Как найти период колебаний по количеству колебаний

Период колебаний, формула

Повторяющиеся движения или процессы, которые воспроизводят все состояния предыдущего цикла являются периодическими.
Одной из характеристик периодических процессов или колебаний является период.

Период колебаний — Это время за которое периодический процесс проходит полностью один цикл.

Период колебаний, формула

Период колебаний, формула

Для того чтобы найти период колебаний, необходимо взять определенный временной интервал и подсчитать количество циклов, после чего воспользоваться формулой:

Если

∆t определенный временной интервал, секунд
N количество циклов, шт.
f частота колебаний (число циклов в одну секунду), Герц

то

[ T = frac{∆t}{N} = frac{1}{f} ]

Пример определения периода колебаний

Например возьмем кусочек пластилина и подвесим его на нитке.
Отведем нитку от положения равновесия и отпустим. На сотовом телефоне в момент отпускания запустим секундомер.
Отсчитаем 10 циклов, т.е. нить 10 раз вернется в ту же точку из которой мы ее отпустили.
Секундомер показал 14.35 секунд, соответственно приблизительный период колебаний нити 1.435 секунд.

Вычислить, найти период колебаний по формуле 1

Как найти период колебаний зная частоту

Период колебаний, формула

стр. 533

Период и частота колебаний, теория и онлайн калькуляторы

Период и частота колебаний

Период колебаний

Определение

Период — это отрезок времени, которое необходимо для совершения одного цикла периодического процесса.

Периодом ($T$) колебаний называют время, за которое совершается одно полное колебание.

За время равное периоду колебаний фаза изменяется на величину равную $2pi $, поэтому:

[T=frac{2pi }{{omega }_0}left(1right).]

Разные периодические процессы, (процессы, повторяющиеся через равные промежутки времени) можно представить в виде совокупности наложенных гармонических колебаний.

Гармонические колебания некоторого параметра $xi $ описываются уравнением:

[xi =A{cos ({omega }_0t+varphi ) } left(2right),]

где $A={xi }_{max}$ — амплитуда колебаний; ${omega }_0$ — циклическая (круговая) частота колебаний; $varphi $ — начальная фаза колебаний (фаза при $t=0$); $({omega }_0t+varphi )$ —
фаза колебаний. Величина $xi $ лежит в пределах $-Ale sle $+A.

Формулы для вычисления периода простейших колебательных систем

Период колебаний пружинного маятника определим как:

[T=2pi sqrt{frac{m}{k}} left(3right),]

на упругой пружине, жесткость которой равна $k,$ подвешен груз массой $m$.

Период колебаний математического маятника зависит от ускорения свободного падения ($g$) и длины подвеса ($l$)

[T=2pi sqrt{frac{l}{g}}left(4right).]

Формула для вычисления периода колебаний физического маятника представляет собой выражение:

[T=2pi sqrt{frac{J}{mga}left(5right),}]

где $J$ — момент инерции маятника относительно оси вращения; $a$ — расстояние от центра масс тела до оси вращения.

Единицами измерения периода служат единицы времени, например секунды.

[left[Tright]=c.]

Частота колебаний

Определение

Физическая величина обратная периоду колебаний называется частотой колебаний ($nu $).

Частота — это количество полных колебаний, которые колебательная система совершает за единицу времени.

[nu =frac{1}{T}left(6right).]

Частота колебаний связана с циклической частотой как:

[{omega }_0=2pi nu left(7right).]

Единицей измерения частоты в Международной системе единиц (СИ) является герц или обратная секунда:

[left[nu right]=с^{-1}=Гц.]

Примеры задач с решением

Пример 1

Задание. Каковы период ($T$) и частота ($nu $) колебаний, которые происходят в соответствии с уравнением: $x=A{sin ({omega }_0(t+tau )) }$, где ${omega }_0=2,5 pi (frac{рад}{с})$; $tau =0,4 $с?

Решение. Из уравнения колебаний:

[x=A{sin left({omega }_0left(t+tau right)right)left(1.1right), }]

заключаем, что это гармонические колебания, так как они происходят по закону синуса следовательно, они являются периодическими. Период найдем, зная циклическую частоту колебаний:

[T=frac{2pi }{{omega }_0}left(1.1right).]

Подставляя имеющиеся данные, вычислим период колебаний:

[T=frac{2pi }{2,5pi }=0,8 left(сright).]

Частоту колебаний найдем как величину, обратную периоду:

[nu =frac{1}{T}left(1.2right).]

Вычислим частоту:

[nu =frac{1}{0,8}=1,25 left(Гцright).]

Ответ. $T=0,8$ с; $nu =1,25 Гц$

Пример 2

Задание. Какими будут период и частота малых колебаний тонкого обруча, который висит на гвозде (точка А), вбитом горизонтально в стену (рис.1)? Колебания совершаются в плоскости параллельной стене. Радиус обруча R.

Период и частота колебаний, пример 1

Решение. В этой задаче мы имеем дело с физическим маятником период которого, найдем, используя формулу:

[T=2pi sqrt{frac{J}{mga}left(2.1right).}]

Осью вращения обруча является гвоздь, находящийся в точке А. Цент масс обруча находится в его геометрическом центре, точке О, следовательно, расстояние от центра масс до оси вращения обруча (рис.1) равно:

[a=R left(2.2right).]

Найдем момент инерции обруча относительно оси, перпендикулярной плоскости обруча, проходящей через точку $A$. Для этого воспользуемся теоремой Штейнера:

[J=J_0+mR^2 left(2.3right),]

где $J_0=mR^2$ — момент инерции обруча, относительно оси, проходящей через его центр (т.О), перпендикулярно плоскости обруча; расстояние между осями равно радиусу обруча. Получаем, момент инерции обруча относительно гвоздя равен:

[J=mR^2+mR^2=2mR^2left(2.4right).]

Используя формулы (2.1) (2.2) и (2.4), имеем:

[T=2pi sqrt{frac{2mR^2}{mgR}}=2pi sqrt{frac{2R}{g}}.]

Отталкиваясь от полученного результата, найдем частоту колебаний как:

[nu =frac{1}{T}=frac{1}{2pi }sqrt{frac{g}{2R}}.]

Ответ. $T=2pi sqrt{frac{2R}{g}},$ $nu =frac{1}{2pi }sqrt{frac{g}{2R}}$

Читать дальше: полная энергия колебаний.

236

проверенных автора готовы помочь в написании работы любой сложности

Мы помогли уже 4 430 ученикам и студентам сдать работы от решения задач до дипломных на отлично! Узнай стоимость своей работы за 15 минут!

Как найти период колебаний

Для нахождения периода колебаний возьмите время, за которое произошло некоторое количество колебаний и поделите на это количество. Для определения периода колебаний математического маятника измерьте его длину и рассчитайте период. Для пружинного маятника определите его жесткость и массу груза. Чтобы определить период электромагнитных колебаний, найдите емкость и индуктивность контура.

Как найти период колебаний

Вам понадобится

  • секундомер, пружинный и математический маятник, катушка и конденсатор.

Инструкция

Простейший способ определения периода колебаний Возьмите секундомер и включив его, отсчитайте некоторое количество колебаний. Как правило, прлучается от 10 до 30 штук. Затем время в секундах, за которое произошли эти колебания, поделите на их количество. В результате получите значение периода в секундах.

Определение периода колебаний математического маятника Возьмите математический маятник (малое тело на длинной нити) и измерьте длину нити в метрах. Затем длину это значение поделите на число 9,81 из результата извлеките квадратный корень, а получившееся число умножьте на число 6,28. Это и будет периодом колебаний математического маятника.

Определение периода колебаний пружинного маятника Измерьте массу груза, который будет колебаться на пружине. Затем узнайте жесткость пружины. Если она не известна, возьмите груз и с помощью динамометра определите его вес (в неподвижном состоянии он будет равен силе тяжести), затем подвесьте на пружину и с помощью линейки найдите ее удлинение в метрах. Затем вес тела поделите на удлинение пружины и получите ее жесткость в ньютонах на метр. Чтобы найти период колебаний пружинного маятника, массу груза поделите на жесткость пружины, из полученного числа извлеките квадратный корень и умножьте его на 6,28.

Определение периода электромагнитных колебаний Для этого найдите индуктивность катушки и емкость конденсатора в колебательном контуре. Если они не известны, примените электронный тестер, задав соответствующие настройки. Индуктивность измеряйте в генри, а емкость в фарадах. После этого перемножьте полученные значения индуктивности и емкости, извлеките из числа квадратный корень, а результат умножьте на 6,28.

Видео по теме

Полезный совет

Во всех случаях, когда известна частота колебаний, для того чтобы найти их период, достаточно число 1 поделить на значение частоты.

Войти на сайт

или

Забыли пароль?
Еще не зарегистрированы?

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

Добро пожаловать на мой сайт!

Елена Викторовна

БУДЕМ ЗНАКОМЫ
Меня зовут Елена Викторовна.
Я преподаватель и репетитор со стажем 26 лет.

Помогаю школьникам разобраться со школьной программой. Готовлю к ЕГЭ.

Мы учимся на протяжении всей жизни.

И если Вы зашли на мой сайт, то одно желание у Вас есть точно! Желание учиться!

Мой сайт поможет Вам:

  • понять физику
  • подтянуть оценки по физике
  • избавиться от страха перед уроками
  • изучить физику углубленно
  • подготовиться к ЕГЭ по физике

Физика — это просто, если начать заниматься систематически, шаг за шагом! Ну, а нужна будет помощь — обращайтесь!

Занятия онлайн и очно*.  (*очно — только для Новороссийска).

Период колебаний — минимальный промежуток времени, за который тело совершает одно полное колебание

  Для нахождения периода колебаний надо время всех колебаний разделить на количество колебаний:

Период колебаний

   Период колебаний — величина, обратная частоте колебаний:

Период обратно пропорционален частоте

   Период колебаний на графике — это расстояние между двумя точками, совершающими волебания в одинаковых фазах:

красная кривая отличается от синей только значением периода (T’ = T / 2)

   Период колебаний пружинного маятника   Период колебаний пружинного маятника

   Период колебаний математического маятника   Период колебаний математического маятника

   Период колебаний физического маятника    Период колебаний физического маятника   

   Период колебаний крутильного маятника   Период колебаний крутильного маятника

   Обозначения:

T — период колебаний маятника

N — количество колебаний

t — время, за которое было совершено N колебаний

m — масса груза, или масса маятника

k — жесткость пружины

L — длина подвеса

g — ускорение свободного падения

J — момент инерции маятника относительно оси вращения

l — расстояние от оси вращения до центра масс

I — момент инерции тела

K — вращательный коэффициент жёсткости маятника

Колебательное движение очень распространено. Заставить колебаться можно любое тело, если приложить к нему силу — однократно или постоянно. К примеру, если подтолкнуть качели, они начнут качаться вперед-назад, и такое движение будет приблизительно повторяться до тех пор, пока качели полностью не остановятся.

Другой пример колебательного движения — тело, подвешенное к пружине. Если его потянуть вниз и отпустить, то за счет сил упругости оно сначала поднимется вверх, а затем снова опустится вниз, затем движения вверх-вниз будут повторяться. Со временем они прекратятся под действием силы сопротивления воздуха.

Колебаниями можно назвать даже движение гири, которую поднимается тяжелоатлет вверх, а затем опускает в низ. При этом он будет прикладывать к гире силу постоянно. Гиря будет колебаться до тех пор, пока к нему будет прикладываться эта сила.

Определения

Колебания — это движения, которые точно или приблизительно повторяются через определенные интервалы времени.

Механические колебания — это колебательные движения, совершаемые физическим телом в механической системе.

Механическая система — совокупность материальных точек (тел), движения которых взаимосвязаны между собой.

Какими бывают колебания?

Напомним, что в механической системе выделяют два вида сил:

  • Внутренние силы — это силы, которые возникают между телами внутри системы. Примером внутренних сил служат силы тяготения между телами солнечной системы.
  • Внешние силы — силы, которые действуют на тела системы со стороны тел, которые в эту систему не входят. Примером внешней силы может стать сила ветра, под действием которой шарик, подвешенный к опоре за нить, отклоняется в сторону порыва ветра.

Свободные колебания

Определения

Свободные колебания — колебания, происходящие в системе под действием внутренних сил после того, как эта система выведена из положения равновесия.

Колебательная система — механическая система, в которой возможно совершение свободных колебаний.

Свободные колебания в колебательной системе могут возникнуть только при наличии двух условий:

  1. После выведения из равновесия в колебательной системе появляются силы, направленные в сторону положения равновесия. Эти силы стремятся возвратить систему в положение равновесия.
  2. Трение между телами колебательной системы относительно мало. В противном случае колебания либо сразу затухнут, либо не начнутся совсем.

Примеры свободных колебаний:

  • колебания шарика на дне сферической чаши;
  • движение качелей после однократного толчка;
  • колебания груза на пружине после ее растяжения;
  • колебания струны после ее отклонения.

Примером колебательной системы также служит математический маятник — материальная точка, подвешенная на невесомой нерастяжимой нити. В действительности такого маятника не существует. Это идеализированная модель реального маятника, примером которого служит тяжелый шарик, подвешенный на длинной нити. В этом случае размером шарика и растяжением нити можно пренебречь.

В колебательную систему математического маятника входят:

  • нить;
  • тело, привязанное к нити;
  • Земля, в поле тяжести которой находится привязанное к нити тело.

В положении равновесия (точка О) шарик висит на нити и покоится. Если его отклонить от положения равновесия до точки А и отпустить, под действием силы тяжести шарик приблизится к положению равновесия. Так как к этому моменту шарик обретет скорость, он не сможет остановиться и приблизится к точке В. Затем он снова вернется в точку А через положение равновесия в точке О. Шарик будет колебаться, пока не затухнут под действием возникающей силы сопротивления воздуха.

Вынужденные колебания

Определение

Вынужденные колебания — колебания тел под действием внешних периодически изменяющихся сил.

Примерами вынужденных колебаний служат:

  • движение поршня в цилиндре;
  • раскачивание ветки дерева на ветру;
  • движение иглы швейной машинки;
  • движение качелей под действием постоянных толчков.

Затухающие и незатухающие колебания

Определение

Затухающие колебания — колебания, которые со временем затухают. При этом максимальное отклонение тела от положения равновесия с течением времени уменьшается.

Колебания затухают под действием сил, препятствующих колебательному движению. Так, шарик в сферической чаше перестает колебаться под действием силы трения. Математический маятник и качели перестают совершать колебательные движения за счет силы сопротивления воздуха.

Важно!

Все свободные колебания являются затухающими, так как всегда присутствует трение или сопротивление среды.

Незатухающими колебаниями могут быть только те, которые совершаются под действием периодической внешней силы (вынужденные колебания). Так, ветка будет раскачиваться до тех пор, пока дует ветер. Когда он перестанет дуть, колебания ветки со временем затухнут. Иголка швейной машинки будет совершать колебательные движения до тех пор, пока швея вращает ручку привода. Когда она перестанет это делать, иголка сразу остановится.

Динамика колебательного движения

Для того чтобы описать количественно колебания тела пол действием силы упругости пружины или колебания шарика, подвешенного на нити, воспользуемся законами механики Ньютона.

Уравнение движения тела, колеблющегося под действием сил упругости

Рассмотрим колебательное движение шарика, вызванное силой упругости, возникшей при растяжении горизонтальной пружины вдоль оси Ох.

Согласно II закону Ньютона произведение массы тела на ускорение равно равнодействующей всех сил приложенных к телу. Поскольку сила трения пренебрежимо мала, мы можем считать, что в этой механической системе действует единственная сила — сила упругости. Учтем, что шарик колеблется вдоль одной прямой, и выберем одномерную систему координат Ох. Тогда:

ma=F

max=Fx упр

Согласно закону Гука, проекция сила упругости прямо пропорциональная смещению шарика из положения равновесия (точки О). Смещение равно координате x шарика, причем проекция силы и координаты имеют разные знаки. Это связано с тем, что сила упругости всегда направлена к точке равновесия, в то время как расстояние от этой точки во время движения увеличивается в обратную сторону. Отсюда делаем вывод, что сила упругости равна:

Fx упр=kx

где k — жесткость пружины.

Тогда уравнение движения шарики принимает вид:

max=kx

Или:

ax=kmx

Так как масса шарики и жесткость пружины для данной колебательной системы постоянны, отношение km — постоянная величина. Отсюда делаем вывод, что проекция ax ускорения тела прямо пропорциональна его координате x, взятой с противоположным знаком.

Пример №1. Груз массой 0,1 кг прикрепили к пружине школьного динамометра жесткостью 40 Н/м. В начальный момент времени пружина не деформирована. После того, как груз отпускают, возникают колебания. Чему равна максимальная скорость груза?

Максимальной скорости груз достигнет при максимальном его отклонении от положения равновесия — в нижней точке траектории. Учтем, что тело движется вниз под действием силы тяжести. Но в то же время на него действует сила упругости, которая возникает в пружине и нарастает до тех пор, пока не становится равной по модулю силе тяжести. Применив III закон Ньютона получим:

Fтяж=Fупр

Тогда:

mg=kymax

где ymax — максимальное отклонение груза от положения равновесия. В этой точке скорость тела будет максимальная. Для нахождения этой величины используем формулу из кинематики:

ymax=v2maxv202g

Начальная скорость равна нулю. Отсюда:

ymax=v2max2g

Тогда:

mg=kv2max2g

Максимальная скорость равна:

vmax=g2mk=102·0,1400,71 (мс)

Уравнение движения математического маятника

Ниже на рисунке представлен математический маятник. Если мы выведем из положения равновесия шарик и отпустим, возникнет две силы:

  • сила тяжести, направленная вниз;
  • сила упругости, направленная вдоль нити.

При колебаниях шарика также будет возникать сила сопротивления воздуха. Но так как она очень мала, мы будем ею пренебрегать.

Чтобы описать динамику движения математического маятника, удобно силу тяжести разложить на две составляющие:

Fт=Fτ+Fn

Причем компонента Fτ направлена перпендикулярно нити, а Fn — вдоль нее.

Компонента Fτ представляет собой проекцию силы тяжести в момент, когда нить маятника отклонена от положения равновесия (точки О) на угол α. Следовательно, она равна:

Fτ=Fтsinα=mgsinα

Знак «–» мы здесь поставили по той причине, что компоненты силы тяжести Fτ и α имеют противоположные знаки. Ведь если отклонить шарик на угол α>0, то составляющая Fτ будет направлена в противоположную сторону, так как она будет пытаться вернуть шарик в положение равновесия. И ее проекция будет отрицательной. Если же шарик отклонить на угол α<0, то составляющая Fτ будет направлена в обратную сторону. В этом случае ее проекция будет положительной.

Обозначим проекцию ускорения маятника на касательную к его траектории через aτ. Эта проекция характеризует быстроту изменения модуля скорости маятника. Согласно II закону Ньютона:

maτ=Fτ

Или

maτ=mgsinα

Разделим обе части выражения на массу шарика m и получим:

aτ=gsinα

При малом отклонении нити маятника от вертикали можно считать, что sinαα (при условии, что угол измерен в радианах). Тогда:

aτ=gα

Внимание! Чтобы перевести градусы в радианы, нужно умножить градусы на число π и поделить результат на 180. К примеру 2о = 2∙3,14/180 рад., или 2о = 0,035 рад.

При малом отклонении также дугу ОА мы можем принять за длину отрезка OA, который мы примем за s. Тогда угол α будет равен отношению противолежащего катета (отрезка s) к гипотенузе (длине нити l):

α=sl

Отсюда:

aτ=gls

Так как ускорение свободного падения и длина нити для данной колебательной системы постоянны, то отношение gl — тоже постоянная величина.

Это уравнение похоже на то уравнение, которое мы получили для описания колебательного движения шарика под действием силы упругости. И оно также позволяет сделать вывод, что ускорение прямо пропорционально координате.

Пример №2. Определить длину нити, если шарик, подвешенный к ней, отклонится на 1 см. При этом нить образовала с вертикалью угол, равный 1,5о.

При отклонениях на малый угол мы можем пользоваться следующей формулой:

α=sl

Чтобы найти длину нити, нужно выразить угол α в радианах:

1,5°=3,14·1,51800,026 (рад)

1 см = 0,01 м

Тогда длина нити равна:

l=sα=0,010,0260,385 (м)=38,5 (см)

Основные характеристики колебательного движения

Определения

Амплитуда — максимальное отклонение тела от положения равновесия. Обозначается буквой A, иногда — xmax. Единиц измерения — метр (м).

Период — время совершения одного полного колебания. Обозначается буквой T. Единица измерения — секунда (с).

Частота — количество колебаний, совершенных в единицу времени. Обозначается как ν («ню»). Единица измерения — 1/секунда, или секунда–1, или герц (1/с, или с–1, или Гц).

Период и частота колебаний связаны между собой следующей формулой:

ν=1T

Период колебаний также можно вычислить, зная количество совершенных колебаний N за время t:

T=tN

Поскольку частота — это величина, обратная периоду колебаний, ее можно выразить в виде:

ν=Nt

Пример №3. Определить частоту колебаний груза, если суммарный путь, который он прошел за 2 секунды под действием силы упругости, составил 1 м. Амплитуда колебаний равна 10 см.

Во время одного колебания груз проходит расстояние, равное 4 амплитудам. Посмотрите на рисунок. Положение равновесия соответствует состояние 2. Чтобы совершить одно полное колебание, сначала груз отводят в положение 1. Когда его отпускают, он проходит путь 1–2 и достигает положения равновесия. Этот путь равен амплитуде колебаний. Затем он продолжает движение до состояния 3. И в это время он проходит расстояние 2–3, равное еще одной амплитуде колебаний. Чтобы вернуться в исходное положение (состояние 1), нужно снова проделать путь в обратном направлении: сначала 3–2, затем 2–1.

Следовательно, количество колебаний равно отношению пройденного пути к амплитуде, помноженной на 4:

N=s4A

10 см = 0,1 м

Так как мы знаем, что эти колебания совершались в течение 2 секунд, для вычисления частоты мы можем использовать формулу:

ν=Nt=s4At=14·0,1·2=1,25 (Гц)

Задание EF17593

В таблице представлены данные о положении шарика, колеблющегося вдоль оси Ох, в различные моменты времени.

Каков период колебаний шарика?

Ответ:

а) 1 с

б) 2 с

в) 3,2 с

г) 4 с


Алгоритм решения

1.Определить амплитуду колебаний.

2.Определить время между двумя максимальными отклонениями от положения равновесия шарика.

3.Найти полный период колебаний.

Решение

Из таблицы видно, что амплитуда колебаний равна 15 мм. Следовательно, максимальное отклонение в противоположную сторону составляет –15 мм. Расстояние между двумя максимальными отклонениями от положения равновесия шарика равно половине периода колебаний. Этим значения в таблице соответствует время 1 и 3 секунды соответственно. Следовательно, разница между ними — половина периода. Тогда период будет равен удвоенной разнице во времени:

T=2(t2t1)=2(31)=4 (с)

Ответ: г

pазбирался: Алиса Никитина | обсудить разбор

Задание EF17539

Массивный груз, подвешенный к потолку на пружине, совершает вертикальные свободные колебания. Пружина всё время остается растянутой. Как ведут себя потенциальная энергия пружины, кинетическая энергия груза, его потенциальная энергия в поле тяжести, когда груз движется вверх к положению равновесия?

Для каждой величины определите соответствующий характер изменения:

1) увеличивается
2) уменьшается
3) не изменяется

Запишите в таблицу выбранные цифры для каждой физической величины. Цифры в ответе могут повторяться.


Алгоритм решения

1.Вспомнить, от чего зависит потенциальная энергия пружины, и установить, как она меняется, когда она поднимает груз в поле тяжести земли к положению равновесия.

2.Вспомнить, от чего зависит кинетическая энергия тел, и установить, как она меняется в рассматриваемый промежуток времени.

3.Вспомнить, от чего зависит потенциальная энергия тел, и установить, как она меняется относительно земли.

Решение

Потенциальная энергия пружины определяется формулой:

Wp=kx22

где k — коэффициент жесткости пружины, а x — ее удлинение. Величина x была максимальной в нижней точке траектории. Когда пружина начинает сжиматься, она уменьшается. Так как потенциальная энергия зависит от квадрата x прямо пропорционально, то при уменьшении этой величины потенциальная энергия пружины тоже уменьшается.

Кинетическая энергия тела определяется формулой:

Wk=mv22

В нижней точке траектории скорость шарика была равна нулю. Но к этому времени потенциальная энергия пружины достигла максимума. Она начинает с ускорением поднимать шарик вверх, сжимаясь. Следовательно, скорость растет. Так как кинетическая энергия зависит от квадрата скорости тела прямо пропорционально, то при увеличении скорости этой величины кинетическая энергия шарика тоже увеличивается.

Потенциальная энергия тел в поле тяжести земли определяется формулой:

Wp=mgh

Масса и ускорение свободного падения шарика — постоянные величины. Следовательно, потенциальная энергия зависит только от расстояния до поверхности земли. Когда пружина поднимает шарик, расстояние между ним и землей увеличивается. Так как потенциальная энергия зависит от расстояния прямо пропорционально, то при его увеличении потенциальная энергия шарика тоже растет.

Ответ: 211

pазбирался: Алиса Никитина | обсудить разбор

Задание EF18835

В таблице представлены данные о положении шарика, прикреплённого к пружине и колеблющегося вдоль горизонтальной оси Ох, в различные моменты времени.

Из приведённого ниже списка выберите два правильных утверждения и укажите их номера.

Ответ:

А) Потенциальная энергия пружины в момент времени 1,0 с максимальна.

Б) Период колебаний шарика равен 4,0 с.

В) Кинетическая энергия шарика в момент времени 2,0 с минимальна.

Г) Амплитуда колебаний шарика равна 30 мм.

Д) Полная механическая энергия маятника, состоящего из шарика и пружины, в момент времени 3,0 с минимальна.


Алгоритм решения

  1. Проверить истинность каждого утверждения.
  2. Выбрать 2 верных утверждения.

Решение

Согласно утверждению «А», потенциальная энергия пружины в момент времени 1,0 с максимальна. Потенциальная энергия пружины максимальна, когда она отклоняется от положения равновесия на максимальную возможную величину. Из таблицы видно, что в данный момент времени ее отклонение составило 15 мм, что соответствует амплитуде колебаний (наибольшему отклонению от положения равновесия). Следовательно, утверждение «А» — верно.

Согласно утверждению «Б», период колебаний шарика равен 4,0 с. Один период колебаний включает в себя 4 фазы. В течение каждой фазы шарик на пружине проделывает путь, равный амплитуде. Следовательно, мы можем найти период колебаний, умножив время одной фазы на 4. В момент времени t = 0 с, шарик находился в положении равновесия. Первый раз он отклонился на максимальную величину (15 мм) в момент времени t = 1,0 с. Значит, период колебаний равен 1∙4 = 4 с. Следовательно, утверждение «Б» — верно.

Согласно утверждению «В», кинетическая энергия шарика в момент времени 2,0 с минимальна. В этот момент времени, согласно данным таблицы, шарик проходит положение равновесия. В этом положении скорость шарика всегда максимальна. Поэтому кинетическая энергия, которая зависит от квадрата скорости прямо пропорционально, минимальной быть не может. Следовательно, утверждение «В» — неверно.

Согласно утверждению «Г», амплитуда колебаний шарика равна 30 мм. Амплитуда колебаний — есть расстояние от положения равновесия до точки максимального отклонения шарика. В данном случае оно равно 15 мм. Следовательно, утверждение «Г» — неверно.

Согласно утверждению «Д», полная механическая энергия маятника, состоящего из шарика и пружины, в момент времени 3,0 с минимальна. Полная механическая энергия колебательной системы — это совокупность кинетической и потенциальной энергий. И при отсутствии сил трения она остается величиной постоянной. Она лишь превращается из одного вида энергии в другую. Следовательно, утверждение «Д» — неверно.

Ответ: АБ

pазбирался: Алиса Никитина | обсудить разбор

Алиса Никитина | Просмотров: 9k

Понравилась статья? Поделить с друзьями:
  • Как найти периметр если известна площадь формула
  • Как найти диаметр прямоугольного сечения
  • Как можно найти ноутбук если его украли
  • Нахождения произведения как найти
  • Как найти площадь кольца если известны радиусы