 Гц = 1000 кГц = 1 МГц;

1000 000 000 Гц = 10 9 Гц = 1000 000 кГц = 1000 МГц = 1 ГГц;

Чем быстрее происходит изменение ЭДС, то есть чем бы­стрее вращается радиус-вектор, тем меньше период колебания Чем быстрее вращается радиус-вектор, тем выше частота. Таким образом, частота и период переменного тока являются величинами, обратно пропорциональными друг другу. Чем больше одна из них, тем меньше другая.

Математическая связь между периодом и частотой переменного тока и напряжения выра­жается формулами

Например, если частота тока равна 50 Гц, то период будет равен:

Т = 1/f = 1/50 = 0,02 сек.

И наоборот, если известно, что период тока равен 0,02 сек, (T=0,02 сек.), то частота будет равна:

f = 1/T=1/0,02 = 100/2 = 50 Гц

Частота переменного тока, используемого для освещения и промышленных целей, как раз и равна 50 Гц.

Частоты от 20 до 20 000 Гц называются звуковыми часто­тами. Токи в антеннах радиостанций колеблются с частотами до 1 500 000 000 Гц или, иначе говоря, до 1 500 МГц или 1,5 ГГц. Такие вы­сокие частоты называются радиочастотами или колебаниями высокой частоты.

Наконец, токи в антеннах радиолокационных станций, станций спутниковой связи, других спецсистем (например ГЛАНАСС, GPS) колеблются с частотами до 40 000 МГц (40 ГГц) и выше.

Период гармонических колебаний

Особенностью гармонических колебаний является их большая схожесть. Каждое колебание маятника почти полностью повторяет предыдущее и последующее.

В первую очередь это относится к «скорости качания». Если измерить время, за которое совершаются колебания маятника, можно убедиться, что оно для разных колебаний остается одинаковым. Взяв много маятников разных длин, можно получить различные колебания, однако, для каждого маятника время, за которое совершается любое колебание, будет постоянным.

Это время – важнейшая характеристика колебательного процесса. Оно называется периодом колебаний, обозначается латинской буквой $T$ и измеряется в секундах. Чем быстрее происходят колебания (чем короче нить маятника), тем меньше времени длится каждое колебание, и тем меньше период колебаний.

Период и частота колебаний – формула зависимости

Рис. 2. Период колебаний.

Угловая (циклическая) частота переменного тока.

Скорость вращения радиуса-вектора, т. е. изменение ве­личины угла поворота в течение одной секунды, называется угловой (циклической) частотой переменного тока и обозначается греческой буквой ? (оме­га). Угол поворота радиуса-вектора в любой данный момент относительно его начального положения измеряется обычно не в градусах, а в особых единицах — радианах.

Радианом называется угловая величина дуги окружности, длина которой равна радиусу этой окружности (рисунок 2). Вся окружность, составляющая 360°, равна 6,28 радиан, то есть 2.

Рисунок 2. Радиан.

1рад = 360°/2

Следовательно, конец радиуса-вектора в течение одного периода пробегают путь, равный 6,28 радиан (2). Так как в тече­ние одной секунды радиус-вектор совершает число оборотов, равное частоте переменного тока f, то за одну секунду его ко­нец пробегает путь, равный 6,28 * f радиан. Это выражение, характеризующее скорость вращения радиуса-вектора, и будет угловой частотой переменного тока — ? .

? = 6,28*f = 2f

Фаза переменного тока.

Угол поворота радиуса-вектора в любое данное мгновение относительно его начального положения называется фазой переменного тока. Фаза характеризует величину ЭДС (или тока) в данное мгновение или, как говорят, мгновенное значение ЭДС, ее направление в цепи и направление ее изменения; фаза пока­зывает, убывает ли ЭДС или возрастает.

Рисунок 3. Фаза переменного тока.

Полный оборот радиуса-вектора равен 360°. С началом но­вого оборота радиуса-вектора изменение ЭДС происходит в том же порядке, что и в течение первого оборота. Следова­тельно, все фазы ЭДС будут повторяться в прежнем поряд­ке. Например, фаза ЭДС при повороте радиуса-вектора на угол в 370° будет такой же, как и при повороте на 10°. В обо­их этих случаях радиус-вектор занимает одинаковое положе­ние, и, следовательно, мгновенные значения ЭДС будут в обоих этих случаях одинаковыми по фазе.

ПОНРАВИЛАСЬ СТАТЬЯ? ПОДЕЛИСЬ С ДРУЗЬЯМИ В СОЦИАЛЬНЫХ СЕТЯХ!

Характеристика колебаний

Фаза определяет состояние системы, а именно координату, скорость, ускорение, энергию и др.

Циклическая частота характеризует скорость изменения фазы колебаний.

Начальное состояние колебательной системы характеризует начальная фаза

Амплитуда колебаний A — это наибольшее смещение из положения равновесия

Период T — это промежуток времени, в течение которого точка выполняет одно полное колебание.

Частота колебаний — это число полных колебаний в единицу времени t.

Частота, циклическая частота и период колебаний соотносятся как

Связь периода и частоты колебаний

Из формулы частоты колебаний можно получить зависимость периода колебаний от частоты. Если колебания происходят с периодом $T$, то $N$ колебаний произойдут за время $TN$. Подставив это время в формулу, получим:

$$nu={Nover t}={Nover TN}={1over T}$$

Таким образом, частота и период колебаний взаимнообратны. Зная частоту – легко найти период, а зная период – легко найти частоту.

Из математики известно, что на нуль делить нельзя. То есть, в формулу связи периода и частоты колебаний нельзя подставлять нулевой период или частоту – в обоих случаях такие колебания невозможны.

Виды колебаний

Колебания, которые происходят в замкнутых системах называются свободными или собственными колебаниями. Колебания, которые происходят под действием внешних сил, называют вынужденными. Встречаются также автоколебания (вынуждаются автоматически).

Если рассматривать колебания согласно изменяющихся характеристик (амплитуда, частота, период и др.), то их можно разделить на гармонические, затухающие, нарастающие (а также пилообразные, прямоугольные, сложные).

При свободных колебаниях в реальных системах всегда происходят потери энергии. Механическая энергия расходуется, например, на совершение работы по преодолению сил сопротивления воздуха. Под влиянием силы трения происходит уменьшение амплитуды колебаний, и через некоторое время колебания прекращаются. Очевидно, что чем больше силы сопротивления движению, тем быстрее прекращаются колебания.

Математический маятник

Обычный нитяной маятник представляет собой груз, подвешенный на нити, способный совершать колебательные движения после выведения его из состояния равновесия. Для описания движения такого маятника удобно использовать модель, называемую математическим маятником. Математический маятник имеет следующие отличия от реального маятника.

  • Математический маятник, в отличие от реального маятника, не получает и не теряет энергию, трение в математическом маятнике принимается равным нулю.
  • Масса математического маятника представляет собой материальную точку, закрепленную на конце нити. Другой конец неподвижен в принятой Системе Отсчета.
  • Гравитационное поле, в котором маятник совершает колебания, однородно и направлено в сторону от точки закрепления нити к точке равновесия маятника.
  • Нить не имеет веса, и не изменяет свою длину.

Период колебаний математического маятника – формула определения

Рис. 1. Математический маятник.

Для того, чтобы обычный нитяной маятник хорошо описывался формулами математического маятника, необходимо, чтобы его груз имел малый размер, нить была бы нерастяжимой, и максимальное отклонение маятника было бы намного меньше (более, чем в 10 раз) его длины.

Вынужденные колебания. Резонанс

Вынужденные колебания являются незатухающими. Поэтому необходимо восполнять потери энергии за каждый период колебаний. Для этого необходимо воздействовать на колеблющееся тело периодически изменяющейся силой. Вынужденные колебания совершаются с частотой, равной частоте изменения внешней силы.

Амплитуда вынужденных механических колебаний достигает наибольшего значения в том случае, если частота вынуждающей силы совпадает с частотой колебательной системы. Это явление называется резонансом.

Например, если периодически дергать шнур в такт его собственным колебаниям, то мы заметим увеличение амплитуды его колебаний.

Формула периода колебаний

Для определения формулы периода колебаний математического маятника учтем, что колебания совершаются по некоторой дуге. Радиус этой дуги равен длине нити $l$, угол, на который происходит отклонение, обозначим $α$. Мгновенная скорость материальной точки всегда направлена по касательной к траектории, а значит, для математического маятника мгновенная скорость направлена по касательной к этой дуге. Проекция силы тяжести на нее будет равна:

$$F=-mgsinalpha$$

Ускорение движения материальной точки находится по второму закону Ньютона. После проецирования получаем:

$$a_т={Fover m}$$

После подстановки можно сократить массу, получаем:

$$a_т=-gsinalpha$$

Для малых углов дуги $sinalpha=alpha$ и $s=alpha l$, поэтому:

$$a_т=-{gover {l}}s$$

Ускорение – это вторая производная перемещения. Единственная функция, производная которой пропорциональна самой себе со знаком минус – это круговая функция (синусоида). То есть, решение полученного уравнения:

$$s(t)=S_{max} cos sqrt{gover l}t$$

Период колебаний математического маятника – формула определения

Рис. 2. График колебаний математического маятника.

Периодом этой функции (а, значит, и периодом колебаний математического маятника) будет величина:

$$T=2pisqrt {lover g}$$

Данная формула была установлена Х. Гюйгенсом.

Отметим, что формула периода колебаний математического маятника очень похожа на формулу колебаний пружинного маятника. Ускорение свободного падения в математическом маятнике соответствует жесткости пружины в пружинном маятнике. Длина маятника соответствует массе груза. Это объясняется тем, что в обоих случаях причиной колебаний является сила, зависящая от отклонения, направленная против него.

Период колебаний математического маятника – формула определения

Рис. 3. Нитяной и пружинный маятники.

Примеры резонанса

Если влажный палец двигать по краю бокала, то бокал будет издавать звенящие звуки. Хотя это и незаметно, палец движется прерывисто и передает стеклу энергию короткими порциями, заставляя бокал вибрировать

Стенки бокала также начинают вибрировать, если на него направить звуковую волну с частотой, равной его собственной. Если амплитуда станет очень большой, то бокал может даже разбиться. По причине резонанса при пении Ф.И.Шаляпина дрожали (резонировали) хрустальные подвески люстр. Возникновение резонанса можно проследить и в ванной комнате. Если вы будете негромко пропевать звуки разной частоты, то на одной из частот возникнет резонанс.

В музыкальных инструментах роль резонаторов выполняют части их корпусов. Человек также имеет собственный резонатор — это полость рта, усиливающая издаваемые звуки.

Явление резонанса необходимо учитывать на практике. В одних явлениях он может быть полезен, в других — вреден. Резонансные явления могут вызывать необратимые разрушения в различных механических системах, например, неправильно спроектированных мостах. Так, в 1905 году рухнул Египетский мост в Санкт-Петербурге, когда по нему проходил конный эскадрон, а в 1940 — разрушился Такомский мост в США.

Явление резонанса используется, когда с помощью небольшой силы необходимо получить большое увеличение амплитуды колебаний. Например, тяжелый язык большого колокола можно раскачать, действуя сравнительно небольшой силой с частотой, равной собственной частоте колебаний колокола.

Колебания и их амплитуда

Повторяющиеся движения или процессы называют колебаниями

.

В зависимости от природы колебания могут быть механическими, электромагнитными, звуковыми и др. Разные виды колебаний описывают с помощью одинаковых уравнений и при этом используют одинаковые характеристики.

Колебания называют свободными

(иди собственными), если они происходят за счет энергии, которая получена колебательной системой один раз и в дальнейшем внешних воздействий на эту систему нет.

Самым простым видом колебаний являются гармонические колебания.

Гармоническими колебаниями

называют такие колебания, при которых колеблющаяся величина изменяется во времени по закону синуса или косинуса..

Пусть происходят гармонические колебания некоторого параметра $s$, тогда эти колебания можно описать при помощи следующего уравнения:

где $A=s_ $ — амплитуда колебаний; $ _0$ — циклическая (круговая) частота колебаний; $varphi $ — начальная фаза колебаний (фаза при $t=0$); $( _0t+varphi )$ — фаза колебаний.

Амплитудой называют максимальной значение величины, колебания которой рассматривают. Так как косинус (как и синус) изменяется в пределах от единицы до минус единицы, то величина $s$ находится в пределах $-Ale sle $+A.

Колебательные процессы

Колебательным процессом называется периодическое изменение одного или нескольких параметров системы около некоторого значения. Например, колебательным процессом является флаг, развевающийся на ветру. Полотнище флага совершает хаотичные движения вокруг некоторого среднего положения, задаваемого ветром. Другим примером колебательного процесса является движение нитяного маятника – если груз, подвешенный на нити, отклонить от положения равновесия и отпустить, то он начинает колебаться вокруг положения равновесия.

В первом приведенном примере колебания являются хаотичными. Во втором примере – колебания подчиняются простому закону круговых функций (синусоиды), и называются гармоническими. В высшей математике доказывается, что любые сложные колебания могут быть описаны суммой гармонических колебаний. Поэтому в первую очередь изучаются именно они.

Период и частота колебаний – формула зависимости

Рис. 1. Колебания в природе.

Понравилась статья? Поделить с друзьями:
  • Как найти эпитеты в былине
  • Как найти каноническое уравнение прямой в пространстве
  • Как найти индукцию магнитного поля через заряд
  • Водопад карелии кивач как найти
  • Как найти бена в том друзья