Как найти период функции пример

Как найти период функции вида y=Af(kx+b), где A, k и b — некоторые числа? Поможет формула периода функции

    [{T_1} = frac{T}{{left| k right|}}]

где T — период функции y=f(x). Эта формула позволяет быстро найти период тригонометрических функций такого вида. Для функций y=sin x и y=cos x наименьший положительный период T=2п, для y=tg x и y=ctg x T=п. Рассмотрим на конкретных примерах, как найти период функции, используя данную формулу.

Найти период функции:

1) y=5sin(3x-п/8).

Здесь А=5, k=3, b=-п/8. Для нахождения периода нам нужно только k — число, стоящее перед иксом. Поскольку период синуса T=2п, то период данной функции

    [{T_1} = frac{T}{{left| k right|}} = frac{{2pi }}{{left| 3 right|}} = frac{{2pi }}{3}.]

    [2)y = frac{2}{7}cos (frac{pi }{5} - frac{x}{{11}})]

А=2/7, k=-1/11, b=п/5. Поскольку период косинуса T=2п, то

    [{T_1} = frac{T}{{left| k right|}} = frac{{2pi }}{{left| { - frac{1}{{11}}} right|}} = 2pi  cdot 11 = 22pi .]

    [3)y = 0,3tg(frac{{5x}}{9} - frac{pi }{7})]

А=0,3, k=5/9, b=п/7. Период тангенса равен п, поэтому период данной функции

    [{T_1} = frac{T}{{left| k right|}} = frac{pi }{{left| {frac{5}{9}} right|}} = frac{{9pi }}{5}.]

    [4)y = 9ctg(0,4x - 7)]

А=9, k=0,4, b=-7. Период котангенса равен п, поэтому период данной функции есть

    [{T_1} = frac{T}{{left| k right|}} = frac{pi }{{left| {0,4} right|}} = frac{{10pi }}{4} = frac{{5pi }}{2}.]

ВИДЕО УРОК

Периодические функции.

Функцию  у = f(х)х Х, называют периодической,
если существует такое отличное от нуля число 
Т, что для любого  х  из области определения функции справедливо
равенство:

f(х + Т) = f(х) = f(хТ).

Число  Т  называют периодом функции  у = f(х).

Из этого
определения сразу следует, что если 
Т
период функции 

у = f(х), то 

2Т, 3Т, 4Т, –Т, –2Т, –3Т,
–4Т

– также периоды
функций. Значит у периодической функции бесконечно много периодов.

Если  Т – период функции, то число вида  kТ,
где  
k – любое целое
число, также является периодом функции.

Чаще всего (но не
всегда) среди множества положительных периодов функции можно найти наименьший.
Его называют основным периодом.

График периодической
функции состоит из неограниченно повторяющихся одинаковых фрагментов.

График каждой
периодической функции состоит из одинаковых линий повторяющихся и изолированных
друг от друга, как в рассматриваемом случае, или соединенных в одну общую линию
(синусоида и другие.)

Графики
периодических функций обладают следующей особенностью. Если 
Т – основной период функции  у = f(х), то для построения её графика достаточно построить ветвь
графика на одном из промежутков оси 
х  длиной 
Т, а затем осуществить параллельный перенос этой ветви по
оси 
х  на

± Т, ±
2Т, ± 3Т, …

Чаще всего в
качестве такого промежутка длиной 
Т  выбирают промежуток с концами в точках

(–Т/2; 0)  и  (Т/2; 0)  или

(0; 0)  и  (Т; 0).

ПРИМЕР:

Рассмотрим функцию

у = х – [х], где  [х] – целая часть числа. Если к
произвольному значение аргумента этой функции добавить
1, то значение функции от этого не изменится:

f(x + 1) = (x
+
1)[x + 1] = x + 1[x]1
= x –
[x] = f (x).

Следовательно, при любом
значении 
х

 f(x + 1) = f(x).  

А это значит, что рассматриваемая функция
периодическая, период которой равен
1. Любое целое число
также является периодом данной функции, но обычно рассматривают только
маленький положительный период функции.

График этой функции
приведен на рисунке. Он состоит из бесконечного множества равных отрезков, которые
повторяются.

Периодичность тригонометрических функций.

Возьмём произвольный угол  α  и построим
подвижной радиус 
ОМ  единичной окружности такой, что угол,
составленный с осью 
Ох  этим радиусом, равен  α.

Если мы к углу    прибавим 
  или  360° (то есть полный
оборот), то углу 
α +   или  α + 360°  будет соответствовать то же положение
подвижного радиуса 
ОМ, что для угла  α.

Так как синус и косинус угла,
составленного с осью 
Ох  подвижным радиусом  ОМ  единичной
окружности, по сути соответственно ордината 
у  и
абсцисса 
х  точки  М, то

sin (α + 2π) = sin α  или 

sin (α + 360°) = sin α

и

cos (α + 2π)
=
cos α  или 

cos (α + 360°) = cos α.

Таким образом, функции  sin α  и  cos α  от
прибавления к аргументу
α   одного
полного оборота (
2π  или  360°) не меняют своих значений.

Точно так же, прибавляя к
углу 
α  любое целое
число полных оборотов, мы не изменим положения подвижного радиуса 
ОМ, а потому:

sin (α + 2kπ) = sin α  или 

sin (α + 360°k) = sin α

и

cos (α + 2kπ) = cos α  или 

cos (α + 360°k) = cos α,

где  k – любое целое
число.

Функции, обладающие таким
свойством, что их значения не изменяются от прибавления к любому допустимому
значению аргумента определённого постоянного числа, называются
периодическими.

Следовательно, функции  sin α  и  cos α – периодические.

Наименьшее положительное число,
от прибавления которого к любому допустимому значению аргумента не изменяется
значение функции, называется
периодом функции.

Периодом функции  sin α  и  cos α 
является 
2π  или  360°.

Функции  tg α  и  сtg α  также
периодические и их периодом является число 
π  или  180°.

В самом деле, пусть  α – произвольный угол, составленный с осью  Ох  подвижным
радиусом 
ОМ  единичной окружности.

Построим точку  М‘,

симметричную точке  М  относительно
начала координат. Один из углов, образованных с осью 
Ох  подвижным
радиусом 
ОМ, будет равен  α + π.

Если  х  и  у – координаты точки 
М, то точки  М  будут  –х  и  –у. Поэтому

sin α = у, cos α = х,

sin (α + π) = –у,

cos (α + π) = –х.

Отсюда

и, следовательно,

tg (α + π) = tg α,

сtg (α + π)
=
сtg α.

отсюда следует, что значения  tg α  и  сtg α  не
изменяются, если к углу 
α  прибавить любое число полуоборотов:

tg (α + kπ) = tg α,

сtg (α + kπ) = сtg α.

где  k – любое целое
число.

Периоды функций

y = A sin (ωx + φ)  и

y = A cos (ωx + φ

вычисляются по формуле

T = 2π/ω,

а период функции

y = A tg (ωx + φ)

по формуле

T = π/ω.

Если период функции  y = f(x)  равен  T1, а период функции  y = g(x)  равен  T2, то период функций

y = f(x) + g(xи

y = f(x) g(x)

равен наименьшему числу, при делении которого
на 
T1  и  T2  получаются целые числа.

ПРИМЕР:

Найти
период функции

y = 3 sin (x – 2) + 7 соs πx.

РЕШЕНИЕ:

Период
функции

y = 3 sin (x – 2)

равен

T1 = 2π/1 = 2π.

Период
функции

y = 7 соs πx

равен

T2 = 2π/π = 2.

Периода
у функции

y = 3 sin (x – 2) + 7 соs πx

не
существует, так как такого числа, при делении которого на 
  и 
на 
2  получались бы целые числа, нет.

ОТВЕТ:

Периода
не существует.

ПРИМЕР:

Доказать
следующее утверждение
:

tg
3850
° = tg 250°.

РЕШЕНИЕ:

Так как тангенс – периодическая функция с минимальным
периодом 
20 ∙ 180°, то получим:

tg
3850
° = tg (20 ∙ 180° + 250°) = tg 250°.

ПРИМЕР:

Доказать
следующее утверждение
:

сos (–13π) = –1.

РЕШЕНИЕ:

Так как косинус – чётная и периодическая функция с
минимальным периодом 
2π, то получим:

сos (–13π) = сos 13π = сos (π + 6 ∙ 2π) = сos π = –1.

ПРИМЕР:

Доказать
следующее утверждение
:

sin (–7210°) = – sin 10°.

РЕШЕНИЕ:

Так как синус – нечётная и периодическая функция с
минимальным периодом 
20 ∙ 360°, то получим:

sin (–7210°) = –sin 7210° = –sin (20 ∙ 360° + 10°) – sin 10°.

ПРИМЕР:

Найти основной период функции

sin 7х.

РЕШЕНИЕ:

Пусть  Т  основной период функции, тогда:

sin 7х = sin 7(х + t) = sin (7х + 7t)

так как   2πk   период синуса, то получим:

sin (7х + 7t) = sin (7х + 2πk),

ОТВЕТ:

ПРИМЕР:

Найти основной период функции

соs 0,3х.

РЕШЕНИЕ:

Пусть  Т  основной период функции, тогда:

соs 0,3х = соs 0,3(х + t)
= со
s (0,3х + 0,3t)

так как   2πk   период косинуса, то получим:

соs (0,3х + 0,3t) = соs (0,3х + 2πk),

ОТВЕТ:

ПРИМЕР:

Найти период функции:

y = 5sin 2x + 2ctg 3х.

РЕШЕНИЕ:

Период функции

y = 5sin 2x

равен  Т1 = 2𝜋/2 = π,

а период функции

y = 2ctg 3х

равен  Т2 = 𝜋/3.

Наименьшее число, при делении которого на

Т1 = π  и  Т2 = 𝜋/3

– получаются целые числа будет число  π.
Следовательно, период заданной функции равен
  Т = π.

ПРИМЕР:

Найти период функции:

y = 9sin (5x + π/3) – 4cоs (7х + 2).

РЕШЕНИЕ:

Находим периоды слагаемых. Период функции

y = 9sin (5x + π/3)

равен  Т1 = 2𝜋/5,

а период функции

y = 4cоs (7х + 2)

равен   Т2 = 2𝜋/7.

Очевидно, что период заданной функции равен

Т = 2π.

ПРИМЕР:

Найти период функции:

y = 3sin πx + 8tg (х + 5).

РЕШЕНИЕ:

Период функции

y = 3sin πx

равен  Т1 = 2π/π = 2,

а период функции

y = 8tg (х + 5)

равен   Т2 = 𝜋/1 = π.

Периода у заданной функции не существует, так как нет
такого числа, при делении которого на 
2  и на  π  одновременно получались бы целые числа.

ПРИМЕР:

Найти период функции:

y = sin 3x + соs 5х.

РЕШЕНИЕ:

Период функции

y = sin 3x

равен  Т1 = 2π/3,

а период функции

y = соs 5х

равен   Т2 = 2π/5.

Приведём к общему знаменателю периоды:

Т1 = 10π/15Т2 = 6π/15.

Тогда наименьшее общее кратное (НОК) будет:

НОК (10π; 6π)
= 30π.

Теперь найдём период заданной функции:

Т = 30π/15 = 2π.

Задания к уроку 5

  • Задание 1
  • Задание 2
  • Задание 3

ДРУГИЕ УРОКИ

  • Урок 1. Градусное измерение угловых величин
  • Урок 2. Радианное измерение угловых величин
  • Урок 3. Основные тригонометрические функции
  • Урок 4. Натуральные тригонометрические таблицы
  • Урок 6. Область определения и область значения тригонометрических функций
  • Урок 7. Знаки тригонометрических функций
  • Урок 8. Чётность и нечётность тригонометрических функций
  • Урок 9. Тригонометрические функции некоторых углов
  • Урок 10. Построение угла по данному значению его тригонометрической функции
  • Урок 11. Основные тригонометрические тождества
  • Урок 12. Выражение всех тригонометрических функций через одну из них
  • Урок 13. Решение прямоугольных и равнобедренных треугольников с помощью тригонометрических функций
  • Урок 14. Теорема синусов
  • Урок 15. Теорема косинусов
  • Урок 16. Решение косоугольных треугольников
  • Урок 17. Примеры решения задач по планиметрии с применением тригонометрии
  • Урок 18. Решение практических задач с помощью тригонометрии
  • Урок 19. Формулы приведения (1)
  • Урок 20. Формулы приведения (2)
  • Урок 21. Формулы сложения и вычитания аргументов тригонометрических функций
  • Урок 22. Формулы двойных и тройных углов (аргументов)
  • Урок 23. Формулы половинного аргумента
  • Урок 24. Формулы преобразования суммы тригонометрических функций в произведение  
  • Урок 25. Графики функций  y = sin x и y = cos x
  • Урок 26. Графики функций y = tg x и y = ctg x
  • Урок 27. Обратные тригонометрические функции
  • Урок 28. Основные тождества обратных тригонометрических функций
  • Урок 29. Выражение одной из аркфункций через другие
  • Урок 30. Графики обратных тригонометрических функций
  • Урок 31. Построение графиков тригонометрических функций методом геометрических преобразований

С периодическими функциями мы встречаемся в школьном курсе алгебры. Это функции, все значения которых повторяются через определенный период. Как будто мы копируем часть графика — и повторяем этот паттерн на всей области определения функции. Например, y = sin x, , y = tg x — периодические функции.

Дадим определение периодической функции:

Функция y=f(x) называется периодической, если существует такое число T, не равное нулю, что для любого x из ее области определения f(x + T) = f(x).

Другими словами, это функция, значения которой не изменяются при добавлении к значениям её аргумента некоторого фиксированного ненулевого числа T. Число T называется периодом функции. Как правило, говоря о периоде, мы имеем в виду наименьший положительный период функции.

Например, y = sin x, , y = cos x, , y = tg x, , y = ctg x — периодические функции.

Для функций y = sin x и y = cos x период T = 2pi,

Для функций tg x и y = ctg x период T = pi.

Но не только тригонометрические функции являются периодическими. Если вы учитесь в матклассе или на первом курсе вуза — вам могут встретиться вот такие задачи:

1. Периодическая функция y = fleft(xright) определена для всех действительных чисел. Ее период равен двум и f(1)=5. Найдите значение выражения 3f(7) - 4 f(-3).

График функции {y = }fleft(xright) может выглядеть, например, вот так:

Отметим точку М (1; 5), принадлежащую графику функции {y = }fleft(xright). Поскольку период функции равен 2, значения функции в точках 3, 5, 7dots 1 + 2k будут также равны пяти. Здесь k — целое число.

Как ведет себя функция {y = }fleft(xright) в других точках — мы не знаем. Но знаем, что ее график состоит из повторяющихся элементов длиной 2, что и нарисовано.

Значения функции {y = }fleft(xright) в точках -3 и 7 равны пяти. Мы получим: 3fleft(7right)4fleft(-3right)=3cdot 5-4cdot 5=-5.

2. График четной периодической функции y = fleft(xright) совпадает с графиком функции zleft(xright)=2(x-1)^2 на отрезке от 0 до 1; период функции y = fleft(xright) равен 2. Постройте график функции y = fleft(xright) и найдите f(4 ).

Построим график функцииzleft(xright)=2(x-1)^2 при xin [0;1].

Поскольку функция y = { f}left({ x}right) четная, ее график симметричен относительно оси ординат. Построим часть графика при xin [-1;0], симметричную части графика от 0 до 1.

Период функции y = fleft(xright) равен 2. Повторим периодически участок длины 2, который уже построен.

Найдем f(4)

f(4)= f (0 + 2cdot 2) = f(0) = 2.

3. Найдите наименьший положительный период функции fleft(xright)={sin 3x+{cos 5x}}

Наименьший положительный период функции y={sin x} равен 2pi.

График функции y=sin 3x получается из графика функции y={sin x} сжатием в 3 раза по оси X (смотри тему «Преобразование графиков функций).

Значит, у функции y={sin 3x} частота в 3 раза больше, чем у функции y={sin x}, а наименьший положительный период в 3 раза меньше и равен frac{{rm 2}pi }{{rm 3}}. Значит, на отрезке 2pi укладывается ровно 3 полных волны функции y={sin 3x}.

Рассуждая аналогично, получим, что для функции y={cos 5x} наименьший положительный период равен frac{{rm 2}pi }{{rm 5}}. На отрезке 2pi укладывается ровно 5 полных волн функции y={cos 5x}.

Числа 3 и 5 — взаимно простые. Поэтому наименьший положительный период функции fleft(xright)={sin 3x+{cos 5x}} равен 2pi.

4. Период функции fleft(xright) равен 12, а период функции gleft(xright) равен 8. Найдите наименьший положительный период функции zleft(xright)=fleft(xright)+gleft(xright).

По условию, период функции fleft(xright) равен 12. Это значит, что все значения fleft(xright) повторяются через 12, через 24, 36, 48 ... 12n . Если мы выберем любую точку x_0 на графике функции fleft(xright), то через 12, 36, 48dots 12n значение функции будет такое же, как и в точке x_0.

Аналогично, все значения функции gleft(xright) повторяются через 8, 16, 24, 32dots 8k. В этих точках значения gleft(xright) будут такие же, как и в точке x_0.

На каком же расстоянии от точки x_0 расположена точка, в которой значение функции zleft(xright)=fleft(xright)+gleft(xright) такое же, что и в точке x_0? Очевидно, на расстоянии T = 12n = 8k. Это значит, что число T делится и на 12, и на 8, то есть является их наименьшим общим кратным. Значит, T = 24 .

Наименьший положительный период суммы функций равен наименьшему общему кратному периодов слагаемых. 

Спасибо за то, что пользуйтесь нашими материалами.
Информация на странице «Периодические функции» подготовлена нашими редакторами специально, чтобы помочь вам в освоении предмета и подготовке к ЕГЭ и ОГЭ.
Чтобы успешно сдать нужные и поступить в ВУЗ или техникум нужно использовать все инструменты: учеба, контрольные, олимпиады, онлайн-лекции, видеоуроки, сборники заданий.
Также вы можете воспользоваться другими материалами из данного раздела.

Публикация обновлена:
07.05.2023

В этой статье обсуждаем периодичность функций: как определить, периодична ли  функция, и каков ее период.

Функция периодична, если  некоторый набор ее значений повторяется раз за разом, и точки с одинаковыми значениями функции расположены на числовой оси с равными промежутками. Это расстояние и будем называть периодом. Периодичная функция может иметь и несколько периодов, самый маленький положительный из них будем называть основным.

Тогда, если мы знаем период, мы можем, зная все значения функции на протяжении данного периода, достроить функцию, либо узнать ее значения в любой точке числовой оси – то есть при любом аргументе.

period1

Периодичная функция

Пример 1: функция f(x) имеет период, равный 2: T=2 и f(x)=x^2+2x при x in[-2; 0]. Найдите значение выражения -2f(-3)-4f(3,5).

Раз наша функция принимает форму части параболы на отрезке [-2; 0] при периоде, равном 2, значит, такую же форму она будет иметь и на следующем отрезке – [0;2], и на отрезке [2;4]. Изобразим ее:

period2

Определение значения периодичной функции

Видно, что функция принимает одинаковые значения в точках, отстоящих друг от друга на 2, 4, 6  единиц и т.д., тогда f(-3)= f(-1), f(3,5)=f(-0,5). Найдем эти значения функции. В точке (-1) функция принимает значение f(-1)=(-1)^2-2=-1, в точке (3,5) функция принимает значение f(-0,5)=(-0,5)^2+2(-0,5)=-0,75.

Теперь найдем значение искомого выражения: -2f(-3)-4f(3,5)=-2(-1)-4(-0,75)=5.

Строго говоря, функция периодична, если есть такое число Т, что f(x+T)=f(x).

Попробуем научиться определять, периодична ли функция или нет. Для этого рассмотрим несколько примеров.

Пример 2. Проверим, периодична ли функция f(x)=sqrt{x}.

Установим, выполняется ли условие: f(x+T)=f(x), то есть sqrt{x+T}= sqrt{x}? Очевидно, что данное условие не выполняется. Значит, функция непериодична.

Пример 3. Проверим, периодична ли функция f(x)= x^2-2x+4.

Функцию для удобства представим в виде: f(x)= (x-2)^2.

Установим, выполняется ли условие: f(x+T)=f(x), то есть (x-2)^2= (x+T-2)^2? Очевидно, что данное условие не выполняется: (x+T-2)^2=x^2-2(t-2)x+(T-2)^2<> (x-2)^2. Значит, функция непериодична.

Пример 4. Проверим, периодична ли функция f(x)=delim{|}{cos x}{|}. Если функция периодична, то будет выполняться условие: f(x+T)=f(x), то есть delim{|}{cos x}{|}= delim{|}{cos (x+T)}{|}. Поскольку нам все равно, в какой точке числовой оси мы проведем свое исследование, то очень удобно начать с точки x=0. Тогда  delim{|}{cos 0}{|}= delim{|}{cos (0+T)}{|}, или delim{|}{cos T}{|}=1. Это означает, что либо  cos T=1, либо cos T=-1,  то есть либо T=2{pi},  либо T={pi},  а так как главным считается наименьший  положительный период, то T={pi}.

period3

Определение периода функции

В данном примере делать проверку необязательно, но проверка бывает очень полезна в более сложных задачах, поэтому сделаем ее здесь для тренировки: delim{|}{cos (x+pi)}{|}= delim{|}{-cos x}{|}= delim{|}{cos x}{|}=f(x).

Пример 5. Определить периодичность функции f(x)=cos (2x)+2sin (2x).

Если Т – период, то cos 2(x+T)+2sin 2(x+T)= cos (2x)+2sin (2x).

В это равенство подставим какие-нибудь «удобные» точки, например, pi. Получим:

cos (2{pi}+2T)+2sin (2pi+2T)= cos (2{pi})+2sin (2{pi})

cos (2T)+2sin (2T)=1

Далее есть два пути отыскания периода, первый – решение этого уравнения, второй – составление еще одного уравнения такого же вида. Если функция имеет период Т, то верно и следующее: cos 2(x-T)+2sin 2(x-T)= cos (2x)+2sin (2x). Подставим  «удобную» точку pi:

cos (2{pi}-2T)+2sin (2{pi}-2T)= cos (2{pi})+2sin (2{pi})

cos (-2T)+2sin (-2T)=1

Пользуясь четностью косинуса  и нечетностью синуса можем записать:

cos (2T)-2sin (2T)=1

Имеем систему:

delim{lbrace}{matrix{2}{1}{{ cos (2T)-2sin (2T)=1} { cos (2T)+2sin (2T)=1}}}{ }

Уравнения сложим, и получим

2cos (2T)=2, откуда

cos (2T)=1

2T=2{pi}n, при n=1 получим  T={pi} – ведь нам нужен наименьший период.

Теперь испробуем второй путь, решим это уравнение: cos (2T)-2sin (2T)=1. Из основного тригонометрического тождества:

{sqrt{1-{sin {2T}}^2}}+2{sin {2T}}=1

Оставим в левой части только корень:

sqrt{1-{sin {2T}}^2}=1-2{sin {2T}}

Возведем в квадрат:

1-(sin {2T})^2=1-4sin 2T+4(sin {2T})^2

5(sin {2T})^2-4sin {2T}=0

{sin {2T}}(5sin {2T}-4)=0

Тогда либо sin {2T}=0, либо 5sin {2T}-4=0 и sin {2T}=4/5.

Это уравнение имеет два решения, одно из которых (второе) – посторонний корень, появившийся при возведении в квадрат. Проверка подстановкой его в исходное уравнение позволит нам выявить его и отбросить. Таким образом, получаем:

sin {2T}=0

2T={pi}n и наименьшим будет период при n=1, то есть T={pi}.

Здесь также необходимо сделать проверку. Подставим полученный период в условие  f(x+T)=f(x):

cos (2x+2{pi})+2sin (2x+2{pi})= cos (2x)+2sin (2x)=f(x), то есть

период данной функции — T={pi}.

period1

Определение периода функции

Пример 6. Определить периодичность функции f(x)= delim{|}{{sin}{delim{|}{x}{|}}}{|} и найти ее основной период.

Если Т – период, то delim{|}{{sin}{delim{|}{x}{|}}}{|}= delim{|}{{sin}{delim{|}{x+T}{|}}}{|}

Подставим x=0, имеем

delim{|}{{sin}{delim{|}{0}{|}}}{|}= delim{|}{{sin}{delim{|}{T}{|}}}{|},

Или sin T= 0, T= {pi}n, наименьший период при n=1, T= {pi}.

Проверим:

delim{|}{{sin}{delim{|}{x+{pi}}{|}}}{|}= delim{|}{{sin}{delim{|}{x}{|}}}{|}

period4

Определение периода функции

Пример 7. Определим период функции f(x)=sin 4x.

Запишем условие периодичности:

sin 4(x+T)=sin 4x, если x=0, то

sin 4T=sin 0=0, откуда  4T= {pi}n, T= {{pi}n}/4. При n=1, T= {pi}/4, при n=2, T= {pi}/2. Проверкой можно показать, что T= {pi}/4 периодом не является. Тогда T= {pi}/2. Действительно:

sin 4(x+{pi}/2)=sin (4x+2{pi})=sin 4x

period51

Определение периода функции

Пример 8. Доказать, что периодом функции f(x)=cos x-1 является T=2{pi}.

Тогда: cos x-1= cos (x+2{pi})-1= cos x-1

Пример 9. Доказать, что периодом функции f(x)= sin (x-{pi}/4) является T=2{pi}.

Тогда: sin (x-pi/4)= sin (x+2pi-pi/4)= sin (x+7pi/4)

Если x=0, то

sin({-pi}/4)= sin ({7pi}/4), а  так как {-pi}/4 и {7pi}/4 —  одна и та же точка на единичной окружности, то равенство выполняется.

Удачи вам в учебе и надеюсь, эта статья вам помогла.

Как определить периодичность функции

По школьным урокам математики каждый помнит график синуса, равномерными волнами уходящий вдаль. Аналогичным свойством — повторяться через определенный промежуток — обладают и многие другие функции. Они называются периодическими. Периодичность — очень важное свойство функции, часто встречающееся в различных задачах. Поэтому полезно уметь определять, является ли функция периодической.

Как определить периодичность функции

Инструкция

Если F(x) — функция аргумента x, то она называется периодической, если есть такое число T, что для любого x F(x + T) = F(x). Это число T и называется периодом функции.

Периодов может быть и несколько. Например, функция F = const для любых значений аргумента принимает одно и то же значение, а потому любое число может считаться ее периодом.

Обычно математика интересует наименьший не равный нулю период функции. Его для краткости и называют просто периодом.

Классический пример периодических функций — тригонометрические: синус, косинус и тангенс. Их период одинаков и равен 2π, то есть sin(x) = sin(x + 2π) = sin(x + 4π) и так далее. Однако, разумеется, тригонометрические функции — не единственные периодические.

Относительно простых, базовых функций единственный способ установить их периодичность или непериодичность — вычисления. Но для сложных функций уже есть несколько простых правил.

Если F(x) — периодическая функция с периодом T, и для нее определена производная, то эта производная f(x) = F′(x) — тоже периодическая функция с периодом T. Ведь значение производной в точке x равно тангенсу угла наклона касательной графика ее первообразной в этой точке к оси абсцисс, а поскольку первообразная периодически повторяется, то должна повторяться и производная. Например, производная от функции sin(x) равна cos(x), и она периодична. Беря производную от cos(x), вы получите –sin(x). Периодичность сохраняется неизменно.

Однако обратное не всегда верно. Так, функция f(x) = const периодическая, а ее первообразная F(x) = const*x + C — нет.

Если F(x) — периодическая функция с периодом T, то G(x) = a*F(kx + b), где a, b, и k — константы и k не равно нулю — тоже периодическая функция, и ее период равен T/k. Например sin(2x) — периодическая функция, и ее период равен π. Наглядно это можно представить так: умножая x на какое-нибудь число, вы как бы сжимаете график функции по горизонтали именно в столько раз

Если F1(x) и F2(x) — периодические функции, и их периоды равны T1 и T2 соответственно, то сумма этих функций тоже может быть периодической. Однако ее период не будет простой суммой периодов T1 и T2. Если результат деления T1/T2 — рациональное число, то сумма функций периодична, и ее период равен наименьшему общему кратному (НОК) периодов T1 и T2. Например, если период первой функции равен 12, а период второй — 15, то период их суммы будет равен НОК (12, 15) = 60.

Наглядно это можно представить так: функции идут с разной «шириной шага», но если отношение их ширин рационально, то рано или поздно (а точнее, именно через НОК шагов), они снова сравняются, и их сумма начнет новый период.

Однако если соотношение периодов иррационально, то суммарная функция не будет периодической вовсе. Например, пусть F1(x) = x mod 2 (остаток от деления x на 2), а F2(x) = sin(x). T1 здесь будет равен 2, а T2 равен 2π. Соотношение периодов равняется π — иррациональному числу. Следовательно, функция sin(x) + x mod 2 не является периодической.

Источники:

  • Теоретические сведения о функциях

Войти на сайт

или

Забыли пароль?
Еще не зарегистрированы?

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

Понравилась статья? Поделить с друзьями:
  • Как найти в ipad app store
  • Как найти обратную матрицу через присоединенную матрицу
  • Как найти массу через джоули
  • Как найти площадь разными способами 3 класс
  • Как по государственной номеру найти адрес