Как найти период по среднему времени

Период колебаний, формула

Повторяющиеся движения или процессы, которые воспроизводят все состояния предыдущего цикла являются периодическими.
Одной из характеристик периодических процессов или колебаний является период.

Период колебаний — Это время за которое периодический процесс проходит полностью один цикл.

Период колебаний, формула

Период колебаний, формула

Для того чтобы найти период колебаний, необходимо взять определенный временной интервал и подсчитать количество циклов, после чего воспользоваться формулой:

Если

∆t определенный временной интервал, секунд
N количество циклов, шт.
f частота колебаний (число циклов в одну секунду), Герц

то

[ T = frac{∆t}{N} = frac{1}{f} ]

Пример определения периода колебаний

Например возьмем кусочек пластилина и подвесим его на нитке.
Отведем нитку от положения равновесия и отпустим. На сотовом телефоне в момент отпускания запустим секундомер.
Отсчитаем 10 циклов, т.е. нить 10 раз вернется в ту же точку из которой мы ее отпустили.
Секундомер показал 14.35 секунд, соответственно приблизительный период колебаний нити 1.435 секунд.

Вычислить, найти период колебаний по формуле 1

Как найти период колебаний зная частоту

Период колебаний, формула

стр. 533

В случае если известны длина волны и скорость распространения колебаний, частоту вычислите следующим образом:
F=v/λ, где F — частота (Гц) , v — скорость распространения колебаний в среде (м/с) , λ — длина волны (м) .

Если известна частота, период найти можно и в том случае, если скорость распространения колебаний неизвестна. Формула для вычисления периода по частоте выглядит следующим образом:
T=1/F, где T — период колебаний (с) , F — частота (Гц) .
Из сказанного выше следует, что найти частоту, зная период, можно также без информации о скорости распространения колебаний. Способ ее нахождения такой же:
F=1/T, где F — частота (Гц) , T — период колебаний (с) .

Для того чтобы узнать циклическую частоту колебаний, вначале вычислите их обычную частоту любым из указанных выше способов. Затем умножьте ее на 2π:
ω=2πF, где ω — циклическая частота (радиан в секунду) , F — обычная частота (Гц)

Отсюда следует, что для вычисления обычной частоты при наличии информации о циклической следует воспользоваться обратной формулой:
F=ω/(2π), где F — обычная частота (Гц) , ω — циклическая частота (радиан в секунду) .

Период и частота колебаний, теория и онлайн калькуляторы

Период и частота колебаний

Период колебаний

Определение

Период — это отрезок времени, которое необходимо для совершения одного цикла периодического процесса.

Периодом ($T$) колебаний называют время, за которое совершается одно полное колебание.

За время равное периоду колебаний фаза изменяется на величину равную $2pi $, поэтому:

[T=frac{2pi }{{omega }_0}left(1right).]

Разные периодические процессы, (процессы, повторяющиеся через равные промежутки времени) можно представить в виде совокупности наложенных гармонических колебаний.

Гармонические колебания некоторого параметра $xi $ описываются уравнением:

[xi =A{cos ({omega }_0t+varphi ) } left(2right),]

где $A={xi }_{max}$ — амплитуда колебаний; ${omega }_0$ — циклическая (круговая) частота колебаний; $varphi $ — начальная фаза колебаний (фаза при $t=0$); $({omega }_0t+varphi )$ —
фаза колебаний. Величина $xi $ лежит в пределах $-Ale sle $+A.

Формулы для вычисления периода простейших колебательных систем

Период колебаний пружинного маятника определим как:

[T=2pi sqrt{frac{m}{k}} left(3right),]

на упругой пружине, жесткость которой равна $k,$ подвешен груз массой $m$.

Период колебаний математического маятника зависит от ускорения свободного падения ($g$) и длины подвеса ($l$)

[T=2pi sqrt{frac{l}{g}}left(4right).]

Формула для вычисления периода колебаний физического маятника представляет собой выражение:

[T=2pi sqrt{frac{J}{mga}left(5right),}]

где $J$ — момент инерции маятника относительно оси вращения; $a$ — расстояние от центра масс тела до оси вращения.

Единицами измерения периода служат единицы времени, например секунды.

[left[Tright]=c.]

Частота колебаний

Определение

Физическая величина обратная периоду колебаний называется частотой колебаний ($nu $).

Частота — это количество полных колебаний, которые колебательная система совершает за единицу времени.

[nu =frac{1}{T}left(6right).]

Частота колебаний связана с циклической частотой как:

[{omega }_0=2pi nu left(7right).]

Единицей измерения частоты в Международной системе единиц (СИ) является герц или обратная секунда:

[left[nu right]=с^{-1}=Гц.]

Примеры задач с решением

Пример 1

Задание. Каковы период ($T$) и частота ($nu $) колебаний, которые происходят в соответствии с уравнением: $x=A{sin ({omega }_0(t+tau )) }$, где ${omega }_0=2,5 pi (frac{рад}{с})$; $tau =0,4 $с?

Решение. Из уравнения колебаний:

[x=A{sin left({omega }_0left(t+tau right)right)left(1.1right), }]

заключаем, что это гармонические колебания, так как они происходят по закону синуса следовательно, они являются периодическими. Период найдем, зная циклическую частоту колебаний:

[T=frac{2pi }{{omega }_0}left(1.1right).]

Подставляя имеющиеся данные, вычислим период колебаний:

[T=frac{2pi }{2,5pi }=0,8 left(сright).]

Частоту колебаний найдем как величину, обратную периоду:

[nu =frac{1}{T}left(1.2right).]

Вычислим частоту:

[nu =frac{1}{0,8}=1,25 left(Гцright).]

Ответ. $T=0,8$ с; $nu =1,25 Гц$

Пример 2

Задание. Какими будут период и частота малых колебаний тонкого обруча, который висит на гвозде (точка А), вбитом горизонтально в стену (рис.1)? Колебания совершаются в плоскости параллельной стене. Радиус обруча R.

Период и частота колебаний, пример 1

Решение. В этой задаче мы имеем дело с физическим маятником период которого, найдем, используя формулу:

[T=2pi sqrt{frac{J}{mga}left(2.1right).}]

Осью вращения обруча является гвоздь, находящийся в точке А. Цент масс обруча находится в его геометрическом центре, точке О, следовательно, расстояние от центра масс до оси вращения обруча (рис.1) равно:

[a=R left(2.2right).]

Найдем момент инерции обруча относительно оси, перпендикулярной плоскости обруча, проходящей через точку $A$. Для этого воспользуемся теоремой Штейнера:

[J=J_0+mR^2 left(2.3right),]

где $J_0=mR^2$ — момент инерции обруча, относительно оси, проходящей через его центр (т.О), перпендикулярно плоскости обруча; расстояние между осями равно радиусу обруча. Получаем, момент инерции обруча относительно гвоздя равен:

[J=mR^2+mR^2=2mR^2left(2.4right).]

Используя формулы (2.1) (2.2) и (2.4), имеем:

[T=2pi sqrt{frac{2mR^2}{mgR}}=2pi sqrt{frac{2R}{g}}.]

Отталкиваясь от полученного результата, найдем частоту колебаний как:

[nu =frac{1}{T}=frac{1}{2pi }sqrt{frac{g}{2R}}.]

Ответ. $T=2pi sqrt{frac{2R}{g}},$ $nu =frac{1}{2pi }sqrt{frac{g}{2R}}$

Читать дальше: полная энергия колебаний.

236

проверенных автора готовы помочь в написании работы любой сложности

Мы помогли уже 4 430 ученикам и студентам сдать работы от решения задач до дипломных на отлично! Узнай стоимость своей работы за 15 минут!

КОЛЕБАНИЯ И ВОЛНЫ

Колебания

Механические колебания — периодически повторяющиеся изменения положения тела (материальной точки) относительно положения равновесия.
Амплитуда (A)— максимальное отклонение тела от положения равновесия.
Период (T) — время за которое совершается одно полное колебание. Единица измерения секунда (с).
Частота (nu) — количество колебаний (N) в единицу времени (t). Измеряется частота в герцах (Гц) показывающих количество колебаний за секунду. К примеру величина 50 Гц говорит нам о том, что система за одну секунду совершила 50 колебаний.

    [nu=frac{N}{t}]

Так как период это время за которое совершается одно полное колебание, можно выразить частоту следующим образом:

    [nu=frac{1}{T}]

Гармонические колебания — колебания происходящие по законам синуса или косинуса (гармоническому закону).

    [x(t)=A sin{(omega t + varphi_0)}]

Фаза колебания (omega t + varphi_0) — аргумент периодической функции, описывающей колебательный или волновой процесс.
Начальная фаза колебания varphi_0 — значение фазы колебаний в начальный момент времени, т.е. при t = 0.
Циклическая частота omega — скалярная физическая величина, мера частоты вращательного или колебательного движения. Единица измерения радиан в секунду (рад/с).

    [omega=frac{2pi}{T}]

    [omega=2pi nu]

Исходя из этого можно записать

    [x(t)=A sin{(frac{2pi t}{T} + varphi_0)}]

    [x(t)=A sin{(2pi nu t + varphi_0)}]

Свободные колебания — колебания возникающие за счет внутренних сил системы, после того как она была выведена из состояния равновесия.
Собственные частота колебаний — частота свободных колебаний колебательной системы.
Затухающие колебания — колебания в которых происходит постепенное уменьшение амплитуды в результате действия сил сопротивления движению (силы трения, силы сопротивления воздуха..).
Вынужденные колебания — колебания, происходящие под действием внешних периодически изменяющейся сил.
Резонанс — резкое увеличение амплитуды колебания при совпадении собственной частоты колебательной системы, с частотой вынуждающей силы.

Математический маятник

Математический маятник — механическая колебательная система представляющая из себя материальную точку подвешенную на нерастяжимой невесомой нити в поле силы тяжести.
Формула Гюгенса для определения периода колебаний математического маятника. l — длинна маятника.

    [T=2pi sqrt{frac{l}{g}}]

Циклическая частота колебаний математического маятника.

    [omega=sqrt{frac{g}{l}}]

Пружинный маятник

Пружинный маятник — механическая колебательная система представляющая из себя пружину жесткостью k, с материальной точкой массой m на одном конце этой пружины.

    [T=2pi sqrt{frac{m}{k}}]

    [omega=sqrt{frac{k}{m}}]

Колебательный контур

Электромагнитные колебания — периодические изменения напряжённости и магнитной индукции.
Колебательный контур — электрическая цепь, состоящая из конденсатора ёмкостью C и катушки индуктивностью L. В этой цепи происходят свободные электромагнитные колебания.
Циклическая частота и период собственных колебаний контура определяются по формуле Томсона:

    [T=2pi sqrt{LC}]

    [omega=frac{1}{sqrt{LC}}]

Связь между амплитудными (максимальными) значениями тока в контуре и заряда на конденсаторе:

    [I_{max}=omega q_{max}]

Энергия контура:

    [W=frac{q^2}{2C}+frac{LI^2}{2}=frac{q^2_{max}}{2C}=frac{LI^2_{max}}{2}]

Связь между амплитудными (максимальными) значениями тока и напряжения в контуре (закон сохранения энергии в колебательном контуре):

    [frac{LI^2_{max}}{2}=frac{CU^2_{max}}{2}]

Переменный ток

Переменный ток — электрический ток периодически меняющий свое направление.
Действующее значение силы переменного тока I_d равно силе постоянного тока, выделяющего в проводнике то же количество теплоты, что и переменный ток за то же время.

    [I_d=frac{I_{max}}{sqrt{2}}]

Действующее значение напряжения U_d в цепи переменного тока равно напряжению постоянного тока, выделяющего в проводнике то же количество теплоты, что и переменный ток за то же время.

    [U_d=frac{U_{max}}{sqrt{2}}]

Средняя по времени тепловая мощность переменного тока:

    [P=frac{U_{max}I_{max}}{2}=I_d^2 R=frac{U_d^2}{R}]

Емкостное сопротивление X_C — сопротивление конденсатора в цепи переменного тока. Емкостное сопротивление зависит от частоты переменного тока, чем частота выше, тем сопротивление ниже. Для постоянного тока конденсатор по сути представляет разрыв цепи, по этому для постоянного тока емкостное сопротивление стремиться к бесконечности.

    [X_C=frac{1}{omega C}]

Где omega циклическая частота переменного тока.
Закон Ома для участков цепи, содержащих емкость:

    [I=frac{U}{X_C}]

Индуктивное сопротивление X_L — сопротивление катушки индуктивности в цепи переменного тока. Так как изменение тока в цепи приводит к появлению токов самоиндукции противодействующих этому изменению, то увеличение частоты переменного тока приводит к увеличению индукционного сопротивления.

    [X_L=omega L]

Закон Ома для участков цепи, содержащих индуктивность:

    [I=frac{U}{X_L}]

Трансформатор

Трансформатор — электромагнитное устройство, которое используется для передачи и преобразования электрической энергии из одной катушки индуктивности на сердечнике в другую. Частота переменного тока при этом не меняется.
Идеальный трансформатор — трансформатор в котором энергетические потери пренебрежимо малы.
Отношение напряжений на вторичной U_2 и первичной U_1 обмотках идеального трансформатора равно отношению количеств их витков. (N_2 на вторичной и N_1 первичной). Само это соотношение называют коэффициентом трансформации k.

    [frac{U_1}{U_2}=frac{N_1}{N_2}=k]

Если коэффициент трансформации больше единицы, то трансформатор называется понижающим, если меньше, то повышающим.
Закон сохранения энергии для идеального трансформатора:

    [U_1I_1=U_2I_2]

КПД неидеального трансформатора:

    [eta=frac{U_2I_2}{U_1I_1}]

Волны

Волны — колебания распространяющийся в упругих средах. Если направление распространения волн и направление колеблющихся частиц среды совпадают то такие волны называются продольными. А если эти направления перпендикулярны друг другу, то такие волны называют поперечными.
Так как волновые процессы являются часным случаем колебательного движения, они так же будут характеризоваться своими частотой и периодом. Но помимо этого у волн есть еще свои дополнительные характеристики, отличающие их от обычного колебательного движения.
Длина волны (lambda) — расстояние, на которое успевает распространиться волна за один период;
Скорость распространения волны (upsilon) — отношение длинны волны к периоду ее колебания.

    [upsilon =frac{lambda}{T}]

    [upsilon =lambda nu]

Звуковые волны — разновидность механических волн в слышимом для человека диапазоне ( от 16 Гц до 20 кГц).

Как найти период

Период – это физическая величина, обозначающая промежуток времени, за который происходит одно полное колебание в механическом, электромагнитном или ином повторяющемся процессе. В школьном курсе физики период является одной из величин, нахождение которых наиболее часто требуется в задачах. Вычисление периода производится с применением известных формул, соотношений параметров тел и их движений в рассматриваемой колебательной системе.Как найти период

В наиболее простом случае решения практических задач на периодические колебания тел следует учитывать само определение физической величины. Период измеряется в секундах и равен интервалу времени за одно полное колебание. В рассматриваемой системе в момент выполнения равномерных колебаний подсчитайте их число за строго фиксированное время, например за 10 с. Вычислите период по формуле Т = t/N, где t – время колебаний (с), N – подчитанное значение.

При рассмотрении задачи на распространение звуковых волн с известной скоростью и длиной колебаний для вычисления периода (Т) используйте формулу: Т= λ/v, где v — скорость распространения периодических колебаний (м/с), λ — длина волны (м). Если известна лишь частота (F) совершаемых телом движений, определите период исходя из обратного соотношения: T = 1/F (с).

Если задана механическая колебательная система, состоящая из подвешенного тела массой m (м) и пружины с известной жесткостью k (Н/м), определить период колебаний груза (Т) можно по формуле T=2π*√(m/k). Высчитайте искомую величину в секундах, подставив известные значения.

Движение тела по орбите с заданным радиусом (R) и постоянной скоростью (V) также может быть периодическим. В данном случае колебание происходит по окружности, т.е. тело за один период проходит путь, равный длине L = 2πR, где R – радиус окружности (м). При равномерном движении время, затрачиваемое на него, определяется как соотношение пройденного пути к скорости перемещения (в данной задаче – полного колебания). Таким образом, найдите значение периода движения тела по орбите по следующей формуле Т = 2πR/V.

В разделе электродинамики часто рассматриваются задачи для электромагнитного колебательного контура. Процессы в нем могут быть заданы общим уравнением синусоидального тока: I = 20*sin100*π*t. Здесь число 20 обозначает амплитуду колебаний тока (Im) контура, 100*π – циклическую частоту (ω). Вычислите период электромагнитных колебаний по формуле Т= 2π /ω, подставив соответствующие значения из уравнения. В данном случае Т = 2*π/(100*π) = 0,02 с.

Понравилась статья? Поделить с друзьями:
  • Состояние принтера застряла бумага как исправить
  • Как составить акт на воду счетчика проверка
  • Как найти количество денег необходимых для обращения
  • Как найти работу в механике формула
  • Как исправить ошибку unable to locate uplay pc for honor