Как найти период обращения по эллиптической орбите

From Wikipedia, the free encyclopedia

Animation of Orbit by eccentricity
  0.0 ·

  0.2 ·

  0.4 ·

  0.6 ·

  0.8

Two bodies with similar mass orbiting around a common barycenter with elliptic orbits.

Two bodies with unequal mass orbiting around a common barycenter with circular orbits.

Two bodies with highly unequal mass orbiting a common barycenter with circular orbits.

An elliptical orbit is depicted in the top-right quadrant of this diagram, where the gravitational potential well of the central mass shows potential energy, and the kinetic energy of the orbital speed is shown in red. The height of the kinetic energy decreases as the orbiting body’s speed decreases and distance increases according to Kepler’s laws.

In astrodynamics or celestial mechanics, an elliptic orbit or elliptical orbit is a Kepler orbit with an eccentricity of less than 1; this includes the special case of a circular orbit, with eccentricity equal to 0. In a stricter sense, it is a Kepler orbit with the eccentricity greater than 0 and less than 1 (thus excluding the circular orbit). In a wider sense, it is a Kepler orbit with negative energy. This includes the radial elliptic orbit, with eccentricity equal to 1.

In a gravitational two-body problem with negative energy, both bodies follow similar elliptic orbits with the same orbital period around their common barycenter. Also the relative position of one body with respect to the other follows an elliptic orbit.

Examples of elliptic orbits include: Hohmann transfer orbit, Molniya orbit, and tundra orbit.

Velocity[edit]

Under standard assumptions, no other forces acting except two spherically symmetrical bodies m1 and m2,[1] the orbital speed (v,) of one body traveling along an elliptic orbit can be computed from the vis-viva equation as:[2]

{displaystyle v={sqrt {mu left({2 over {r}}-{1 over {a}}right)}}}

where:

The velocity equation for a hyperbolic trajectory has either + {1over{a}}, or it is the same with the convention that in that case a is negative.

Orbital period[edit]

Under standard assumptions the orbital period(T,!) of a body travelling along an elliptic orbit can be computed as:[3]

T=2pisqrt{a^3over{mu}}

where:

Conclusions:

  • The orbital period is equal to that for a circular orbit with the orbital radius equal to the semi-major axis (a,!),
  • For a given semi-major axis the orbital period does not depend on the eccentricity (See also: Kepler’s third law).

Energy[edit]

Under standard assumptions, the specific orbital energy (epsilon ) of an elliptic orbit is negative and the orbital energy conservation equation (the Vis-viva equation) for this orbit can take the form:[4]

{v^2over{2}}-{muover{r}}=-{muover{2a}}=epsilon<0

where:

Conclusions:

  • For a given semi-major axis the specific orbital energy is independent of the eccentricity.

Using the virial theorem we find:

  • the time-average of the specific potential energy is equal to −2ε
    • the time-average of r−1 is a−1
  • the time-average of the specific kinetic energy is equal to ε

Energy in terms of semi major axis[edit]

It can be helpful to know the energy in terms of the semi major axis (and the involved masses). The total energy of the orbit is given by

{displaystyle E=-G{frac {Mm}{2a}}},

where a is the semi major axis.

Derivation[edit]

Since gravity is a central force, the angular momentum is constant:

{displaystyle {dot {mathbf {L} }}=mathbf {r} times mathbf {F} =mathbf {r} times F(r)mathbf {hat {r}} =0}

At the closest and furthest approaches, the angular momentum is perpendicular to the distance from the mass orbited, therefore:

{displaystyle L=rp=rmv}.

The total energy of the orbit is given by[5]

{displaystyle E={frac {1}{2}}mv^{2}-G{frac {Mm}{r}}}.

We may substitute for v and obtain

{displaystyle E={frac {1}{2}}{frac {L^{2}}{mr^{2}}}-G{frac {Mm}{r}}}.

This is true for r being the closest / furthest distance so we get two simultaneous equations which we solve for E:

{displaystyle E=-G{frac {Mm}{r_{1}+r_{2}}}}

Since {textstyle r_{1}=a+aepsilon } and {displaystyle r_{2}=a-aepsilon }, where epsilon is the eccentricity of the orbit, we finally have the stated result.

Flight path angle[edit]

The flight path angle is the angle between the orbiting body’s velocity vector (= the vector tangent to the instantaneous orbit) and the local horizontal. Under standard assumptions of the conservation of angular momentum the flight path angle phi satisfies the equation:[6]

h, = r, v, cos phi

where:

psi is the angle between the orbital velocity vector and the semi-major axis. nu is the local true anomaly. {displaystyle phi =nu +{frac {pi }{2}}-psi }, therefore,

{displaystyle cos phi =sin(psi -nu )=sin psi cos nu -cos psi sin nu ={frac {1+ecos nu }{sqrt {1+e^{2}+2ecos nu }}}}
{displaystyle tan phi ={frac {esin nu }{1+ecos nu }}}

where e is the eccentricity.

The angular momentum is related to the vector cross product of position and velocity, which is proportional to the sine of the angle between these two vectors. Here phi is defined as the angle which differs by 90 degrees from this, so the cosine appears in place of the sine.

[icon]

This section needs expansion. You can help by adding to it. (June 2008)

Equation of motion[edit]

From initial position and velocity[edit]

An orbit equation defines the path of an orbiting body m_{2},! around central body m_{1},! relative to m_{1},!, without specifying position as a function of time. If the eccentricity is less than 1 then the equation of motion describes an elliptical orbit. Because Kepler’s equation {displaystyle M=E-esin E} has no general closed-form solution for the Eccentric anomaly (E) in terms of the Mean anomaly (M), equations of motion as a function of time also have no closed-form solution (although numerical solutions exist for both).

However, closed-form time-independent path equations of an elliptic orbit with respect to a central body can be determined from just an initial position (mathbf {r} ) and velocity (mathbf {v} ).

For this case it is convenient to use the following assumptions which differ somewhat from the standard assumptions above:

  1. The central body’s position is at the origin and is the primary focus ({displaystyle mathbf {F1} }) of the ellipse (alternatively, the center of mass may be used instead if the orbiting body has a significant mass)
  2. The central body’s mass (m1) is known
  3. The orbiting body’s initial position(mathbf {r} ) and velocity(mathbf {v} ) are known
  4. The ellipse lies within the XY-plane

The fourth assumption can be made without loss of generality because any three points (or vectors) must lie within a common plane. Under these assumptions the second focus (sometimes called the «empty» focus) must also lie within the XY-plane: {displaystyle mathbf {F2} =left(f_{x},f_{y}right)} .

Using vectors[edit]

The general equation of an ellipse under these assumptions using vectors is:

{displaystyle |mathbf {F2} -mathbf {p} |+|mathbf {p} |=2aqquad mid z=0}

where:

The semi-major axis length (a) can be calculated as:

{displaystyle a={frac {mu |mathbf {r} |}{2mu -|mathbf {r} |mathbf {v} ^{2}}}}

where {displaystyle mu  =Gm_{1}} is the standard gravitational parameter.

The empty focus ({displaystyle mathbf {F2} =left(f_{x},f_{y}right)}) can be found by first determining the Eccentricity vector:

{displaystyle mathbf {e} ={frac {mathbf {r} }{|mathbf {r} |}}-{frac {mathbf {v} times mathbf {h} }{mu }}}

Where {mathbf  {h}} is the specific angular momentum of the orbiting body:[7]

{displaystyle mathbf {h} =mathbf {r} times mathbf {v} }

Then

{displaystyle mathbf {F2} =-2amathbf {e} }

Using XY Coordinates[edit]

This can be done in cartesian coordinates using the following procedure:

The general equation of an ellipse under the assumptions above is:

{displaystyle {sqrt {left(f_{x}-xright)^{2}+left(f_{y}-yright)^{2}}}+{sqrt {x^{2}+y^{2}}}=2aqquad mid z=0}

Given:

{displaystyle r_{x},r_{y}quad } the initial position coordinates
{displaystyle v_{x},v_{y}quad } the initial velocity coordinates

and

{displaystyle mu =Gm_{1}quad } the gravitational parameter

Then:

{displaystyle h=r_{x}v_{y}-r_{y}v_{x}quad } specific angular momentum
{displaystyle r={sqrt {r_{x}^{2}+r_{y}^{2}}}quad } initial distance from F1 (at the origin)
{displaystyle a={frac {mu r}{2mu -rleft(v_{x}^{2}+v_{y}^{2}right)}}quad } the semi-major axis length
{displaystyle e_{x}={frac {r_{x}}{r}}-{frac {hv_{y}}{mu }}quad } the Eccentricity vector coordinates
{displaystyle e_{y}={frac {r_{y}}{r}}+{frac {hv_{x}}{mu }}quad }

Finally, the empty focus coordinates

{displaystyle f_{x}=-2ae_{x}quad }
{displaystyle f_{y}=-2ae_{y}quad }

Now the result values fx, fy and a can be applied to the general ellipse equation above.

Orbital parameters[edit]

The state of an orbiting body at any given time is defined by the orbiting body’s position and velocity with respect to the central body, which can be represented by the three-dimensional Cartesian coordinates (position of the orbiting body represented by x, y, and z) and the similar Cartesian components of the orbiting body’s velocity. This set of six variables, together with time, are called the orbital state vectors. Given the masses of the two bodies they determine the full orbit. The two most general cases with these 6 degrees of freedom are the elliptic and the hyperbolic orbit. Special cases with fewer degrees of freedom are the circular and parabolic orbit.

Because at least six variables are absolutely required to completely represent an elliptic orbit with this set of parameters, then six variables are required to represent an orbit with any set of parameters. Another set of six parameters that are commonly used are the orbital elements.

Solar System[edit]

In the Solar System, planets, asteroids, most comets and some pieces of space debris have approximately elliptical orbits around the Sun. Strictly speaking, both bodies revolve around the same focus of the ellipse, the one closer to the more massive body, but when one body is significantly more massive, such as the sun in relation to the earth, the focus may be contained within the larger massing body, and thus the smaller is said to revolve around it. The following chart of the perihelion and aphelion of the planets, dwarf planets and Halley’s Comet demonstrates the variation of the eccentricity of their elliptical orbits. For similar distances from the sun, wider bars denote greater eccentricity. Note the almost-zero eccentricity of Earth and Venus compared to the enormous eccentricity of Halley’s Comet and Eris.

Distances of selected bodies of the Solar System from the Sun. The left and right edges of each bar correspond to the perihelion and aphelion of the body, respectively, hence long bars denote high orbital eccentricity. The radius of the Sun is 0.7 million km, and the radius of Jupiter (the largest planet) is 0.07 million km, both too small to resolve on this image.

Radial elliptic trajectory[edit]

A radial trajectory can be a double line segment, which is a degenerate ellipse with semi-minor axis = 0 and eccentricity = 1. Although the eccentricity is 1, this is not a parabolic orbit. Most properties and formulas of elliptic orbits apply. However, the orbit cannot be closed. It is an open orbit corresponding to the part of the degenerate ellipse from the moment the bodies touch each other and move away from each other until they touch each other again. In the case of point masses one full orbit is possible, starting and ending with a singularity. The velocities at the start and end are infinite in opposite directions and the potential energy is equal to minus infinity.

The radial elliptic trajectory is the solution of a two-body problem with at some instant zero speed, as in the case of dropping an object (neglecting air resistance).

History[edit]

The Babylonians were the first to realize that the Sun’s motion along the ecliptic was not uniform, though they were unaware of why this was; it is today known that this is due to the Earth moving in an elliptic orbit around the Sun, with the Earth moving faster when it is nearer to the Sun at perihelion and moving slower when it is farther away at aphelion.[8]

In the 17th century, Johannes Kepler discovered that the orbits along which the planets travel around the Sun are ellipses with the Sun at one focus, and described this in his first law of planetary motion. Later, Isaac Newton explained this as a corollary of his law of universal gravitation.

See also[edit]

  • Apsis
  • Characteristic energy
  • Ellipse
  • List of orbits
  • Orbital eccentricity
  • Orbit equation
  • Parabolic trajectory

References[edit]

  1. ^ Bate, Mueller, White (1971). Fundamentals Of Astrodynamics (First ed.). New York: Dover. pp. 11–12. ISBN 0-486-60061-0.{{cite book}}: CS1 maint: multiple names: authors list (link)
  2. ^ Lissauer, Jack J.; de Pater, Imke (2019). Fundamental Planetary Sciences: physics, chemistry, and habitability. New York, NY, USA: Cambridge University Press. pp. 29–31. ISBN 9781108411981.
  3. ^ Bate, Mueller, White (1971). Fundamentals Of Astrodynamics (First ed.). New York: Dover. p. 33. ISBN 0-486-60061-0.{{cite book}}: CS1 maint: multiple names: authors list (link)
  4. ^ Bate, Mueller, White (1971). Fundamentals Of Astrodynamics (First ed.). New York: Dover. pp. 27–28. ISBN 0-486-60061-0.{{cite book}}: CS1 maint: multiple names: authors list (link)
  5. ^ Bate, Mueller, White (1971). Fundamentals Of Astrodynamics (First ed.). New York: Dover. p. 15. ISBN 0-486-60061-0.{{cite book}}: CS1 maint: multiple names: authors list (link)
  6. ^ Bate, Mueller, White (1971). Fundamentals Of Astrodynamics (First ed.). New York: Dover. p. 18. ISBN 0-486-60061-0.{{cite book}}: CS1 maint: multiple names: authors list (link)
  7. ^ Bate, Mueller, White (1971). Fundamentals Of Astrodynamics (First ed.). New York: Dover. p. 17. ISBN 0-486-60061-0.{{cite book}}: CS1 maint: multiple names: authors list (link)
  8. ^ David Leverington (2003), Babylon to Voyager and beyond: a history of planetary astronomy, Cambridge University Press, pp. 6–7, ISBN 0-521-80840-5

Sources[edit]

  • D’Eliseo, Maurizio M. (2007). «The First-Order Orbital Equation». American Journal of Physics. 75 (4): 352–355. Bibcode:2007AmJPh..75..352D. doi:10.1119/1.2432126.
  • D’Eliseo, Maurizio M.; Mironov, Sergey V. (2009). «The Gravitational Ellipse». Journal of Mathematical Physics. 50 (2): 022901. arXiv:0802.2435. Bibcode:2009JMP….50a2901M. doi:10.1063/1.3078419.
  • Curtis, Howard D. (2019). Orbital Mechanics for Engineering Students (4th ed.). Butterworth-Heinemann. ISBN 978-0-08-102133-0.

External links[edit]

  • Java applet animating the orbit of a satellite in an elliptic Kepler orbit around the Earth with any value for semi-major axis and eccentricity.
  • Apogee — Perigee Lunar photographic comparison
  • Aphelion — Perihelion Solar photographic comparison
  • http://www.castor2.ca

В статье численными методами решаются уравнения Кеплера, необходимые для визуализации движения небесных тел в пределах солнечной системы.

Для удобства мы будем выводить в заголовке окна информацию о скорости симуляции солнечной системы. Для этого следует внести изменения в класс CAbstractWindow, добавив новый метод SetTitle, использующий свободную функцию SDL_SetWindowTitle для изменения заголовка окна:

Задача двух тел (ru.wikipedia.org) состоит в том, чтобы определить движение двух точечных частиц, которые взаимодействуют только друг с другом. Движение Луны и Земли вокруг их общего центра масс можно описать как задачу двух тел, если пренебречь гравитационным влиянием Солнца и других планет солнечной системы.

Прелесть задачи двух тел в том, что она прекрасно решается аналитически: достаточно знать зависимость силы притяжения или, например, силы кулоновского отталкивания от координат тел. Движение космических тел по эллиптической орбите в задаче двух тел описывается уравнением Кеплера (ru.wikipedia.org):

На данной иллюстрации перицентр (перигелий) орбиты тела под числом 3 обозначен числом 6, а апоцентр — числом 7:

К сожалению, при добавлении в систему Луна-Земля влияния Солнца, а также при добавлении любого третьего тела в систему из двух тел задача нахождения координат в любой момент времени становится неразрешимой аналитическими методами. Иными словами, не существует способа с помощью решения системы уравнений точно определить траектории в системе из трёх тел.

Отсутсвие точного решения не мешает искать приближённые решения с помощью численного решения приближённых уравнений. То есть на практике задачу двух тел можно решить с любой заданной точностью — но невозможно решить абсолютно точно, за исключением некоторых частных случаев.

В солнечной системе присутствует как минимум Солнце и 8 планет (Меркурий, Венера, Земля, Марс, Юпитер, Сатурн, Уран, Нептун). Однако, для визуализации движения планет по их орбитам мы можем пренебречь взаимным влиянием планет и разбить Солнечную Систему на 8 подсистем “Солнце-планета”.

В каждой подсистеме “Солнце-планета” путём численного решения уравнения Кеплера можно определить зависимость координат планеты от времени. Для этих целей создадим вспомогательный класс CEllipticOrbit:

Численные методы поиска корней уравнений позволяют найти решения уравнения с заданной степенью точности. Если вспомнить, что числа в памяти компьютера сами по себе ограничены в точности представления, то несложно сделать вывод, что в дискретном мире компьютеров численное решение по своей точности мало чем отличается от аналитического. Какая разница, как вы находите √2, если √2 невозможно точно представить как float или double ?

Именно поэтому мы воспольуемся численным алгоритмом поиска корней под названием метод Халли. Для сокращения кода воспользуемся готовой реализацией этого алгоритма в функции boost::math::tools::halley_iterate .

Для запуска этой функции мы должны сформировать функтор, который будет для заданного параметра x возвращать кортеж из трёх значений:

В C++98 нам бы пришлось писать новый класс с перегруженным оператором вызова, но в C++11 мы можем применить лямбда-функции:

Теперь можно написать функцию-обёртку, использующую функтор с алгоритмом “метод Халли”:

Теперь, обладая способом решения уравнения Кеплера для заданного момента времени, мы можем реализовать остальные методы. Кроме того, мы добавим релизацию геттеров свойств:

Теперь мы добавим класс, инкапсулирующий в себе информацию о Солнце, планетах и взаимодействии между ними. В целом он будет похож на класс CParticleSystem, хотя законы движения кардинально изменились: больше нет никакой случайности и хаотичности, на смену им пришли законы небесной механики.

В конструкторе CSolarSystem зададим все 8 планет, планетоид Плутон и комету Галлея:

Теперь добавим реализации Update и Draw. Планеты и Солнце мы будем рисовать как точки фиксированного размера, а орбиты — с помощью пунктирной линии. В любом случае, параметры эллипса орбиты и позицию планеты в заданный момент времени можно узнать у помощью объекта класса CElipticOrbit:

Методы для запроса свойств и управляющие методы для изменения масштаба и скорости течения времени можно реализовать так:

Практически все возможности программы уже реализованы, в CWindow остаётся лишь управляющий код. Поэтому объявление класса CWindow будет кратким:

В первую очередь рассмотрим реализацию конструктора, обновления состояния и рисования сцены:

Метод SetupView подвергся модификациям: теперь матрица ортографического проецирования должна учитывать масштаб Солнечной Системы:

Последним штрихом добавим в CWindow::OnKeyDown обработку управляющих клавиш. Список горячих клавиш:

Поскольку вся необходимая работа уже проделана в классе CSolarSystem, в методе OnKeyDown мы просто отображаем события на методы:

Статьи по небесной механике пользуются на Хабре некоторой популярностью, поэтому я решил рассказать
об одном фундаментальном уравнении движения, а именно, уравнении Кеплера.
Как известно, финитное движение небесных тел в Солнечной системе происходит по эллипсу. Однако, если необходимо
установить, в какой точке небесное тело находится в заданный момент времени, этой информации недостаточно и надо воспользоваться уравнением Кеплера.

Выведем это уравнение.
Напомню, что эллипс — это сплюснутая на величину

окружность. Здесь e — эксцентриситет.

где a — большая полуось.
Согласно второму закону Кеплера, который гласит, что площадь, заметаемая радиус-вектором небесного тела пропорциональна времени, можно написать

где T — период обращения, t — текущее время, t0 — момент времени прохождения перигелия (ближайшей к Солнцу точки орбиты).

Найдем теперь зависимость этой площади от положения небесного тела на орбите, то есть от величины радиус-вектора r и истинной аномалии — угла между перигелием и небесным телом, если смотреть с Солнца.

Для этого введем дополнительную переменную — эксцентрическую аномалию E.
Направим ось x от Солнца (начала координат), которое находится в одном из фокусов эллипса, в сторону перигелия по линии апсид (прямой, соединяющей перицентр с апоцентром).
Создадим также вспомогательную окружность с радиусом, равным большой полуоси эллипса.

Для вычисления площади S рассмотрим вспомогательные фигуры:
сектор окружности P’-O-Per:

Это и есть уравнение Кеплера.

Заметим, что это трансцендентное уравнение относительно E и получить явное решение в общем случае не удается.

Для вычисления координат небесного тела необходимо найти эксцентрическую аномалию по известному M и e, a затем определить радиус-вектор и угол и, если необходимо x и y по приведенным выше формулам.

Интересным вопросом остается нахождение методов решения уравнения Кеплера.
Этим занимались лучшие умы человечества на протяжении последних четырехсот лет.
Результатом было обогащение математики множеством интересных идей, но описание этого требует отдельной статьи.

[Основная идея]

Глава 1: Как движутся ИСЗ?

Перед тем, как приступить к рассмотрению вопросов наблюдения ИСЗ, нужно выяснить как они движутся — по каким орбитам и каковы характеристики этих орбит. Без понимания этих вопросов наблюдение ИСЗ превращается в охоту за неведомым зверем, который неизвестно где обитает.

§ 1. Законы Кеплера и типы орбит

Из курса средней школы нам известно, что тело, движущееся по орбите вокруг другого тела, подчинено трём законам Кеплера. Нас будут интересовать только два из них — первый и третий.

Согласно первому закону Кеплера, тело, обращающееся вокруг Земли (в нашем случае) движется по эллипсу, в одном из фокусов которого находится центр Земли (см. рис. 2). Мы специально не упоминали тут, что тело может двигаться по трём видам орбит — эллипс, гипербола и парабола. Нас интересуют только периодические орбиты, а из перечисленных такой является эллипс.

Элементы эллипса показаны на рис. 2. «F1« и «F2«фокусы эллипса; «a»большая полуось; «b» — малая полуось; «е»эксцентриситет эллипса, который определяется следующим образом:

,     (1)

Таким образом, первое важное положение — ИСЗ движутся вокруг Земли по эллипсам .

Согласно третьему закону Кеплера, квадраты периодов обращения «T» спутников относятся как кубы их больших полуосей «a»:

,     (2)

Рис. 2. Элементы эллипса. [2]

§ 2. Орбитальные элементы

Для того, чтобы задать параметры и ориентацию орбиты ИСЗ в пространстве, нужно указать 6 т.н. кеплеровских элементов (орбитальных элементов) (см. рис. 3):

  • Большая полуось «a». Равна среднему расстоянию ИСЗ от центра Земли.
  • Эксцентриситет «e» (см. формулу 1) — мера сплюснотости эллипса.
  • Наклонение орбиты «i» к экваториальной плоскости Земли — угол пересечения плоскости орбиты ИСЗ с плоскостью экватора Земли. Отсчитывается против часовой стрелки, если смотреть со стороны восходящего узла орбиты. Измеряется от 0° до 180°. Если наклонение не более 90°, то движение спутника считается прямым, если более 90° — то обратным.
  • Аргумент перигея (АП) ω — угол, отсчитываемый в плоскости орбиты ИСЗ от восходящего узла орбиты до точки перигея (точка, где расстояние между ИСЗ и центром Земли наименьшее). Угол отсчитывается против часовой стрелки, если смотреть с северного полюса мира. Линия, соединяющая восходящий и нисходящий узлы называется линией узлов.
  • Долгота восходящего узла (ДВУ) Ω — угол, отсчитываемый в плоскости земного экватора от восходящего узла до точки весеннего равноденствия. Угол отсчитывается против часовой стрелки, если смотреть с северного полюса мира.
  • Средняя аномалия (СА) M0 — угол, отсчитываемый в плоскости орбиты ИСЗ от перигея до ИСЗ на орбите. Угол отсчитывается против часовой стрелки, если смотреть с северного полюса мира.
Рис. 3. Орбитальные элементы. [2]

Итак, наше второе важное положение — орбита ИСЗ полностью задаётся шестью орбитальными элементами .

§ 3. Круговая орбита

Рассмотрим частный случай эллиптической орбиты — круговая орбита. Если значение эксцентриситета орбиты ИСЗ е = 0, то орбита представляет собой окружность с центром в центре Земли.

Для того, чтобы тело стало спутником Земли, оно должно обладать определённой скоростью при полёте вокруг неё. Если бы у Земли не было атмосферы, то минимальная скорость, необходимая для того, чтобы тело двигалось по окружности вокруг Земли, равна vк0 = 7,91 км/с. Но в реальности такого быть не может — спутник будет сильно тормозится в атмосфере Земли. Если ИСЗ начнёт двигаться на высоте менее примерно 160 км от поверхности Земли, то он сможет сделать лишь пару оборотов, после чего начнёт необратимо терять скорость и сгорит в плотных слоях атмосферы. Для примерного расчёта скорости ИСЗ на круговой орбите можно воспользоваться формулой [1]:

,     (3)

где R = 6371 км — средний радиус Земли, r = R + h — расстояние от центра Земли до ИСЗ, hвысота ИСЗ над поверхностью Земли. При наблюдениях важно знать период обращения ИСЗ Т — время, необходимое на один полный оборот вокруг Земли. Для круговой орбиты период Т можно вычислить по формуле [1]:

,     (4)

Из (4) видно, что минимальное время, необходимое ИСЗ для одного оборота, равно Tк0 = 84,4 минуты — при нулевой высоте над поверхностью. Никакое тело не может быстрее обогнуть поверхность Земли. При примерных оценках периода обращения ИСЗ по круговой орбите полезно помнить, что период обращения увеличивается примерно на 1 минуту при увеличении высоты ИСЗ на каждый 50 км. Этой оценкой можно пользоваться для ИСЗ не выше 1000 км.

Наше третье важное положение — ИСЗ не может двигаться долгое время по орбите вокруг Земли ниже 140-160 км. При этом, период обращения по круговой орбите является минимальным и для диапазона высот 160-1000 км изменяется всего с 87,6 до 105 минут .

§ 4. Эллиптическая орбита

Теперь рассмотрим общий вид орбиты ИСЗ — эллиптическая орбита (см. рис. 4). Как было указано выше, из первого закона Кеплера следует, что в фокусе эллиптической орбиты будет находится Земля (З), вокруг которой вращается ИСЗ. Двигаясь по эллиптической орбите, ИСЗ ближе всего подлетает к центру Земли в точке «П» — в перигее, а дальше всего находится в точке «А» — в апогее. Линия, соединяющая перигей и апогей называется линией апсид. Из наблюдений ИСЗ можно определить большую полуось и эксцентриситет орбиты, из которых можно вычислить значения перигейного «q» и апогейного «Q» расстояний:

.     (5)

Рис. 4. Перигей и апогей.

Из (5) видно, что Q + q = 2a. При движении по орбите изменяется расстояние «r» от Земли до ИСЗ — величина радиус-вектора «r» задаётся выражением [3]:

.     (6)

Скорость ИСЗ в любой точке эллиптической орбиты задаётся выражением [2]:

.     (7)

Период обращения для спутника на эллиптической орбите вычисляется по формуле (4), в которой вместо «r» нужно подставить значение большой полуоси «a».

Наше четвёртое важное положение — скорость движения ИСЗ по эллиптической орбите не равномерна: максимальна она в перигее, а минимальна в апогее. Период обращения теперь определяется не только большой полуосью «a», но и значением эксцентриситета «e» .

§ 5. Эволюция орбиты ИСЗ

В этом параграфе мы рассмотрим, как изменяются параметры реальной орбиты ИСЗ под воздействием определённых факторов.

Прежде всего следует отметить следующее: если бы Земля имела форму идеального шара с равномерным распределением вещества, была лишена атмосферы, а Луна и Солнце отсутствовали бы, то ИСЗ вечно бы вращался по своей орбите, ориентация которой в пространстве не изменялась. Если бы спутник совершал 14 оборотов в сутки (при этом его период равен примерно 103 минуты), то за время одного витка ИСЗ Земля повернётся на 1/14 полного оборота (это примерно 26°). Это означает, что с каждым новым траектория ИСЗ смещалась к западу на 26° за каждый виток.

Прецессия орбиты

В реальности форма Земли — геоид, полярный радиус которого RП = 6356,8 км, а экваториальный — RЭ = 6378,2 км, т.е. экваториальный радиус больше полярного на 21,4 км. Земля имеет экваториальный «горб», который своей массой оказывает влияние на движение ИСЗ. Влияние это не такое уж явное — масса «горба» не вызывает изменения наклонения «i» орбиты за счёт притягивания плоскости орбиты к плоскости экватора, как можно было бы ожидать — плоскость орбиты медленно поворачивается вокруг земной оси в направлении, противоположном вращению ИСЗ (см. рис. 5).

Рис. 5. Прецессия орбиты ИСЗ [4].

Этот процесс называется прецессией. Угол прецессии плоскости орбиты ИСЗ остаётся неизменным. Угловая скорость прецессии «X1« (градусов в сутки) определяется, в основном, наклонением орбиты [1]:

,     (8)

где «i» — наклонение орбиты, «e» — эксцентриситет, RЭ — экваториальный радиус Земли, «а» — большая полуось орбиты ИСЗ. Если спутник движется в запада на восток, орбита поворачивается с востока на запад. Чем меньше наклонение ИСЗ, тем больше значение прецессии (см. рис. 6). Если спутник вращается с востока на запад (обратное движение ИСЗ), то прецессия орбиты происходит в обратную сторону. При этом линия узлов также поворачивается (см. рис. 7).

Рис. 6. Скорость вращения плоскости орбиты ИСЗ за счёт прецессии. Числа у кривых указывают значение большой полуоси [1].
Рис. 7. Смещение восходящего узла за один виток [4].

Теперь посмотрим, к каким изменениям условий наблюдения спутника приводит прецессия. Как известно, Земля делает полный оборот за 23 ч 56 м 4,09 с (звёздные сутки) — за 24 ч (средне-солнечные сутки) небо нам кажется повернувшимся на 361° (т.к. звёздные сутки короче средне-солнечных на 4 минуты — за это время небо повернётся на 1°). Если бы плоскость орбиты ИСЗ не прецессировала, то через 24 ч он появлялся бы на небе на 1° западнее, чем накануне (если движение ИСЗ прямое). Но за счёт прецессии орбита поворачивается на Х1 градусов за сутки, поэтому ИСЗ через 24 ч окажется на Х1 + 1 градус западнее (при обратном движении — на 1 — Х1 градус к западу). Период обращения спутника не кратен целой части суток. Если через сутки спутник будет пересекать ту же широту Земли на n минут позже, он окажется ещё на n/4 градусов западнее, т.к. за 1 минуту Земля поворачивается на 1/4 минуты. Следовательно, суммарный суточный сдвиг к западу составит 1 + 1 + n/4) градусов [1].

Вращение эллиптической орбиты

Следующим важным эффектом, влияющим на эволюцию орбиты ИСЗ, является поворот плоскости эллиптической орбиты. Эффект этот, как и предыдущий, обязан своим существованием экваториальному «горбу» Земли, но в отличие от прецессии, действует только на эллиптичные орбиты. Эффект заключается в том, что эллиптическая орбита постоянно поворачивается в своей плоскости вперёд для спутников с нулевым наклонением, и назад — для спутников с наклонением, близким к 90°. За счёт этого точки перигея движутся вперёд или назад по орбите (см. рис. 8).

Рис. 8. Поворот эллиптической орбиты [1].

Скорость вращения «X2« эллиптической орбиты определяется выражением [1]:

.     (9)

На рис. 9 показаны графики зависимости X2(i) для ИСЗ с разными значениями больших полуосей «a».

Рис. 9. Скорость вращения X2 эллиптической орбиты [1].

Вращение происходит в том же направлении, что и движение спутника, если наклонение i 63,4°. При i = 63,4° поворот орбиты отсутствует.

Наше пятое важное положение — движение ИСЗ подвержено возмущениям из-за несферичности Земли. За счёт прецессии орбита спутника может смещаться с угловой скоростью до 9°/сутки, а за счёт поворота эллиптической орбиты — до 15°/сутки. При этом, чем меньше наклонение, тем сильнее оба эффекта, но действовать они могут как в одну сторону, так и в противоположные .

Атмосферное торможение

Прецессия орбиты и поворот её плоскости связаны с действием несферичности Земли. Но кроме этого Земля окружена атмосферой, которая прослеживается до 2000 км над её поверхностью. Из этого следует, что на движение ИСЗ, особенно на низких орбитах, влиянием атмосферы мы пренебрегать не можем. Атмосферное давление падает с высотой экспоненциально — на высоте 200 км оно составляет 10 -12 мбар (на уровне моря атмосферное давление составляет 1013 мбар), а на высоте 900 км — уже только 10 -42 мбар [6]. Тем не менее, даже такая разреженная атмосфера может приводить к изменению орбиты ИСЗ.

Сила сопротивления движущемуся в атмосфере телу определяется выражением [4]:

,     (10)

где «cx« — безразмерный коэффициент сопротивления, для верхней атмосферы равный 2-2,5; «S» — площадь максимального сечения спутника, перпендикулярного налетающему воздушному потоку; «v» — скорость ИСЗ, «ρ» — плотность атмосферы на высоте полёта ИСЗ. Торможение ИСЗ определяется его парусностью — чем больше площадь и меньше масса, тем больше торможение.

Для спутника, движущемся по круговой орбите, сопротивление атмосферы будет сказываться следующим образом: спутник будет медленно опускаться по спирали с постоянно увеличивающейся скоростью. Угол снижения спутника на круговой орбите можно оценить из выражения [1]:

,     (11)

где «m» — масса ИСЗ, «g» — ускорение свободного падения. Снижение по спирали будет продолжаться до тех пор, пока спутник не опустится до высоты 160 км — ниже этой высоты сила сопротивления настолько велика, что спутник начинает резкое снижение и сгорит в атмосфере. На высоте 160 км период обращения равен примерно 88 минут — любой ИСЗ с меньшим периодом обречён.

Если орбита эллиптическая, то результат действия сопротивления атмосферы будет следующим: т.к. сопротивление сильно уменьшается с высотой, то максимальное сопротивление ИСЗ будет испытывать в перигее, а минимальное — в апогее. Это слабо меняет высоту перигея, но уменьшает высоту апогея — в результате эллиптичность орбиты уменьшается и спутник начинает спуск по спирали. На рис. 10 показано снижение ИСЗ в случае эллиптической орбиты.

Рис. 10. Снижение спутника в атмосфере [4].

Оценить время жизни спутника можно из выражения (12) [1]:

,     (12)

где e0 — начальный эксцентриситет орбиты, T0 — начальный период обращения, ΔT — суточное изменение периода. Тогда измение периода будет определятся выражением [1]:

,     (13)

а изменение эксцентриситета [1]:

.     (14)

Формулы (13) и (14) справедливы для значений e = 0,02-0,2. На атмосферное торможение сильно влияет время суток (в подсолнечной точке атмосфера подымается выше), а также активность Солнца.

Как видно, время жизни спутника определяется его эксцентриситетом и большой полуосью. В таблице ниже представлены времена жизни ИСЗ для разных значений перигея и апогея [5]:

Время существования ИСЗ массой 100 кг и диаметром 1 метр, сутки
Высота перигея, км Высота апогея, км
500 700 1000 1300 1600
200 9 18 37 58 82
230 25 52 102 165 237
260 53 116 238 370 535
300 114 260 545 890 1280
400 410 1120 2630 4450 6600

Наше шестое важное положение — сопротивление атмосферы Земли вызывает уменьшение большой полуоси орбиты ИСЗ, в результате чего он по спирали спускается вниз. При достижении высоты около 160 км спутник сможет сделать всего пару оборотов и сгорит в атмосфере, войдя в резкий и необратимый спуск .

Давление света

Впервые идею о том, что свет производит давление на тела, высказал в 1619 г. И. Кеплер — для объяснения эффекта отклонения кометных хвостов от Солнца. Современная теория даёт значение давления следующим выражением (формула Максвелла-Бартоли) [3]:

где «E» — мощность электромагнитного излучения, приходящаяся на единицу площади тела, «η» — коэффициент отражения тела, «c» — скорость света. Для абсолютно поглощающего тела вблизи Земли давление света равно 4,3 · 10 -6 Н/м 2 . Для абсолютно отражающего тела эта величина в два раза больше. Световое давление становится ощутимым для лёгких спутников выше 500 км, т.к. ниже большее значение имеют колебания плотности атмосферы.

В заключении параграфа нужно отметить, что перечисленные факторы влияния на эволюцию орбиты спутника не составляют полный список. Например, на ИСЗ воздействуют своим притяжением Солнце и Луна, но это воздействие в 10000 раз слабее действия экваториального «горба» Земли, но его нужно учитывать для орбит с большим эксцентриситетом. Экваториальный «горб» также вызывает незначительные колебания плоскости орбиты ИСЗ при пересечении экваториальной плоскости. Наконец, неравномерность распределения масс под поверхностью Земли также сказывается на движении спутника.

Как видим, движение спутника не так просто, как может показаться на первый взгляд. В наше время расчёты эволюции орбиты значительно упростились с точки зрения затраты времени, т.к. современные компьютеры имеют огромную вычислительную мощность. Даже любители, используя специальные программы (см. далее), могут довольно точно расчитывать положение спутников на нужную им дату и время, причём на любой промежуток времени — в начале космической эры любители могли об этом только мечтать.

источники:

http://habr.com/ru/post/209106/

http://www.sat.belastro.net/glava1/glava1.php

Орбитальный период — время, за которое небесное тело совершает полный оборот на орбите вокруг внешнего центра притяжения или вокруг общего с другим небесным телом центра масс. Является предметом изучения небесной механики.

Орбитальный период не зависит от размера небесного тела. Соотношение орбитальных периодов двух (или более) небесных тел равное небольшому натуральному числу приводит к орбитальному резонансу, а при таком соотношении орбитального периода тела и его периода вращения вокруг своей оси — к спин-орбитальному резонансу. Орбитальный период пылевых частиц в Солнечной системе может уменьшаться вследствие эффекта Пойнтинга — Робертсона.

Сводка формул

Большая (а) и малая (б) полуось эллипса

Согласно третьему закону Кеплера, орбитальный период T (в секундах) двух тел, вращающихся друг вокруг друга по круговой или эллиптической орбите, равен:

[math]displaystyle{ T = 2pisqrt{frac{a^3}{mu}} }[/math]

где:

а — большая полуось орбиты

μ = GM — стандартный гравитационный параметр

G — гравитационная постоянная

М — масса более массивного тела.

Для всех эллиптических орбит с одинаковой большой полуосью период обращения одинаков, независимо от эксцентриситета.

И наоборот, формула для расчёта расстояния, на котором тело должно вращаться, чтобы иметь заданный орбитальный период:

[math]displaystyle{ a = sqrt[3]{frac{GMT^2}{4pi^2}} }[/math]

Например, для завершения движения каждые 24 часа при массе тела 100 кг небольшое тело должно вращаться на расстоянии 1,08 метра от его центра масс.

Когда сравнительно маленькое тело движется по круговой орбите и зависит от плотности центра масс — р (в кг/м³), приведённое выше уравнение упрощается:

[math]displaystyle{ T = sqrt{ frac {3pi}{G rho} } }[/math].

Когда два тела вращаются друг вокруг друга, орбитальный период T можно рассчитать следующим образом (необходимо учитывать массы обоих орбитальных тел):

[math]displaystyle{ T= 2pisqrt{frac{a^3}{G left(M_1 + M_2right)}} }[/math]

М12 — сумма масс двух тел.

Виды

Существует несколько видов орбитальных периодов (при рассмотрении небесных тел в Солнечной системе):

  • Сидерический период — промежуток времени, в течение которого какое-либо небесное тело-спутник совершает вокруг главного тела полный оборот относительно звёзд.
  • Синодический период — промежуток времени между двумя последовательными соединениями Луны или какой-нибудь планеты Солнечной системы с Солнцем при наблюдении за ними с Земли. При этом соединения планет с Солнцем должны происходить в фиксированном линейном порядке, что существенно для внутренних планет: например, это будут последовательные верхние соединения, когда планета проходит за Солнцем.
  • Драконический период — интервал времени, состоящий из 223 синодических месяцев (в среднем приблизительно 6585,3211 суток или 18,03 тропического года), по прошествии которого затмения Луны и Солнца приблизительно повторяются в прежнем порядке.
  • Аномалистический период — промежуток времени, за который тело, перемещаясь по эллиптической орбите, дважды последовательно проходит через перицентр. Этот период может несколько отличаться от сидерического, потому что ориентация линии апсид орбиты медленно меняется из-за её прецессии. Например, аномалистический период Луны — 27,55455 дня, Земли — 365,25964 дня.
  • Тропический период — отрезок времени, за который Солнце завершает один цикл смены времён года, как это видно с Земли, например, время от одного весеннего равноденствия до следующего, или от одного дня летнего солнцестояния до другого.

Ссылки

  • Bate, Roger B.; Mueller, Donald D. & White, Jerry E. (1971), Fundamentals of Astrodynamics, Dover

При движении по эллипсу вокруг Солнца продолжительность полного обращения может быть определена с помощью третьего закона Кеплера, по которому квадраты времен обращения планет относятся как кубы их средних расстояний от Солнца (то есть кубы больших полуосей эллиптических орбит):

где Т — продолжительность одного обращения;

а — большая полуось эллиптической орбиты.

Проще всего производить сравнение с периодом обращения Земли, равным, как известно, одному году, или 365 суткам. Тогда

Т = 365·a3/2

где Т — в сутках, а — в астрономических единицах.

При движении вокруг Земли период обращения можно сравнивать с периодом обращения кругового спутника у самой поверхности, то есть на высоте Н = О. Этот период равен, как указывалось выше, 5070 секундам.

Поэтому

Т = 5070·a3/2

где Т — в секундах,

а — в радиусах земного шара.

Примеры использования формул

1. Какова продолжительность полета корабля с Земли до Меркурия по наивыгоднейшему касательному полуэллипсу?

Период обращения по наивыгоднейшему эллипсу

Т = а3/2 = 0,6933/2 ? 0,58 лет.

Продолжительность полета

2. Какова продолжительность полета грузовой ракеты с Земли до суточной орбиты по касательному полуэллипсу (сопротивлением воздуха и активным участком траектории пренебрегаем)?

Т=5070·3,83/2 = 37 600 секунд

Продолжительность полета

= 18 800 секунд, или ?5,2 часа.

3. Какова продолжительность полета на Луну по наивыгоднейшему касательному полуэллипсу?

В этом случае поэтому Т = 5070 · 30,63/2 ? 860 000 секунд, или около 240 часов.

Продолжительность полета

? 120 часов (5 суток).

4. Какова величина больших полуосей орбит советских искусственных спутников?

В начале движения периоды обращения советских искусственных спутников равнялись:

первого спутника

Т1 = 96,17 минуты = 5770 секунд;

второго спутника

Т2 = 103,75 минуты = 6225 секунд;

третьего спутника

Т3 = 106 минут= 6360 секунд.

По формуле Т = 5070 3/2 находим:

Истинные величины больших полуосей отличаются от приведенных выше приближенных, которые даны лишь в качестве иллюстрации.

5. Каков период обращения советской искусственной планеты, запущенной 2 января 1959 года?

Так как для этого случая а =1,145 (см. выше), то

Т = 365·1,1453/2? 450 суток,

что соответствует данным, опубликованным в советской печати.

Понравилась статья? Поделить с друзьями:
  • Как найти нужные слова для мужчин
  • Как составить техническое задание на дизайн проект
  • Как грамотно составить жалобу на сотрудника
  • Как составить свою авторскую сказку
  • Как найти колеса в car simulator