Как найти период колебаний заряда конденсатора

Электромагнитные колебания

  • Темы кодификатора ЕГЭ: свободные электромагнитные колебания, колебательный контур, вынужденные электромагнитные колебания, резонанс, гармонические электромагнитные колебания.

  • Колебательный контур

  • Энергетические превращения в колебательном контуре

  • Электромеханические аналогии

  • Гармонический закон колебаний в контуре

  • Вынужденные электромагнитные колебания

Автор статьи — профессиональный репетитор, автор учебных пособий для подготовки к ЕГЭ Игорь Вячеславович Яковлев

Темы кодификатора ЕГЭ: свободные электромагнитные колебания, колебательный контур, вынужденные электромагнитные колебания, резонанс, гармонические электромагнитные колебания.

Электромагнитные колебания — это периодические изменения заряда, силы тока и напряжения, происходящие в электрической цепи. Простейшей системой для наблюдения электромагнитных колебаний служит колебательный контур.

Колебательный контур

Колебательный контур — это замкнутый контур, образованный последовательно соединёнными конденсатором и катушкой.

Зарядим конденсатор, подключим к нему катушку и замкнём цепь. Начнут происходить свободные электромагнитные колебания — периодические изменения заряда на конденсаторе и тока в катушке. Свободными, напомним, эти колебания называются потому, что они совершаются без какого-либо внешнего воздействия — только за счёт энергии, запасённой в контуре.

Период колебаний в контуре обозначим, как всегда, через T. Сопротивление катушки будем считать равным нулю.

Рассмотрим подробно все важные стадии процесса колебаний. Для большей наглядности будем проводить аналогию с колебаниями горизонтального пружинного маятника.

Начальный момент: t=0. Заряд конденсатора равен q_0, ток через катушку отсутствует (рис. 1). Конденсатор сейчас начнёт разряжаться.

Рис. 1. t=0

Несмотря на то, что сопротивление катушки равно нулю, ток не возрастёт мгновенно. Как только ток начнёт увеличиваться, в катушке возникнет ЭДС самоиндукции, препятствующая возрастанию тока.

Аналогия. Маятник оттянут вправо на величину x_0 и в начальный момент отпущен. Начальная скорость маятника равна нулю.

Первая четверть периода : 0 < t < T/4. Конденсатор разряжается, его заряд в данный момент равен q. Ток I через катушку нарастает (рис. 2).

Рис. 2. 0 < t < T/4

Увеличение тока происходит постепенно: вихревое электрическое поле катушки препятствует нарастанию тока и направлено против тока.

Аналогия . Маятник движется влево к положению равновесия; скорость v маятника постепенно увеличивается. Деформация пружины x (она же — координата маятника) уменьшается.

Конец первой четверти : t = T/4. Конденсатор полностью разрядился. Сила тока достигла максимального значения I_0 (рис. 3). Сейчас начнётся перезарядка конденсатора.

Рис. 3. t = T/4

Напряжение на катушке равно нулю, но ток не исчезнет мгновенно. Как только ток начнёт уменьшаться, в катушке возникнет ЭДС самоиндукции, препятствующая убыванию тока.

Аналогия. Маятник проходит положение равновесия. Его скорость достигает максимального значения v_0. Деформация пружины равна нулю.

Вторая четверть: T/4 < t < T/2. Конденсатор перезаряжается — на его обкладках появляется заряд противоположного знака по сравнению с тем, что был вначале (рис. 4).

Рис. 4. T/4 < t < T/2

Сила тока убывает постепенно: вихревое электрическое поле катушки, поддерживая убывающий ток, сонаправлено с током.

Аналогия. Маятник продолжает двигаться влево — от положения равновесия к правой крайней точке. Скорость его постепенно убывает, деформация пружины увеличивается.

Конец второй четверти t = T/2. Конденсатор полностью перезарядился, его заряд опять равен q_0 (но полярность другая). Сила тока равна нулю (рис. 5). Сейчас начнётся обратная перезарядка конденсатора.

Рис. 5. t = T/2

Аналогия. Маятник достиг крайней правой точки. Скорость маятника равна нулю. Деформация пружины максимальна и равна x_0.

Третья четверть: T/2 < t < 3T/4. Началась вторая половина периода колебаний; процессы пошли в обратном направлении. Конденсатор разряжается (рис. 6).

Рис. 6. T/2 < t < 3T/4

Аналогия. Маятник двигается обратно: от правой крайней точки к положению равновесия.

Конец третьей четверти: t = 3T/4. Конденсатор полностью разрядился. Ток максимален и снова равен I_0, но на сей раз имеет другое направление (рис. 7).

Рис. 7. t = 3T/4

Аналогия. Маятник снова проходит положение равновесия с максимальной скоростью v_0, но на сей раз в обратном направлении.

Четвёртая четверть: 3T/4 < t < T. Ток убывает, конденсатор заряжается (рис. 8).

Рис. 8. 3T/4 < t < T

Аналогия. Маятник продолжает двигаться вправо — от положения равновесия к крайней левой точке.

Конец четвёртой четверти и всего периода: t = T. Обратная перезарядка конденсатора завершена, ток равен нулю (рис. 9).

Рис. 9. t = T

Данный момент идентичен моменту t = 0, а данный рисунок — рисунку 1. Совершилось одно полное колебание. Сейчас начнётся следующее колебание, в течение которого процессы будут происходить точно так же, как описано выше.

Аналогия. Маятник вернулся в исходное положение.

Рассмотренные электромагнитные колебания являются незатухающими — они будут продолжаться бесконечно долго. Ведь мы предположили, что сопротивление катушки равно нулю!

Точно так же будут незатухающими колебания пружинного маятника при отсутствии трения.

В реальности катушка обладает некоторым сопротивлением. Поэтому колебания в реальном колебательном контуре будут затухающими. Так, спустя одно полное колебание заряд на конденсаторе окажется меньше исходного значения. Со временем колебания и вовсе исчезнут: вся энергия, запасённая изначально в контуре, выделится в виде тепла на сопротивлении катушки и соединительных проводов.

Точно так же будут затухающими колебания реального пружинного маятника: вся энергия маятника постепенно превратится в тепло из-за неизбежного наличия трения.

к оглавлению ▴

Энергетические превращения в колебательном контуре

Продолжаем рассматривать незатухающие колебания в контуре, считая сопротивление катушки нулевым. Конденсатор имеет ёмкость C, индуктивность катушки равна L.

Поскольку тепловых потерь нет, энергия из контура не уходит: она постоянно перераспределяется между конденсатором и катушкой.

Возьмём момент времени, когда заряд конденсатора максимален и равен q_0, а ток отсутствует. Энергия магнитного поля катушки в этот момент равна нулю. Вся энергия W контура сосредоточена в конденсаторе:

W = frac{displaystyle q_0^2}{displaystyle 2C vphantom{1^a}}.

Теперь, наоборот, рассмотрим момент, когда ток максимален и равен I_0, а конденсатор разряжен. Энергия конденсатора равна нулю. Вся энергия контура запасена в катушке:

W = frac{displaystyle LI_0^2}{displaystyle 2 vphantom{1^a}}.

В произвольный момент времени, когда заряд конденсатора равен q и через катушку течёт ток I, энергия контура равна:

W = frac{displaystyle q^2}{displaystyle 2C vphantom{1^a}} + frac{displaystyle LI^2}{displaystyle 2 vphantom{1^a}}.

Таким образом,

frac{displaystyle q^2}{displaystyle 2C vphantom{1^a}} + frac{displaystyle LI^2}{displaystyle 2 vphantom{1^a}} = frac{displaystyle q_0^2}{displaystyle 2C vphantom{1^a}} = frac{displaystyle LI_0^2}{displaystyle 2 vphantom{1^a}}. (1)

Соотношение (1) применяется при решении многих задач.

к оглавлению ▴

Электромеханические аналогии

В предыдущем листке про самоиндукцию мы отметили аналогию между индуктивностью и массой. Теперь мы можем установить ещё несколько соответствий между электродинамическими и механическими величинами.

Для пружинного маятника мы имеем соотношение, аналогичное (1):

frac{displaystyle kx^2}{displaystyle 2 vphantom{1^a}} + frac{displaystyle mv^2}{displaystyle 2 vphantom{1^a}}=frac{displaystyle kx_0^2}{displaystyle 2 vphantom{1^a}} = frac{displaystyle mv_0^2}{displaystyle 2 vphantom{1^a}}. (2)

Здесь, как вы уже поняли, k — жёсткость пружины, m — масса маятника, x и v — текущие значения координаты и скорости маятника, x_0 и v_0 — их наибольшие значения.

Сопоставляя друг с другом равенства (1) и (2), мы видим следующие соответствия:

q longleftrightarrow x; (3)

I longleftrightarrow v; (4)

L longleftrightarrow m; (5)

1/C longleftrightarrow k. (6)

Опираясь на эти электромеханические аналогии, мы можем предвидеть формулу для периода электромагнитных колебаний в колебательном контуре.

В самом деле, период колебаний пружинного маятника, как мы знаем, равен:

T = 2 pi sqrt{frac{displaystyle m}{displaystyle k}}.

B соответствии с аналогиями (5) и (6) заменяем здесь массу m на индуктивность L, а жёсткость k на обратную ёмкость 1/c. Получим:

T = 2 pi sqrt{LC}. (7)

Электромеханические аналогии не подводят: формула (7) даёт верное выражение для периода колебаний в колебательном контуре. Она называется формулой Томсона. Мы вскоре приведём её более строгий вывод.

к оглавлению ▴

Гармонический закон колебаний в контуре

Напомним, что колебания называются гармоническими, если колеблющаяся величина меняется со временем по закону синуса или косинуса. Если вы успели забыть эти вещи, обязательно повторите листок «Механические колебания».

Колебания заряда на конденсаторе и силы тока в контуре оказываются гармоническими. Мы сейчас это докажем. Но прежде нам надо установить правила выбора знака для заряда конденсатора и для силы тока — ведь при колебаниях эти величины будут принимать как положительные, так и отрицательные значения.

Сначала мы выбираем положительное направление обхода контура. Выбор роли не играет; пусть это будет направление против часовой стрелки (рис. 10).

Рис. 10. Положительное направление обхода

Сила тока считается положительной (I > 0), если ток течёт в положительном направлении. В противном случае сила тока будет отрицательной (I < 0).

Заряд конденсатора q — это заряд той его пластины, на которую течёт положительный ток (т. е. той пластины, на которую указывает стрелка направления обхода). В данном случае q — заряд левой пластины конденсатора.

При таком выборе знаков тока и заряда справедливо соотношение: dot{q} = I (при ином выборе знаков могло случиться dot{q} = -I). Действительно, знаки обеих частей совпадают: если I > 0, то заряд q левой пластины возрастает, и потому dot{q} > 0.

Величины q = q(t) и I = I(t) меняются со временем, но энергия контура остаётся неизменной:

frac{displaystyle q^2}{displaystyle 2C vphantom{1^a}} + frac{displaystyle LI^2}{displaystyle 2 vphantom{1^a}} = W = const. (8)

Стало быть, производная энергии по времени обращается в нуль: dot{W} = 0. Берём производную по времени от обеих частей соотношения (8); не забываем, что слева дифференцируются сложные функции (Если y = y(x) — функция от x, то по правилу дифференцирования сложной функции производная от квадрата нашей функции будет равна: {(y^2)}):

frac{displaystyle 2q dot{q}}{displaystyle 2C vphantom{1^a}}+frac{displaystyle L cdot 2I dot{I}}{displaystyle 2 vphantom{1^a}} = W =0.

Подставляя сюда dot{q} = I и dot{I} = ddot{q}, получим:

frac{displaystyle qI}{displaystyle C vphantom{1^a}} + LI ddot{q} = 0,

Ileft ( frac{displaystyle q}{displaystyle C vphantom{1^a}} + L ddot{q} right ) = 0.

Но сила тока не является функцией, тождественно равной нулю; поэтому

frac{displaystyle q}{displaystyle C vphantom{1^a}} + L ddot{q} = 0.

Перепишем это в виде:

ddot{q} + frac{displaystyle 1}{displaystyle LC vphantom{1^a}}q = 0. (9)

Мы получили дифференциальное уравнение гармонических колебаний вида ddot{q} + omega^2_0 q = 0, где omega^2_0 = 1/LC. Это доказывает, что заряд конденсатора колеблется по гармоническому закону (т.е. по закону синуса или косинуса). Циклическая частота этих колебаний равна:

omega_0 = frac{displaystyle 1}{displaystyle sqrt{LC} vphantom{1^a}}. (10)

Эта величина называется ещё собственной частотой контура; именно с этой частотой в контуре совершаются свободные (или, как ещё говорят, собственные колебания). Период колебаний равен:

T = frac{displaystyle 2 pi}{displaystyle omega_0 vphantom{1^a}}= 2 pisqrt{LC}.

Мы снова пришли к формуле Томсона.

Гармоническая зависимость заряда от времени в общем случае имеет вид:

q = q_0 cos left ( omega_0t + alpha right ). (11)

Циклическая частота omega_0 находится по формуле (10); амплитуда q_0 и начальная фаза alpha определяются из начальных условий.

Мы рассмотрим ситуацию, подробно изученную в начале этого листка. Пусть при t = 0 заряд конденсатора максимален и равен q_0 (как на рис. 1); ток в контуре отсутствует. Тогда начальная фаза alpha = 0, так что заряд меняется по закону косинуса с амплитудой q_0:

q = q_0 cos omega_0t = q_0 cos left ( frac{displaystyle t}{displaystyle sqrt{LC} vphantom{1^a}} right ). (12)

Найдём закон изменения силы тока. Для этого дифференцируем по времени соотношение (12), опять-таки не забывая о правиле нахождения производной сложной функции:

I = dot{q} = -q_0 omega_0 sin omega_0t.

Мы видим, что и сила тока меняется по гармоническому закону, на сей раз — по закону синуса:

I = -I_0 sin omega_0t = -I_0 sin left ( frac{displaystyle t}{displaystyle sqrt{LC} vphantom{1^a}} right ). (13)

Амплитуда силы тока равна:

I_0 = q_0 omega_0 = frac{displaystyle q_0}{displaystyle sqrt{LC} vphantom{1^a}}.

Наличие «минуса» в законе изменения тока (13) понять не сложно. Возьмём, к примеру, интервал времени 0 < t < T/4 (рис. 2).

Ток течёт в отрицательном направлении: I < 0. Поскольку omega_0 = 2 pi/T, фаза колебаний находится в первой четверти: 0 < omega_0 t < pi /2. Синус в первой четверти положителен; стало быть, синус в (13) будет положительным на рассматриваемом интервале времени. Поэтому для обеспечения отрицательности тока действительно необходим знак «минус» в формуле (13).

А теперь посмотрите на рис. 8. Ток течёт в положительном направлении. Как же работает наш «минус» в этом случае? Разберитесь-ка, в чём тут дело!

Изобразим графики колебаний заряда и тока, т.е. графики функций (12) и (13). Для наглядности представим эти графики в одних координатных осях (рис. 11).

Рис. 11. Графики колебаний заряда и тока

Обратите внимание: нули заряда приходятся на максимумы или минимумы тока; и наоборот, нули тока соответствуют максимумам или минимумам заряда.

Используя формулу приведения

cos left ( varphi + frac{displaystyle pi}{displaystyle 2 vphantom{1^a}} right ) = - sin varphi,

запишем закон изменения тока (13) в виде:

I = -I_0 sin omega_0 t = I_0 cos left ( omega_0 t + frac{displaystyle pi}{displaystyle 2 vphantom{1^a}} right ).

Сопоставляя это выражение с законом изменения заряда q = q_0 cos omega_0 t, мы видим, что фаза тока, равная omega_0 t + frac{displaystyle pi}{displaystyle 2 vphantom{1^a}}, больше фазы заряда omega_0 t на величину pi/2. В таком случае говорят, что ток опережает по фазе заряд на pi/2; или сдвиг фаз между током и зарядом равен pi/2; или разность фаз между током и зарядом равна pi/2.

Опережение током заряда по фазе на pi/2 графически проявляется в том, что график тока сдвинут влево на pi/2 относительно графика заряда. Сила тока достигает, например, своего максимума на четверть периода раньше, чем достигает максимума заряд (а четверть периода как раз и соответствует разности фаз pi/2).

к оглавлению ▴

Вынужденные электромагнитные колебания

Как вы помните, вынужденные колебания возникают в системе под действием периодической вынуждающей силы. Частота вынужденных колебаний совпадает с частотой вынуждающей силы.

Вынужденные электромагнитные колебания будут совершаться в контуре, поключённом к источнику синусоидального напряжения (рис. 12).

Рис. 12. Вынужденные колебания

Если напряжение источника меняется по закону:

U = U_0 sin omega t,

то в контуре происходят колебания заряда и тока с циклической частотой omega (и с периодом, соответственно, T = 2 pi/ omega). Источник переменного напряжения как бы «навязывает» контуру свою частоту колебаний, заставляя забыть о собственной частоте omega_0 = 1/sqrt{LC}.

Амплитуда вынужденных колебаний заряда и тока зависит от частоты omega: амплитуда тем больше,чем ближе omega к собственной частоте контура omega_0.При omega = omega_0 наступает резонанс — резкое возрастание амплитуды колебаний. Мы поговорим о резонансе более подробно в следующем листке, посвящённом переменному току.

Если вам нравятся наши материалы — записывайтесь на курсы подготовки к ЕГЭ по физике онлайн

Спасибо за то, что пользуйтесь нашими статьями.
Информация на странице «Электромагнитные колебания» подготовлена нашими авторами специально, чтобы помочь вам в освоении предмета и подготовке к ЕГЭ и ОГЭ.
Чтобы успешно сдать необходимые и поступить в высшее учебное заведение или колледж нужно использовать все инструменты: учеба, контрольные, олимпиады, онлайн-лекции, видеоуроки, сборники заданий.
Также вы можете воспользоваться другими материалами из разделов нашего сайта.

Публикация обновлена:
08.05.2023

На прошлом уроке мы с вами познакомились с электромагнитными
колебаниями. Напомним, что так называют периодические изменения со временем
электрических и магнитных величин в электрической цепи.

Рассмотрев качественную сторону теории процессов в
колебательном контуре, перейдём к её количественной стороне. Для этого рассмотрим
идеальный колебательный контур, то есть контур, активное сопротивление
которого пренебрежимо мало.

В таком контуре, как мы показали ранее, полная
электромагнитная энергия в любой момент времени равна сумме энергий
электрического и магнитного полей, и она не меняется с течением времени:

А раз энергия контура неизменная, то производная полной
энергии по времени равна нулю:

Напомним, что в записанной формуле заряд и сила тока в цепи
являются функцией времени.

Чтобы понять физический смысл этого уравнения, перепишем его
так:

Из такой записи видно, что скорость изменения магнитного
поля по модулю равна скорости изменения энергии электрического поля.
А знак
минус в формуле показывает на то, что увеличение энергии магнитного поля
происходит за счёт убыли энергии поля электрического.

Вычислим производные в записанном уравнении, воспользовавшись
для этого формулой вычисления производной сложной функции.

А теперь вспомним, что производная заряда по времени есть
сила мгновенного тока (то есть сила тока в данный момент времени):

Поэтому предыдущее уравнение можно переписать так, как показано
на экране:

Производная силы тока по времени есть не что иное, как вторая
производная заряда по времени, подобно тому, как производная скорости по
времени (то есть ускорение) есть вторая производная координаты по времени:

Перепишем предыдущее равенство с учётом этой поправки:

Разделив левую и правую части этого уравнения на «Эль И» (Li),
получим основное уравнение, описывающее свободные гармонические
электрические колебания в контуре:

Данное уравнение аналогично уравнению, описывающему
гармонические механические колебания:

Отсюда видно, что величина, обратная квадратному корню из
произведения индуктивности и ёмкости, является циклической частотой свободных
электрических колебаний:

Зная циклическую частоту колебаний, нетрудно найти и их
период, то есть минимальный промежуток времени, через который процесс в
колебательном контуре полностью повторяется:

Эта формула впервые была получена английским физиком Уильямом
Томсоном 1853 году, и в настоящее время носит его имя.

Из формулы видно, что период колебательного контура
определяется параметрами составляющих его элементов: индуктивностью катушки и
ёмкостью конденсатора.
Из формулы Томсона также следует, что, например, при
уменьшении ёмкости или индуктивности период колебаний должен уменьшиться, а их
частота — увеличиться и наоборот.

Но вернёмся к уравнению свободных электромагнитных колебаний
в идеальном колебательном контуре. Его решением является уравнение, выражающее
зависимость заряда конденсатора от времени:

В записанной формуле qm — это начальное
(или амплитудное) значение заряда
, сообщённому конденсатору. Из этой формулы
следует, что заряд на конденсаторе изменяется со временем по гармоническому
закону.

Если взять первую производную заряда конденсатора по времени,
то мы получим уравнение, описывающее изменение силы тока в контуре:

Величина, равная произведению максимального заряда
конденсатора и циклической частоты колебаний, является амплитудным значением
силы тока:

Перепишем уравнение для силы тока с учётом последнего
равенства, а также воспользовавшись формулой приведения:

Из такой записи хорошо видно, что сила тока в колебательном
контуре также совершает гармонические колебания с той же частотой, но по фазе
она смещена на π/2 относительно колебаний заряда.

Для закрепления материала, решим с вами такую задачу. Конденсатор
ёмкостью 2 мкФ зарядили до напряжения 100 В, а затем замкнули на катушку с
индуктивностью 5 мГн. Определите заряд конденсатора через 0,025π мс после
замыкания.

В заключение отметим, что в реальных колебательных контурах всегда
имеется активное сопротивление, поэтому часть энергии контура всегда превращается
во внутреннюю проводников, которая выделяется в виде излучения. Кроме того,
часть энергии теряется на перемагничивание сердечника и изменение поляризации
диэлектрика. Поэтому полная энергия контура с течением времени уменьшается, в
результате уменьшается и амплитуда колебаний. Следовательно, реальные
электромагнитные колебания в контуре являются затухающими.

Опишем колебания, которые происходят в цепи переменного тока при включении в нее конденсатора и катушки индуктивности. А также рассмотрим условия, при выполнении которых в цепи переменного тока наступает резонанс. Получим формулы для вычисления амплитуд напряжений, введем понятия емкостного и индуктивного сопротивления и выясним, какую роль играют эти величины.

Конденсатор в цепи переменного тока

Постоянный ток не может существовать в цепи, содержащий конденсатор. Движению электронов препятствует диэлектрик, расположенный между обкладками. Но переменный ток в такой цепи существовать может, что доказывает опыт с лампой (см. рисунок ниже).

Пусть фактически такая цепь разомкнута, но если по ней течет переменный ток, конденсатор то заряжается, то разряжается. Ток, текущий при перезарядке конденсатора нагревает нить лампы, и она начинает светиться.

Найдем, как меняется сила тока в цепи, содержащей только конденсатор, если сопротивление проводов и обкладок конденсатора можно пренебречь (см. рис. выше). Напряжение на конденсаторе будет равно:

u=φ1φ2=qC

Учтем, что напряжение на конденсаторе равно напряжению на концах цепи:

qC=Umaxcosωt

Следовательно, заряд конденсатора меняется по гармоническому закону:

q=CUmaxcosωt

Тогда сила тока, представляющая собой производную заряда по времени, будет равна:

i=q=CUmaxsinωt=CUmaxcos(ωt+π2)

Следовательно, колебания силы тока опережают колебания напряжения на конденсаторе на π2 (см. график ниже). Это означает, что в момент, когда конденсатор начинает заряжаться, сила тока максимальна, а напряжение равно нулю. После того, как напряжение достигнет максимума, сила тока становится равной нулю и т.д.

Амплитуда силы тока равна:

Imax=UmaxCω

Примем, что:

1Cω=XC

Также будем использовать действующие значения силы тока и напряжения. Тогда получим, что:

Определение

I=UXC

Величина XC, равная обратному произведению циклической частоты на электрическую емкость конденсатора, называется емкостным сопротивлением. Роль этой величины аналогична роли активного сопротивления R в законе Ома.

Обратите внимание, что на протяжении четверти периода, когда конденсатор заряжается до максимального напряжения, энергия поступает в цепь и запасается в конденсаторе в форме энергии электрического поля. В следующую четверть периода (при разрядке конденсатора), эта энергия возвращается в сеть.

Пример №1. Максимальный заряд на обкладках конденсатора колебательного контура qmax=106 Кл. Амплитудное значение силы тока в контуре Imax=103 А. Определите период колебания (потерями на нагревание проводника пренебречь).

Согласно закону сохранения энергии максимальное значение энергии электрического поля конденсатора равно максимальному значения магнитного поля катушки:

q2max2C=LI2max2

Отсюда:

LC=q2maxI2max

LC=qmaxImax

T=2πLC=2πqmaxImax=2·3,141061036,3·103 (с)

Катушка индуктивности в цепи переменного тока

Соберем две электрических цепи, состоящих из лампы накаливания, катушки индуктивности и источника питания: в первом случае постоянного, во втором — переменного (см. рисунки «а» и «б» ниже).

Опыт покажет, что в цепи постоянного тока лампа светится ярче по сравнению с той, что включена в цепь переменного тока. Это говорит о том, что сила тока в цепи постоянного тока выше действующего значения силы тока в цепи переменного тока.

Результат опыта легко объясняется явлением самоиндукции. При подключении катушки к постоянному источнику тока сила тока нарастает постепенно. Возрастающее при нарастании силы тока вихревое электрическое поле тормозит движение электронов. Лишь спустя какое-то время сила тока достигает наибольшего значения, соответствующему данному постоянному напряжению.

Если напряжение быстро меняется, то сила тока не успевает достигнуть максимального значения. Поэтому максимальное значение силы тока в цепи переменного тока с катушкой индуктивности ограничивается индуктивность. Чем больше индуктивность и чем больше частота приложенного напряжения, тем меньше амплитуда силы переменного тока.

Определим силу тока в цепи, содержащей катушку, активным сопротивлением которой можно пренебречь (см. рисунок ниже). Для этого найдем связь между напряжением на катушке и ЭДС самоиндукции в ней.

Если сопротивление катушки равно нулю, то и напряженность электрического поля внутри проводника в любой момент времени должна равняться нулю. Иначе, согласно закону Ома, сила тока была бы бесконечно большой. Равенство нулю напряженности поля оказывается возможным потому, что напряженность вихревого электрического поля Ei, порождаемого переменным магнитным полем, в каждой точке равна по модулю и противоположна по направлению напряженности кулоновского поля Eк, создаваемого в проводнике зарядами, расположенными на зажимах источника и в проводах цепи.

Из равенства Ei=Eк следует, что удельная работа вихревого поля (т.е. ЭДС самоиндукции ei) равна по модулю и противоположна по знаку удельной работе кулоновского поля.

Учитывая, что удельная работа кулоновского поля равна напряжения на концах катушки, можно записать:

ei=u

Напомним, что сила переменного тока изменяется по гармоническому закону:

i=Imaxsinωt

Тогда ЭДС самоиндукции равна:

ei=Li=LωImaxcosωt

Так как u=ei, то напряжение на концах катушки оказывается равным:

u= LωImaxcosωt=LωImaxsin(ωt+π2)=Umax(ωt+π2)

Амплитуда напряжения равна:

Umax=LωImax

Следовательно, колебания напряжения на катушке опережают колебания силы тока на π2, или колебания силы тока отстают от колебаний напряжения на π2, что одно и то же.

В момент, когда напряжение на катушке достигает максимума, сила тока равна нулю (см. график ниже).

Но в момент, когда напряжение становится равным нулю, сила тока максимальна по модулю. Амплитуда силы тока в катушке равна:

Imax=UmaxLω

Введем обозначение:

Lω=XL

Также будем использовать вместо амплитуд действующие значения силы тока и напряжения. Тогда получим:

Определение

I=UXL

Величина XL, равная произведению циклической частоты на индуктивность, называется индуктивным сопротивлением. Индуктивное сопротивление зависит от частоты. Поэтому в цепи постоянного тока, в котором отсутствует частота, индуктивное сопротивление катушки равно нулю.

Пример №2. Катушка с индуктивным сопротивлениемXL=500 Ом присоединена к источнику переменного напряжения, частота которого ν = 1000 Гц. Действующее значение напряжения U = 100 В. Определите амплитуду силы тока Imax в цепи и индуктивность катушки L. Активным сопротивлением пренебречь.

Индуктивное сопротивление катушки выражается формулой:

XL=Lω=2πνL

Отсюда:

Так как амплитуда напряжения связана с его действующим значением соотношением Umax=U2, то для амплитуды силы тока получаем:

Резонанс в электрической цепи

Механические и электромагнитные колебания имеют разную природу, но процессы, происходящие при этом, идентичны. Поэтому можно предположить, что резонанс в электрической цепи так же реален, как резонанс в колебательной системе, на которую действует периодическая сила.

Напомним, что в механической системе резонанс тем более заметен, чем меньше в колебательной системе трение между ее элементами. Роль трения в электрической цепи играет активное сопротивление R. Ведь именно наличие этого сопротивления в цепи приводит к превращению энергии тока во внутреннюю энергию проводника, который при этом нагревается. Следовательно, резонанс в электрической цепи будет отчетливо наблюдаться при малом активном сопротивлении R.

Если активное сопротивление мало, то собственная частота колебаний в колебательном контуре определяется формулой:

ω0=1LC

Сила тока при вынужденных колебаниях должна достигать максимальных значений, когда частота переменного напряжения, приложенного к контуру равна собственной частоте колебательного контура:

ω=ω0=1LC

Определение

Резонанс в электрическом колебательном контуре — явление резкого возрастания амплитуды вынужденных колебаний силы тока при совпадении частоты внешнего переменного напряжения с собственной частотой колебательного контура.

После включения внешнего переменного напряжения резонансное значение силы тока в цепи устанавливается не моментально, а постепенно. Амплитуда колебаний силы тока возрастает до тех пор, пока энергия, выделяющаяся за период на резисторе, не сравняется с энергией, поступающей в контур за это же время:

I2maxR2=UmaxImax2

Упростив это уравнение, получим:

ImaxR=Umax

Следовательно, амплитуда установившихся колебаний силы тока при резонансе определяется уравнением:

Imax=UmaxR

При сопротивлении, стремящемся к нулю, сила тока возрастает до бесконечно больших значений. При большом сопротивлении сила тока возрастает незначительно. Это хорошо видно на графике ниже.

Пример №3. В цепь переменного тока с частотой ν = 500 Гц включена катушка индуктивностью L = 10 мГн. Какой емкости конденсатор надо включить в эту цепь, чтобы наступил резонанс?

Электрическая цепь, описываемая в условии, представляет собой колебательный контур. Резонанс в этой цепи наступит, когда частота переменного тока будет равна собственной частоте колебательного контура (ν = ν0).

Но:

ν0=12πLC

Тогда:

ν=12πLC

Отсюда:

Задание EF22579

К колебательному контуру подсоединили источник тока, на клеммах которого напряжение гармонически меняется с частотой ν.

Индуктивность L катушки колебательного контура можно плавно менять от максимального значения Lmax до минимального Lmin, а ёмкость его конденсатора постоянна.

Ученик постепенно уменьшал индуктивность катушки от максимального значения до минимального и обнаружил, что амплитуда силы тока в контуре всё время возрастала. Опираясь на свои знания по электродинамике, объясните наблюдения ученика.


Алгоритм решения

1.Установить, что вызывает увеличение амплитуды силы тока.

2.Объяснить, какие изменения вызвало уменьшение индуктивности.

3.Объяснить, при каком условии в течение всего эксперимента амплитуда силы тока может только расти.

Решение

В колебательном контуре источником тока возбуждаются вынужденные колебания. Частота этих колебаний равна частоте источника — ν. Амплитуда колебаний зависит от того, как соотносятся между собой внешняя частота и частота собственных электромагнитных колебаний, которая определяется формулой:

ν0=12πLC

По мере увеличения внешней частоты от нуля до ν0 амплитуда растет. Она достигает максимума тогда, когда происходит резонанс. При этом внешняя частота равна частоте собственных электромагнитных колебаний: ν = ν0. Затем амплитуда начинает убывать.

В данном случае, ученик меняет не внешнюю частоту, а частоту собственных электромагнитных колебаний. При плавном уменьшении индуктивности контура от максимального значения Lmax до минимального Lmin частота возрастает от ν0min до ν0max. Причем:

ν0min=12πLminC

ν0max=12πLmaxC

Из того факта, что амплитуда всё время увеличивалась, можем сделать вывод, что частота ν0 всё время приближалась к частоте источника тока, при этом ν > ν0max. В противном случае наблюдалось бы уменьшений амплитуды силы тока.

pазбирался: Алиса Никитина | обсудить разбор

Задание EF22785

В колебательном контуре, состоящем из катушки индуктивности и конденсатора, происходят свободные незатухающие электромагнитные колебания.

Из приведённого ниже списка выберите две величины, которые остаются постоянными при этих колебаниях.

Ответ:

а) период колебаний силы тока в контуре

б) фаза колебаний напряжения на конденсаторе

в) заряд конденсатора

г) энергия магнитного поля катушки

д) амплитуда колебаний напряжения на катушке


Алгоритм решения

  1. Определить, от чего зависит каждая из перечисленных величин.
  2. Установить, какие величины меняются, а какие нет.

Решение

В колебательном контуре происходят гармонические колебания. Поэтому период колебаний силы тока в контуре — величина постоянная.

Фаза — это величина, которая определяет положение колебательной системы в любой момент времени. Поскольку в системе происходят колебания, фаза меняется.

Заряд конденсатора — колебания происходят за счет постоянной перезарядки конденсатора. Следовательно, эта величина тоже меняется.

Энергия магнитного поля катушки — в колебательном контуре происходят взаимные превращения энергии магнитного поля катушки в энергию электрического поля конденсатора, и обратно. Поэтому энергия магнитного поля катушки постоянно меняется.

В условии задачи сказано, что колебания незатухающие. Это значит, что полная механическая энергия колебательной системы сохраняется. Поскольку именно от нее зависит амплитуда колебаний напряжения на катушке, то эта величина также остается постоянной.

Ответ: ад

pазбирался: Алиса Никитина | обсудить разбор

Задание EF18656

На рисунке приведён график зависимости силы тока i от времени t при свободных гармонических колебаниях в колебательном контуре. Каким станет период свободных колебаний в контуре, если конденсатор в этом контуре заменить на другой конденсатор, ёмкость которого в 4 раза меньше? Ответ запишите в мкс.


Алгоритм решения

1.Записать исходные данные (определить по графику начальный период колебаний).

2.Перевести единицы измерения величин в СИ.

3.Записать формулу Томсона.

4.Выполнить решение в общем виде.

5.Установить, каким станет период колебаний после уменьшения емкости конденсатора.

Решение

Запишем исходные данные:

 Период колебаний (определяем по графику): T = 4 мкс.

 Емкость конденсатора в первом опыте: C1 = 4C.

 Емкость конденсатора во втором опыте: C2 = C.

4 мкс = 4∙10–6 с

Запишем формулу Томсона:

T=2πLC

Применим формулу для обоих опытов и получим:

T1=2πL4C=4πLC

T2=2πLC

Поделим первый период на второй:

T1T2=4πLC2πLC=2

Отсюда:

T2=T12=4·1062=2·106 (с)=2 (мкс)

Ответ: 2

pазбирался: Алиса Никитина | обсудить разбор

Алиса Никитина | Просмотров: 10k

Содержание книги

Предыдующая страница

§18. Переменный электрический ток

18.8 Колебательный контур.

18.8.1 Свободные колебания в контуре.

Img Slob-10-18-262.jpg

Рассмотренные в предыдущих разделах цепи переменного тока наводят на мысль, что пара элементов – конденсатор и катушка индуктивности образуют своеобразную колебательную систему. Сейчас мы покажем, что это действительно так, в цепи состоящей только из этих элементов (рис. 262) возможны даже свободные колебания, то есть без внешнего источника ЭДС. Поэтому цепь (или часть другой цепи), состоящая из конденсатора и катушки индуктивности называется колебательным контуром.

Img Slob-10-18-263.jpg

Пусть конденсатор зарядили до заряда q0 и затем подключили к нему катушку индуктивности. Такую процедуру легко осуществить с помощью цепи, схема которой показана на рис. 263: сначала ключ К замыкают в положении 1, при этом конденсатор заряжается до напряжения, равного ЭДС источника, после чего ключ перебрасывают в положения 2, после чего начинается разрядка конденсатора через катушку.

Для определения зависимости заряда конденсатора от времени q(t) применим закон Ома, согласно которому напряжение на конденсаторе (~U_C = frac{q}{C}) равно ЭДС самоиндукции, возникающей в катушке (~varepsilon_{si} = -L frac{Delta I}{Delta t} = LI’) (здесь, «штрих» означает производную по времени). Таким образом, оказывается справедливым уравнение

(~-LI’ = frac{q}{C}) . (1)

В этом уравнении содержится две неизвестных функции – зависимости от времени заряда q(t) и силы тока I(t), поэтому его решить нельзя. Однако сила тока является производной от заряда конденсатора q′(t) = I(t), поэтому производная от силы тока является второй производной от заряда

(~I'(t) = q»(t)) . (2)

С учетом этого соотношения, перепишем уравнение (1) в виде

(~q» = -frac{1}{LC} q) . (3)

Поразительно, но это уравнение полностью совпадает с хорошо изученным нами уравнением гармонических колебаний (вторая производная от неизвестной функции пропорциональна самой этой функции с отрицательным коэффициентом пропорциональности (x» = -omega^2_0 x))! Следовательно, решением этого уравнения будет гармоническая функция

(~q = A cos (omega_0 t + varphi)) (4)

с круговой частотой

(~omega_0 = frac{1}{sqrt{LC}}) . (5)

Эта формула определяет собственную частоту колебательного контура. Соответственно период колебаний заряда конденсатора (и силы тока в контуре) равен

(~T = 2 pi sqrt{LC}) . (6)

Полученное выражение для периода колебаний называется формулой Дж. Томпсона.

Как обычно, для определения произвольных параметров A, φ в общем решении (4) необходимо задать начальные условия – заряд и силу тока в начальный момент времени. В частности, для рассмотренного примера цепи рис. 263, начальные условия имеют вид: при t = 0 q = q0, I = 0, поэтому зависимость заряда конденсатора от времени будет описываться функцией

(~q = q_0 cos omega_0 t) , (7)

а сила тока изменяется со временем по закону

(~I = — omega_0 q_0 sin omega_0 t) . (8)

Img Slob-10-18-264.jpg

Следует отметить, что приведенное рассмотрение колебательного контура является приближенным – любой реальный контур обладает активным сопротивлением (соединительных проводов и обмотки катушки). Поэтому в уравнении (1) следует учесть падение напряжения на этом активном сопротивлении, поэтому это уравнение приобретет вид

(~-LI’ = frac{q}{C} + IR) ,

который с учетом связи между зарядом и силой тока, преобразуется к форме

(~q» = -frac{1}{LC} q — frac{R}{L} q’) .

Это уравнение нам также знакомо – это уравнение затухающих колебаний (x» = -omega^2_0 x — beta x’), причем коэффициент затухания, как и следовало ожидать, пропорционален активному сопротивлению цепи (~beta = frac{R}{L}).

Процессы, происходящие в колебательном контуре, могут быть также описаны и с помощью закона сохранения энергии. Если пренебречь активным сопротивлением контура, то сумма энергий электрического поля конденсатора и магнитного поля катушки остается постоянной, что выражается уравнением

(~frac{q^2}{2C} + frac{LI^2}{2} = operatorname{const}) , (9)

которое также является уравнением гармонических колебаний с частотой, определяемой формулой (5). По свое форме это уравнение также совпадает уравнениями, следующими из закона сохранения энергии при механических колебаниях. Так как, уравнения, описывающие колебания электрического заряда конденсатора, аналогичны уравнениям, описывающим механические колебания, то можно провести аналогию между процессами, протекающими в колебательном контуре, и процессами в любой механической системе.

Img Slob-10-18-265.jpg

На рис. 265 такая аналогия проведена для колебаний математического маятника. В этом случае аналогами являются «заряд конденсатора q(t) – угол отклонения маятника φ(t)» и «сила тока I(t) = q′(t) – скорость движения маятника V(t)».

Пользуясь этой аналогией, качественно опишем процесс колебаний заряда и электрического тока в контуре. В начальный момент времени конденсатор заряжен, сила электрического тока равна нулю, вся энергия заключена в энергии электрического поля конденсатора (что аналогично максимальному отклонения маятника от положения равновесия). Затем конденсатор начинает разряжаться, сила тока возрастает, при этом в катушке возникает ЭДС самоиндукции, которая препятствует возрастанию тока; энергия конденсатора уменьшается, переходя в энергию магнитного поля катушки (аналогия – маятник движется к нижней точки с возрастанием скорости движения). Когда заряд на конденсаторе становится равным нулю, сила тока достигает максимального значения, при этом вся энергия превращается в энергию магнитного поля (маятник достиг нижней точки, скорость его максимальна). Затем магнитное поле начинает убывать, при этом ЭДС самоиндукции поддерживает ток в прежнем направлении, при этом конденсатор начинает заряжаться, причем знаки зарядов на обкладках конденсатора противоположны начальному распределению (аналог – маятник движется к противоположному начальному максимальному отклонению). Затем ток в цепи прекращается, при этом заряд конденсатора становится опять максимальным, но противоположным по знаку (маятник достиг максимального отклонения), после чего процесс повторятся в противоположном направлении.

18.8.2 Вынужденные колебания в контуре.

Как уже было сказано, в реальном колебательном контуре колебания будут затухающими[1] из-за неизбежного выделения теплоты на активном сопротивлении (которым мы пренебрегли). Поэтому для поддержания незатухающих колебаний в контуре необходим внешний источник энергии, иными словами нам необходимо рассмотреть вынужденные колебания. Один из возможных вариантов осуществления таких колебаний мы уже рассмотрели при изучении темы «Резонанс напряжений», где мы фактически изучили колебания в контуре, внутрь которого включен источник переменной ЭДС, который может считаться аналогом внешней вынуждающей силы.

Чтобы явным образом показать, что явление резонанса напряжений можно рассматривать как вынужденные колебания, перепишем использованное уравнение закона Ома

(~varepsilon(t) = U_R(t) + U_C(t) + U_L(t)) .

Для чего подставим в него явные выражения для напряжений на элементах цепи (~U_C = frac{q}{C}) , (~U_R = IR = Rq’) , (~U_L = -varepsilon_{si} = LI’ = Lq») и ЭДС источника (varepsilon = U_0 cos omega t):

(~Lq» + frac{q}{C} + Rq’ = U_0 cos omega t)

и перепишем его в виде

(~q» = -frac{1}{LC} q — frac{R}{L} q’ + frac{U_0}{L} cos omega t) ,

который полностью совпадает с уравнением вынужденных колебаний (x» = -omega^2_0 x — beta x’ + f_0 cos omega t).

Img Slob-10-18-266.jpg

Рассмотрим теперь возможность возникновения вынужденных колебаний в контуре, когда источник переменной ЭДС находится вне контура[2], как показано на рис. 266. Расчет данной цепи проведем, используя метод векторных диаграмм (которая также представлена на рис. 266). В данном случае нас, прежде всего, будет интересовать сила тока в колебательном контуре.

Так как конденсатор и катушка индуктивности соединены параллельно, то мгновенные напряжения (UC, UL) на этих элементах одинаковы. Обозначим это напряжение U1. Построение диаграммы следует начинать с построения вектора, изображающего колебания этого напряжения. Далее построим векторы, изображающие колебания сил токов через конденсатор IC и катушку индуктивности IL — эти векторы перпендикулярны вектору напряжения U1 и противоположны друг другу. Как обычно, колебания токов через конденсатор и через катушку индуктивности происходят в противофазе. Колебательный контур соединен последовательно с резистором, поэтому сумма токов IC и IL (конечно, их мгновенных значений) равна силе тока через резистор IR. Вектор изображающий напряжение на резисторе UR, сонаправлен с вектором суммарного тока. Наконец сумма векторов напряжения на резисторе UR и напряжения на контуре U1 равна ЭДС источника.

Построенная векторная диаграмма позволяет рассчитать амплитудные значения токов и напряжений на элементах данной цепи. Выразим традиционным образом амплитудные значения сил токов через конденсатор и катушку через амплитуду напряжения на контуре

(~I_{L0} = frac{U_{10}}{omega L} ; I_{C0} = omega C U_{10}) . (1)

Амплитуда силы тока через резистор (и через источник) определяется из векторной диаграммы и равна

(~I_{R0} = (I_{C0} — I_{L0}) = U_{10} left( omega C — frac{1}{omega L} right)) . (2)

Теперь можно записать выражение для амплитуды напряжения на резисторе

(~U_{R0} = I_{R0}R = U_{10} left( omega C — frac{1}{omega L} right) R) . (3)

Далее, глядя на диаграмму напряжений, запишем теорему Пифагора для вектора ЭДС источника ⎟ ⎟

(~U^2_0 = U^2_{R0} + U^2_{10} = U^2_{10} left( 1 + left( omega C — frac{1}{omega L} right)^2 R^2 right) = U^2_{10} R^2 left( frac{1}{R^2} + left( omega C — frac{1}{omega L} right)^2 right)) , (4)

здесь U0 — амплитуда ЭДС источника.

Из этого уравнения легко определить напряжение на резисторе

(~U_{10} = frac{U_0}{R} frac{1}{sqrt{frac{1}{R^2} + left( omega C — frac{1}{omega L} right)^2}}) . (5)

Наконец, с помощью формул (1), (2), (3), запишем выражения для сил токов в рассматриваемой цепи

(~begin{matrix} I_{L0} = frac{U_0}{R} frac{frac{1}{omega L}}{sqrt{frac{1}{R^2} + left( omega C — frac{1}{omega L} right)^2}} , \ I_{C0} = frac{U_0}{R} frac{omega C}{sqrt{frac{1}{R^2} + left( omega C — frac{1}{omega L} right)^2}} , \ I_{R0} = frac{U_0}{R} frac{omega C — frac{1}{omega L}}{sqrt{frac{1}{R^2} + left( omega C — frac{1}{omega L} right)^2}} end{matrix}) . (6)

Проанализируем зависимость этих величин от частоты источника ЭДС. Во всех формулах под корнем имеется два положительных слагаемых, причем только второе зависит от частоты. При частоте

(~omega_0 = frac{1}{sqrt{LC}}) , (7)

равной собственной частоте колебательного контура второе слагаемое под корнем обращается в ноль, поэтому можно ожидать, что вблизи этой частоты силы токов через конденсатор и катушку достигают максимального значения. Понятно, что максимумы функций IL0(ω) и IC0(ω) несколько смещены от частоты ω0, потому, что частота источника ω присутствует и вне корня. Однако, если первое слагаемое под корнем ((frac{1}{R^2})), мало, то сдвиг максимума от значения ω = ω0 будет незначительным. Отметим, также, что при (~omega = omega_0 = frac{1}{sqrt{LC}}) амплитуды токов через конденсатор и катушку оказываются равными. Действительно, в этом случае

(~begin{matrix} I_{L0} = frac{U_0}{omega_0 L} = U_0 sqrt{frac{C}{L}}, \ I_{C0} = U_0 omega_0 C = U_0 sqrt{frac{C}{L}} end{matrix}) . (8)

Img Slob-10-18-267.jpg

Но самое неожиданное, что при ω = ω0 сила тока через резистор обращается в нуль! Соответственно, напряжение на колебательном контуре становится равным ЭДС источника, что также следует и из полученных формул для токов в контуре. Схематические графики зависимостей[3] амплитуд токов от частоты источника показаны на рис.267. Понятно, что при ω → 0 и ω → ∞ сопротивление контура стремится к нуля и в этом случае сила тока через резистор стремится к своему предельному значению (~I_{R0} = frac{U_0}{R}).

Таким образом, мы показали, что в рассмотренной цепи при частоте источника стремящейся к собственной частоте контура амплитуда силы тока в контуре резко возрастает, наблюдается явление резонанса, следовательно, колебательный контур можно использовать для выделения колебаний требуемой частоты. Интересно, отметить, что острота пика возрастает с ростом сопротивления резистора, находящегося вне контура.

В заключение данного раздела, обсудим, почему при ω = ω0 сила тока во внешней для контура цепи обращается в нуль. Колебания токов через конденсатор IC и через катушку индуктивности происходят в противофазе IL, а в случае ω = ω0 амплитуды этих токов сравниваются, в результате чего формально и получается нулевое значение для суммарного тока. Фактически в этом случае электрический ток циркулирует в колебательном контуре, не выходя из него. Подчеркнем, что наш анализ проведен для установившегося режима колебаний – в переходном режиме ток через резистор (и через источник идет) обеспечивая контур энергией. Когда колебания установятся, подкачка энергии становится излишней, так как мы пренебрегли потерями энергии в контуре. Обратите внимание, что при ω = ω0 сила тока в контуре не зависит сопротивления внешнего резистора, а полностью определяется параметрами контура.

Вспомните, что вынужденные колебания механических систем обладают тем же свойством – при точном резонансе и при отсутствии сил сопротивления работа внешней силы также обращается в нуль.

Если же рассмотреть реальный контур, обладающий активным сопротивлением, то между током в контуре и напряжением на нем разность фаз будет отлична от нуля, поэтому энергия источника будет поступать в контур, компенсируя потери. В этом случае также будет отличен от нуля и ток во внешней цепи.

Примечания

  1. Еще одной причиной затухания тока в контуре является излучение электромагнитных волн, но об этом важнейшем явлении мы будем говорить позднее. Сейчас же отметим, что при не слишком высоких частотах, потери энергии на излучения пренебрежимо малы.
  2. Опять забегая вперед, скажем, что именно такая схема реализуется в приемниках электромагнитных волн, как радио, так и телевизионных. В этих приборах колебательный контур служит избирательным элементом, выделяющим требуемую волну из широкого спектра. Роль источника в этом случае играет антенна.
  3. График зависимости амплитуды тока через резистор построен как график модуля функции (6), потому что изменение знака этой функции соответствует изменению фазы колебаний этого тока.

Следующая страница

Колебательные процессы возможны не только в механических системах. При определенных условиях и в электрических цепях возникают колебания силы тока и напряжения и других электромагнитных величин. Какие это условия? Как вычислить период электромагнитных колебаний? Какие аналогии существуют между колебаниями различной природы? 

Электрической емкостью C конденсатора называют физическую величину, характеризующую его способность накапливать электрические заряды и равную отношению заряда q конденсатора к напряжению U между его обкладками:  Единицей электрической емкости в СИ является 1 фарад (1 Ф).
Энергия электростатического поля конденсатора: .
Энергія магнитного поля катушки с током:  ,  L — индуктивность катушки, I — сила тока в цепи. Единицей индуктивности в СИ является 1 генри (1 Гн).
Возникновение электродвижущей силы (ЭДС) в замкнутом проводящем контуре при изменении магнитного потока, проходящего сквозь него, называется явлением электромагнитной индукции.
Под явлением самоиндукции понимают возникновение в замкнутом проводящем контуре ЭДС индукции, создаваемой вследствие изменения силы тока в самом контуре.
Правило Ленца: возникающий в замкнутом проводящем контуре индукционный ток имеет такое направление, при котором созданный им магнитный поток через поверхность, ограниченную контуром, стремится компенсировать изменение магнитного потока, вызвавшее данный ток.

Рассмотрим электрическую цепь, состоящую из последовательно со­еди­ненных конденсатора электроемкостью С и катушки индуктивностью L  (рис. 52, а), называемую колебательным контуром или LC-контуром. Если электрическое сопротивление контура можно считать равным нулю (R = 0), то его называют идеальным. Идеальный колебательный контур является упрощенной моделью реального колебательного контура.
Подключив (при помощи ключа К) источник тока, зарядим конденсатор до напряжения U0, сообщив ему заряд q0 (рис. 52, б). Следовательно, в начальный момент времени (t = 0) конденсатор заряжен так, что на его обкладке 1 находится заряд +q0, а на обкладке 2 — заряд −q0, при этом . Электрическое поле, созданное зарядами обкладок конденсатора, обладает энергией 

Рассмотрим процесс разрядки конденсатора в колебательном контуре. После соединения заряженного конденсатора с катушкой (при помощи ключа К) (рис. 52, в) он начнет разряжаться, так как под действием электрического поля, создаваемого зарядами на обкладках конденсатора, свободные электроны будут перемещаться по цепи от отрицательно заряженной обкладки к положительно заряженной. На рис. 52, в стрелкой показано начальное направление тока в электрической цепи.

Таким образом, в контуре появится нарастающий по модулю электрический ток, сила I(t) которого будет изменяться с течением времени (рис. 53, а). Но мгновенная разрядка конденсатора невозможна, вследствие явления самоиндукции. Действительно, в катушке индуктивности возникнет изменяющийся во времени магнитный поток, который вызовет появление ЭДС самоиндукции. Согласно правилу Ленца ЭДС самоиндукции стремится противодействовать вызвавшей ее причине, т. е. увеличению по модулю силы тока. Вследствие этого, модуль силы тока в колебательном контуре будет в течение некоторого промежутка времени плавно возрастать от нуля до максимального значения I0, определяемого индуктивностью катушки и электроемкостью конденсатора (рис. 53, б).

При разрядке конденсатора энергия его электрического поля превращается в энергию магнитного поля катушки с током. Согласно закону сохранения энергии суммарная энергия идеального колебательного контура остается постоянной с течением времени. Следовательно, уменьшение энергии электрического поля конденсатора равно увеличению энергии магнитного поля катушки:

где q(t) — мгновенное значение заряда конденсатора и I(t) — сила тока в катушке в некоторый момент времени t после начала разрядки конденсатора.
В момент полной разрядки конденсатора (q = 0) сила тока в катушке I(t) достигнет своего максимального по модулю значения I(см. рис. 53, б). В соответствии с законом сохранения энергии запасенная в конденсаторе энергия электрического поля перейдет в энергию магнитного поля, запасенную в этот момент в катушке:

W subscript L equals fraction numerator L I subscript 0 superscript 2 over denominator 2 end fraction.

После разрядки конденсатора сила тока в катушке начинает убывать по модулю. Это также происходит не мгновенно, поскольку вновь возникающая ЭДС самоиндукции согласно правилу Ленца создает индукционный ток. Он имеет такое же направление, как и уменьшающийся по модулю ток в цепи, и поэтому «поддерживает» его.
В результате, к моменту исчезновения тока заряд конденсатора достигнет максимального значения q0. При этом его обкладка, первоначально заряженная положительно, будет заряжена отрицательно. Далее процесс повторится, отличаясь лишь тем, что электрический ток в контуре будет проходить в противоположном направлении (см. рис. 53, а).
Таким образом, в идеальном LC-контуре будут происходить периодические изменения значений силы тока и напряжения, причем полная энергия контура будет оставаться постоянной. В этом случае говорят, что в контуре возникли свободные электромагнитные колебания.
Свободные электромагнитные колебания в LC-контуре — это периодические изменения заряда на обкладках конденсатора, силы тока и напряжения в контуре, происходящие без пополнения энергии от внешних источников и без потерь энергии на тепловыделение и излучение.
Таким образом, существование свободных электромагнитных колебаний в контуре обусловлено перезарядкой конденсатора, вызванной возникновением ЭДС самоиндукции в катушке. Заметим, что заряд q(t) конденсатора и сила тока I(t) в катушке достигают своих максимальных значений q0 и I0 в различные моменты времени (см. рис. 53, а, б)  (со сдвигом на ).
Наименьший промежуток времени, в течение которого LC-контур возвращается в исходное состояние (к начальным значениям заряда на каждой из обкладок), называется периодом свободных (собственных) электромагнитных колебаний в контуре.
Получим формулу для периода свободных электромагнитных колебаний в контуре, используя закон сохранения энергии по аналогии с механическими колебаниями. Поскольку полная энергия идеального LC-контура, равная сумме энергий электрического поля конденсатора и магнитного поля катушки, сохраняется, то в любой момент времени справедливо равенство:

. (1)

Процессы, происходящие в колебательном контуре, аналогичны колебаниям пружинного маятника. Для полной механической энергии пружинного маятника в любой момент времени:

. (2)

где k — жесткость пружины, m — масса груза, x — проекция смещения тела от положения равновесия, vx — проекция его скорости на ось Ox.
Проанализируем соотношения (1) и (2). Видно, что энергия электрического поля конденсатора  является аналогом потенциальной энергии упругой деформации пружины . Соответственно, энергия магнитного поля катушки ,  которая обусловлена упорядоченным движением зарядов, является аналогом кинетической энергии груза .
Следовательно, аналогом координаты x(t) пружинного маятника при колебаниях в электрическом контуре является заряд конденсатора q(t). Тогда, соответственно, аналогом проекции скорости груза vx(t) будет сила тока I(t) в колебательном контуре, поскольку сила тока характеризует скорость изменения заряда конденсатора со временем.
Следуя проведенной аналогии, заменим в формуле для периода колебаний пружинного маятника  жесткость k на 1 over Cи массу m на индуктивность L. Тогда для периода свободных колебаний в LC-контуре получим формулу:

. (3)

которая называется формулой Томсона.
Исходя из сказанного, сведем рассмотренные аналогии между физическими величинами при электромагнитных и механических колебаниях в таблицу 6.
Для наблюдения и исследования электромагнитных колебаний применяют электронный осциллограф, на экране которого наблюдают осцилло­грамму колебаний U(t) (рис. 54).

Таблица 6. Сопоставление физических величин, характеризующих механические и электромагнитные колебания

Механические колебания пружинного маятника

Электромагнитные колебания
в идеальном колебательном контуре

m (масса тела)

L (индуктивность катушки)

k (жесткость пружины)

1 over C(величина, обратная емкости)

x(t) (координата тела)

q(t) (заряд конденсатора)

vx(t) (проекция скорости тела)

I(t) (сила тока)

 begin mathsize 20px style W subscript straight п equals fraction numerator k x squared over denominator 2 end fraction end style(потенциальная энергия упругой деформации пружины) W subscript C equals fraction numerator q squared over denominator 2 C end fraction (энергия электрического поля конденсатора)
 W subscript к equals fraction numerator m v squared over denominator 2 end fraction(кинетическая энергия груза)  W subscript L equals fraction numerator L I squared over denominator 2 end fraction(энергия магнитного поля катушки) 
 begin mathsize 20px style T equals 2 straight pi square root of straight m over straight k end root end style(период колебаний)

begin mathsize 20px style T equals 2 straight pi square root of L C end root end style (период колебаний)

 begin mathsize 20px style straight omega equals square root of k over m end root end style(циклическая частота колебаний) begin mathsize 20px style straight omega equals fraction numerator 1 over denominator square root of L C end root end fraction end style (циклическая частота колебаний)

Зависимость заряда конденсатора от времени имеет такой же вид, как и зависимость координаты тела, совершающего гармонические колебания, от времени:

.

Также по гармоническому закону изменяются сила тока (но с другой начальной фазой) в цепи и напряжение на конденсаторе.

Зависимость силы тока от времени в цепи колебательного контура имеет такой же вид, как и проекции скорости тела, совершающего гармонические колебания, от времени:

где, .

Зависимость напряжения на конденсаторе в колебательном контуре в соответствии с определением электроемкости 

Для определения начальной фазы φ0 и максимального заряда q0 необходимо знать заряд конденсатора и силу тока в катушке в начальный момент времени (t = 0).
Отметим, что колебательный контур, в котором происходит только обмен энергией между конденсатором и катушкой, называется закрытым.
Полная энергия идеального колебательного контура (R = 0) с течением времени сохраняется, поскольку в нем при прохождении тока теплота не выделяется. Реальный колебательный контур всегда имеет некоторое электрическое сопротивление R, которое обусловлено сопротивлением катушки и соединительных проводов. Это приводит к тому, что электромагнитные колебания в реальном контуре с течением времени затухают, тогда как в идеальном контуре они считаются происходящими сколь угодно долго.
Таким образом, механическим аналогом идеального колебательного контура является пружинный маятник без учета трения, а механическим аналогом реального колебательного контура — пружинный маятник с учетом трения.
Колебательный LC-контур широко используется в современных микросхемах для средств электроники и электротехнического оборудо­вания.

Вопросы к параграфу

1. Из каких элементов состоит идеальный колебательный контур?
2. Какие электромагнитные колебания в контуре называются свободными?
3. От каких физических величин зависит период свободных колебаний в идеальном колебательном контуре?
4. По какому закону изменяются зависимости заряда конденсатора и силы тока в катушке идеального колебательного контура с течением времени?
5. Почему в контуре, состоящем из конденсатора и резистора, не могут возникнуть электромагнитные колебания?
6. В колебательном контуре изменили начальное значение заряда конденсатора. Какие величины, характеризующие электромагнитные колебания в контуре, изменятся, а какие останутся прежними?
7. Как распределена запасенная в идеальном колебательном контуре энергия между электрическим полем конденсатора и магнитным полем катушки в идеальном колебательном контуре в моменты времени begin mathsize 20px style T over 4 semicolon T over 2 semicolon fraction numerator 3 T over denominator 4 end fraction semicolon T end style после начала разрядки конденсатора?
8. Зависит ли период свободных электромагнитных колебаний в идеальном колебательном контуре от запасенной в нем энергии?
9. Чем отличаются процессы электромагнитных колебаний в реальном и идеальном колебательных контурах?

Примеры решения задач

1. Идеальный колебательный контур состоит из конденсатора емкостью C = 400 пФ и катушки индуктивностью L = 10 мГн. Определите максимальное значение силы тока Iв контуре, если максимальное значение напряжения на конденсаторе U0= 500 B.

Решение: 

Максимальная энергия электрического по­ля конденсатора

,

а максимальная энергия магнитного поля катушки:

,

Так как контур идеальный (R = 0), то его полная энергия сохраняется с течением времени. По закону сохранения энергии: WC = WL, т. е.

.
Откуда: begin mathsize 18px style I subscript 0 equals U subscript 0 square root of C over L semicolon end root space I subscript 0 equals 500 B square root of fraction numerator 4 comma 00 times 10 to the power of negative 10 end exponent Ф over denominator 1 comma 0 times 10 to the power of negative 2 end exponent Г н end fraction end root equals 0 comma 10 А end style

Ответ: I0 = 0,10 A.

2. При изменении емкости конденсатора идеального LC -контура на  ΔC = 50 мФ частота свободных электромагнитных колебаний в нем увеличилась с  ν1 = 100 кГц до ν2 = 120 кГц. Определите индуктивность катушки L контура.

Решение:

Частота колебаний в контуре 

.

Поскольку 

Из условия задачи получаем систему уравнений 

Откуда:

Вычитая из первого уравнения второе, получаем:

Откуда находим:

Ответ:  L = 0,15 Гн.

Упражнение 7

1. Определите период T свободных электромагнитных колебаний в идеальном колебательном контуре, состоящем из конденсатора емкостью, C = 15 мкФ и катушки индуктивностью L = 2,5 мГн.

2. Определите период колебаний колебательного контура, представленного на рисунке 55.
3. Конденсатор емкостью C = 1,2 мкФ соединен с катушкой индуктивностью L = 16 мкГн. Определите частоту ν свободных электромагнитных колебаний в контуре.
4. Как изменится период свободных электромагнитных колебаний в кон­туре, если индуктивность L катушки контура увеличить (уменьшить) в n = 16 раз при неизменной емкости конденсатора?
5. Определите напряжение U на конденсаторе емкостью C  в момент времени: а) t subscript 1 equals T over 8 semicolon б)  t subscript 2 equals fraction numerator 5 T over denominator 8 end fraction semicolon если в начальный момент времени t0 = 0 напряжение на конденсаторе равно U0 = 48 B, а сила тока в катушке I0 = 0, Т — период колебаний в контуре.

6. Входной контур радиоприемника содержит катушку индуктивностью L = 0,32 мГн. В каких пределах должна изменяться емкость C конденсатора контура, чтобы радиоприемник мог принимать сигналы радиостанции, работающей в диапазоне частот от ν1=8,0 МГц до ν2=24,0 МГц?
7. Имеются два колебательных контура. Один содержит конденсатор емкостью C1 = 240 мФ и катушку индуктивностью L1 = 10,0 мГн, второй — C2 = 260 мФ и L2 = 6,00 мГн. Настроены ли эти контуры в резонанс? Во сколько раз k необходимо изменить емкость C2 или индуктивность L2, чтобы настроить эти контуры в резонанс?
8. В идеальном колебательном контуре, содержащем конденсатор емкостью С=52 мкФ, напряжение на конденсаторе изменяется по закону U equals 20 cos left parenthesis 4 pi times 10 cubed t right parenthesis space straight B. Определите период T  электромагнитных колебаний, закон изменения силы тока I(t) , максимальную энергию электрического WCmax и магнитного  WLmax поля.

9. Идеальный колебательный контур содержит катушку индуктивностью L=2,0 мГн и плоский конденсатор, площадь каждой обкладки которого S=1,2·103 см2, а расстояние между ними d=1,0 мм . Определите диэлектрическую проницаемость ε среды, заполняющей  пространство между обкладками, если максимальное значение силы тока в контуре I0=12 мА, а максимальное значение напряжения  U0=10 В.
10. Во сколько раз  уменьшится энергия заряженного конденсатора в идеальном колебательном контуре после подключения конденсатора к катушке индуктивности через промежуток времени t equals T over 12  ( T — период свободных колебаний)?
11. Период колебаний в идеальном колебательном контуре равен T=4,0 мс . Определите минимальный промежуток времени τmin, через который энергия электромагнитных колебаний в контуре распределится в отношении 1:4 между конденсатором и катушкой.
12. В колебательном контуре индуктивность катушки L=0,20 Гн, а максимальное значение силы тока I0=40 мА. Найдите энергию электрического поля  Wконденсатора и магнитного поля WL катушки в тот момент, когда мгновенное значение силы тока в два раза меньше его максимального значения.
13. В колебательном контуре с конденсатором  емкостью C=4,0 мкФ резонанс наступает при частоте ν1=400 Гц. Определите емкость С2  второго конденсатора, подключенного параллельно к исходному, если резонансная частота становится равной ν2=100 Гц.
14. Если в LC— контуре к конденсатору емкостью C  параллельно присоединить конденсатор емкостью C1=4C, то частота колебаний в контуре уменьшится на Δν=400 Гц . Определите начальную частоту  ν0 колебаний  в контуре.
15. Идеальный колебательный контур содержит катушку индуктивности и два конденсатора одинаковой емкости. При параллельном соединении конденсаторов период колебаний в контуре равен T=16,0 мкс. Определите период Tколебаний  в контуре, если эти конденсаторы соединить последовательно.

Понравилась статья? Поделить с друзьями:
  • Холодец не застыл что делать как исправить с желатином пропорции
  • Как найти вредоносные программы на виндовс 10
  • Как найти свой телефон через имейл
  • Error please select a valid python interpreter как исправить pycharm
  • Как найти блок парктроников