Как найти период полураспада урана


Загрузить PDF


Загрузить PDF

Периодом полураспада вещества, которое находится в стадии распада, называют время, в течение которого количество этого вещества уменьшится в два раза. Первоначально этот термин использовался для описания распада радиоактивных элементов, таких как уран или плутоний, но, вообще говоря, он может быть использован для любого вещества, которое подвергается распаду в установленной или экспоненциальной скорости. Вы можете рассчитать период полураспада любого вещества, зная скорость распада, которая является разницей между начальным количеством вещества и количеством вещества, оставшимся после определенного периода времени. Читайте далее, чтобы узнать, как быстро и легко подсчитать период полураспада вещества.

  1. Изображение с названием Calculate Half Life Step 1

    1

    Разделите количество вещества в одной точке во времени на количество вещества, оставшееся после определенного периода времени.

    • Формула для вычисления периода полураспада: t1/2 = t * ln(2)/ln(N0/Nt)
    • В этой формуле: t — прошедшее время, N0 — начальное количество вещества и Nt — количество вещества через прошедшее время.
    • Например, если вначале количество составляет 1500 граммов, а конечный объем составляет 1000 граммов, начальное количество, деленное на конечный объем, равно 1,5. Предположим, что время, которое прошло, составляет 100 минут, то есть (t) = 100 мин.
  2. Изображение с названием Calculate Half Life Step 2

    2

    Вычислите десятичный логарифм числа (log), полученного на предыдущем шаге. Для этого введите полученное число в научный калькулятор, а затем нажмите кнопку log, либо введите log(1,5) и нажмите знак равенства для получения результата.

    • Логарифмом числа по заданному основанию называется такой показатель степени, в который необходимо возвести основание (то есть столько раз, сколько необходимо основание умножить на само себя), чтобы получить это число. В десятичных логарифмах используется основание 10. Кнопка log на калькуляторе соответствует десятичному логарифму. Некоторые калькуляторы вычисляют натуральные логарифмы ln.
    • Когда log (1,5) = 0,176, то это означает, что десятичный логарифм 1,5 равен 0,176. То есть если число 10 возвести в степень 0,176, то получится 1,5.
  3. Изображение с названием Calculate Half Life Step 3

    3

    Умножьте прошедшее время на десятичный логарифм 2. Если вы рассчитаете log(2) на калькуляторе, то получится 0,30103. Следует помнить, что прошедшее время составляет 100 минут.

    • Например, если прошедшее время составляет 100 минут, умножьте 100 на 0,30103. Результат равен 30,103.
  4. Изображение с названием Calculate Half Life Step 4

    4

    Разделите число, полученное на третьем шаге, на число, вычисленное на втором шаге.

    • Например, если 30,103 разделить на 0,176, то получится 171,04. Таким образом, мы получили период полураспада вещества, выраженный в единицах времени, используемых в третьем шаге.
  5. Изображение с названием Calculate Half Life Step 5

    5

    Готово. Теперь, когда вы рассчитали период полураспада для этой задачи, необходимо обратить внимание на то, что для расчетов мы использовали десятичный логарифм, но вы могли использовать и натуральный логарифм ln — результат был бы таким же. И, на самом деле, при расчете периода полураспада натуральный логарифм используется чаще.

    • То есть, вам было бы необходимо рассчитать натуральные логарифмы: ln(1,5) (результат 0,405) и ln(2) (результат 0,693). Затем, если вы умножите ln(2) на 100 (время), получится 0,693 x 100=69,3, и разделите на 0,405, вы получите результат 171,04 — тот же, что и при использовании десятичного логарифма.

    Реклама

  1. Изображение с названием 1425718 6

    1

    Узнайте, сколько вещества с известным периодом полураспада осталось через определенное количество времени. Решите следующую задачу: Пациенту было дано 20 мг йода-131. Сколько останется через 32 дня? Период полураспада йода-131 составляет 8 дней. Вот, как решить эту задачу:

    • Узнаем, сколько раз вещество сократилось вдвое за 32 дня. Для этого узнаем, сколько раз по 8 (таков период полураспада йода) умещается в 32 (в количестве дней). Для этого необходимо 32/8 = 4, так, количество вещества сокращалось вдвое четыре раза.
    • Другими словами, это означает, что через 8 дней останется 20мг/2, то есть 10 мг вещества. Через 16 дней будет 10мг/2, или 5мг вещества. Через 24 дня останется 5мг/2, то есть 2,5 мг вещества. Наконец, через 32 дня у пациента будет 2,5мг/2, или 1,25 мг вещества.
  2. Изображение с названием 1425718 7

    2

    Узнайте период полураспада вещества, если известно начальное и оставшееся количество вещества, а также прошедшее время. Решите следующую задачу: Лаборатория получила 200 г технеция-99m и через сутки осталось только 12,5 г изотопов. Каков период полураспада технеция-99m? Вот, как решить эту задачу:

    • Будем действовать в обратном порядке. Если осталось 12,5г вещества, тогда прежде, чем его количество сократилось в 2 раза, вещества было 25 г (так как 12,5 x 2); до этого было 50г вещества, а еще до этого было 100г, и, наконец, до этого было 200г.
    • Это означает, что прошло 4 периода полураспада прежде, чем от 200 г вещества осталось 12,5 г. Получается, что период полураспада составляет 24 часа/4 раза, или 6 часов.
  3. Изображение с названием 1425718 8

    3

    Узнайте, сколько периодов полураспада необходимо для того, чтобы количество вещества сократилось до определенного значения. Решите следующую задачу: Период полураспада урана-232 составляет 70 лет. Сколько периодов полураспада пройдет, чтобы 20 г вещества сократилось до 1,25 г? Вот, как решить эту задачу:

    • Начните с 20г и постепенно уменьшайте. 20г/2 = 10г (1 период полураспада), 10г/2 = 5 (2 периода полураспада), 5г/2 = 2,5 (3 периода полураспада) и 2,5/2 = 1,25 (4 периода полураспада). Ответ: необходимо 4 периода полураспада.

    Реклама

Предупреждения

  • Период полураспада — это приблизительное определение времени, необходимого для распада половины оставшегося вещества, а не точный расчет. Например, если остался только один атом вещества, то после полураспада не останется только половина атома, а останется один или ноль атомов. Чем больше количество вещества, тем более точным будет расчет по закону больших чисел

Реклама

Что вам понадобится

  • Инженерный калькулятор

Об этой статье

Эту страницу просматривали 55 661 раз.

Была ли эта статья полезной?

Период — полураспад — уран

Cтраница 2

По скорости радиоактивного распада различные элементы в большой степени различаются между себой. Так, период полураспада урана определяется величиной порядка 4 500 000 000 лет, у радия — 1 580 лет, у радона — 3 85 суток, а у RaC — только 0 000001 сек. Конечные же продукты радиоактивных превращений устойчивы.
 [17]

Оба они излучают р-лучи, нб период полураспада урана z равен 6 7 часа, а период полураспада урана х2 равен 1 14 минуты.
 [18]

Приведенное соотношение позволяет делать некоторые важные расчеты. Пусть, например, требуется определить период полураспада урана.
 [19]

Именно таким образом по периоду полураспада радия был определен период полураспада урана, который невозможно измерить непосредственно из-за слишком медленного распада.
 [20]

Оба они излучают р-лучи, нб период полураспада урана z равен 6 7 часа, а период полураспада урана х2 равен 1 14 минуты.
 [21]

Ядерное деление природного урана было открыто в камере Вильсона, в которой было заключено большое количество пластин, покрытых окислом урана с целью обеспечить более легкую наблюдаемость ядерных превращений. Ядерное деление регистрируется в виде следов по обе стороны от пластинки, исходящих из одной и той же точки ее и направленных в прямо противоположные стороны. Период полураспада урана по схеме ядерного деления Флеров и Петржак определили в 100 — 200 млрд. лет.
 [22]

Ядерное деление природного урана было открыто в камере Вильсона, в которой было заключено большое количество пластин, покрытых окислом урана. Ядерное деление регистрируется в виде следов по обе стороны от пластинки, исходящих из одной и той же точки ее и направленных в прямо противоположные стороны. Период полураспада урана по схеме ядерного деления Флеров и Пет-ржак определили в 100 — 200 млрд. лет.
 [23]

Чем меньше период полураспада, тем меньше времени живут атомы, тем быстрее происходит распад. Для разных веществ период полураспада имеет сильно различающиеся значения. Так, период полураспада урана 2iiU равен 4 5 млрд. лет. Период полураспада радия значительно меньше — он равен 1600 лет. Поэтому активность радия значительно больше активности урана. Есть радиоактивные элементы с периодом полураспада в миллионные доли секунды.
 [24]

Квантовая механика дает возможность подсчитать вероятность самопроизвольного вылета из ядра урана большого обломка. Пусть эта вероятность очень мала, но не равна нулю. Флеров показали, что самопроизвольное де — Пление ядра урана происходит на самом деле. Период полураспада изотопа t / 2 3 8 з 10 миллионов раз больше обычного периода полураспада урана с выбрасыванием а-частиц, который равен — 1йллиарду лет. С этим связан тот факт, что уран 335 встречается в природе в небольших количествах.
 [25]

В 1940 г. ленинградские физики Флеров я Самопроизвольный П е т р ж а к обнаружили, что ядра урана обла-распад урана, дают способностью самопроизвольно делиться на несколько ядер меньшего атомного веса с выделением нейтронов. Это явление отлично от радиоактивного распада. Перфильев, исследуя продукты такого распада урана, нашел, что уран в этом случае распадается таким же образом, как и под действием нейтронов. В этом случае период полураспада равен 1 3 — 101 лет, тогда как период полураспада урана при радиоактивном распаде равен 4 4 — 109 лет.
 [26]

Радиоактивный распад отличен от обычных химических процессов. На него не влияют ни высокие температуры, ни сильные давления, ни катализаторы. Скорость радиоактивного распада у каждого радиоактивного элемента всегда одинакова. Время, в течение которого распадается половина первоначального количества радиоактивного элемента, называют периодом полураспада. Так, например, период полураспада радия равен 1580 годам; у радона он равен 3 85 суткам, а у радия А — 3 05 минутам. Изучение радиоактивности элементов привело к выводу, что сам радий является промежуточным продуктом распада урана. Период полураспада урана равен 4 5 миллиардам лет.
 [27]

Страницы:  

   1

   2

Изучая явление радиоактивности, каждый ученый обращается к такой важнейшей его характеристике как период полураспада. Как известно, закон радиоактивного распада гласит, что каждую секунду в мире происходит распад атомов, при этом количественная характеристика этих процессов напрямую связана с количеством имеющихся атомов. Если за определенный период времени произойдет распад половины от всего имеющегося в наличии количества атомов, то распад ½ от оставшихся атомов потребует такого же количества времени. Именно этот временной промежуток и называется периодом полураспада. У разных элементов он различен – от тысячных долей миллисекунды до миллиардов лет, как, например, в случае, когда речь идет про период полураспада урана.

Уран, как самый тяжелый из всех существующих в естественном состоянии элементов на Земле, является вообще самым прекрасным объектом для изучения процесса радиоактивности. Этот элемент был открыт еще в 1789 году немецким ученым М. Клапротом, который дал ему название в честь недавно открытой планеты Уран. То, что уран радиоактивен, было совершенно случайно установлено в конце XIX века французским химиком А. Беккерелем.

Период полураспада урана рассчитывается по той же формуле, что и аналогичные периоды других радиоактивных элементов:

T_{1/2} = au ln 2 = frac{ln 2}{lambda},

где «au» — среднее время существования атома, «lambda» — основная постоянная распада. Так как ln 2 равен примерно 0,7, то период полураспада лишь на 30% короче в среднем, чем общее время жизни атома.

В статье рассказывается о том, зачем обогащать уран, что это такое, где добывается, его применение…

Несмотря на то, что на сегодняшний день ученым известно 14 изотопов урана, в природе их встречаются только три: уран-234, уран-235 и уран-238. Период полураспада урана различен: так для U-234 он составляет «всего» 270 тысяч лет, а период полураспада урана-238 превышает 4,5 миллиарда. Период полураспада урана-235 находится в «золотой середине» — 710 миллионов лет.

Стоит отметить, что радиоактивность урана в естественных условиях достаточно высока и позволяет, к примеру, засветить фотопластинки в течение всего лишь часа. В то же время стоит отметить, что в из всех изотопов урана только U-235 пригоден для изготовления начинки для ядерной бомбы. Все дело в том, что период полураспада урана-235 в промышленных условиях менее интенсивен, чем его «собратьев», поэтому и выход ненужных нейтронов здесь минимален.

Период полураспада урана-238 значительно превышает 4 миллиарда лет, однако и он сейчас активно используется в атомной промышленности. Так, как для того, чтобы запустить цепную реакцию по делению тяжелых ядер этого элемента, необходимо значительное количество энергии нейтронов. Уран-238 используют в качестве защиты в аппаратах деления и синтеза. Однако большая часть добытого урана-238 используется для синтеза плутония, применяемого в ядерном оружии.

Длительность периода полураспада урана ученые используют для того, чтобы рассчитать возраст отдельных минералов и небесных тел в целом. Урановые часы представляют собой достаточно универсальный механизм для подобного рода расчетов. В то же время, чтобы возраст был рассчитан более или менее точно, необходимо знать не только количество урана в тех или иных породах, но и соотношение урана и свинца как конечного продукта, в который превращаются ядра урана.

Есть еще один способ расчета пород и минералов, он связан с так называемым спонтанным делением ядер урана. Как известно, в результате спонтанного деления урана в естественных условиях его частицы с колоссальной силой бомбардируют рядом находящиеся вещества, оставляя за собой особые следы – треки.

Именно по количеству этих треков, зная при этом период полураспада урана, ученые и делают вывод о возрасте того или иного твердого тела – будь то древняя порода или относительно «молодая» ваза. Все дело в том, что возраст объекта прямо пропорционален количественному показателю атомов урана, ядра которого бомбардировали его.

Масса урана и его атомный вес дают число молей в этом количестве урана (1 моль — это численно столько же грамм, сколько а. е. у изотопа, т. е. 238). Число молей и число Авогадро — надеюсь, не надо подсказывать, чему оно равно, — дают полное число атомов в этом куске урана.

А дальше просто: закон радиоактивного распада имеет вид N(t) = Nо*exp(-λt), где λ — постоянная распада. Если это продифференцировать и подставить t=0, то можно сосчитать постоянную распада λ: она равна отношению интенсивности к общему числу атомов.

А период полураспада с постоянной распада связан простым соотношением Тп = ln2/λ.


Download Article


Download Article

  • Understanding Half-Life
  • |

  • Learning the Half-Life Equation
  • |

  • Calculating from a Graph
  • |

  • Using a Calculator
  • |

  • Example Problems
  • |

  • Video
  • |

  • Expert Q&A
  • |

  • Tips

The half-life of a substance undergoing decay is the time it takes for the amount of the substance to decrease by half. It was originally used to describe the decay of radioactive elements like uranium or plutonium, but it can be used for any substance which undergoes decay along a set, or exponential, rate. You can calculate the half-life of any substance, given the rate of decay, which is the initial quantity of the substance and the quantity remaining after a measured period of time.[1]

  1. Image titled Calculate Half Life Step 1

    1

    What is half-life? The term “half-life” refers to the amount of time that half of the starting substance takes to decay or change. It’s most often used in radioactive decay to figure out when a substance is no longer harmful to humans.[2]

    • Elements like uranium and plutonium are most often studied with half-life in mind.
  2. Image titled Calculate Half Life Step 2

    2

    Does temperature or concentration affect the half-life? The short answer is no. While chemical changes are sometimes affected by their environment or concentration, each radioactive isotope has its own unique half-life that isn’t affected by these changes.[3]

    • Therefore, you can calculate the half-life for a particular element and know for certain how quickly it will break down no matter what.

    Advertisement

  3. Image titled Calculate Half Life Step 3

    3

    Can half-life be used in carbon dating? Yes! Carbon dating, or figuring out how old something is based on how much carbon it has, is a very practical way to use half-life. Every living thing intakes carbon while it’s alive, so when it dies, it has a certain amount of carbon in its body. The longer it decays, the less carbon is present, which can be used to date the organism based on carbon’s half-life.[4]

    • Technically, there are 2 types of carbon: carbon-14, which decays, and carbon-12, which stays constant.
  4. Advertisement

  1. Image titled Calculate Half Life Step 4

    1

    Understand exponential decay. Exponential decay occurs in a general exponential function f(x)=a^{{x}}, where |a|<1.[5]

  2. Image titled Calculate Half Life Step 5

    2

    Rewrite the function in terms of half-life. Of course, our function does not depend on generic variable x, but time t.[6]

  3. Image titled Calculate Half Life Step 6

    3

  4. Image titled Calculate Half Life Step 7

    4

    Solve for the half-life. In principle, the above formula describes all the variables we need. But suppose we encountered an unknown radioactive substance. It is easy to directly measure the mass before and after an elapsed time, but not its half-life. So, let’s express half-life in terms of the other measured (known) variables. Nothing new is being expressed by doing this; rather, it is a matter of convenience. Below, we walk through the process one step at a time.[8]

  5. Advertisement

  1. Image titled Calculate Half Life Step 8

    1

    Read the original count rate at 0 days. Take a look at your graph and find the starting point, or the 0 day mark, on the x-axis. The 0 day mark is right before the material starts decaying, so it’s at its original point.[9]

    • On half-life graphs, the x-axis will usually show the timeline, while the y-axis usually shows the rate of decay.
  2. Image titled Calculate Half Life Step 9

    2

    Go down half the original count rate and mark it on the graph. Starting from the top of the curve, note the count rate on the y-axis. Then, divide that number by 2 to get the number at the halfway point. Mark that point on the graph with a horizontal line.[10]

    • For example, if the starting point is 1,640, divide 1,640 / 2 to get 820.
    • If you are working with a semi log  plot, meaning the count rate is not evenly spaced, you’ll have to take the logarithm of any number from the vertical axis.[11]
  3. Image titled Calculate Half Life Step 10

    3

    Draw a vertical line down from the curve. Starting from the halfway point that you just marked on the graph, draw a second line going downward until it touches the x-axis. Hopefully, the line will touch an easy-to-read number that you can identify.[12]

  4. Image titled Calculate Half Life Step 11

    4

    Read the half-life where the line crosses the time axis. Take a look at the point that your line touched and read where on the timeline it hits. Once you identify the point on your timeline, you’ve found your half-life.[13]

  5. Advertisement

  1. Image titled Calculate Half Life Step 12

    1

    Determine 3 of the 4 relevant values. If you’re solving for half-life, you’ll need to know the initial quantity, the quantity that remains, and the time that has passed. Then, you can use any half-life calculator online to determine the half-life.[14]

    • If you know the half-life but you don’t know the initial quantity, you can input the half-life, the quantity that remains, and the time that has passed. As long as you know 3 of the 4 values, you’ll be able to use a half-life calculator.
  2. Image titled Calculate Half Life Step 13

    2

    Calculate the decay constant with a half-life calculator. If you want to calculate how old an organism is, you can input the half-life and the mean lifetime to get the decay constant. This is a great tool to use for carbon dating or figuring out the lifespan of an organism.[15]

    • If you don’t know the half-life but you do know the decay constant and the mean lifetime, you can input those instead. Just like the initial equation, you only need to know 2 of the 3 values to get the third one.
  3. Image titled Calculate Half Life Step 14

    3

    Plot your half-life equation on a graphing calculator. If you know your half-life equation and you want to graph it, open up your Y-plots and input the equation into Y-1. Then, hit “graph” to open up your graph and adjust the window until you can see the whole curve. Finally, move your cursor above and below the midpoint of the graph to get your half-life.[16]

    • This is a helpful visual, and it can be useful if you don’t want to do all of the equation work.
  4. Advertisement

  1. Image titled Calculate Half Life Step 15

    1

    Problem 1. 300 g of an unknown radioactive substance decays to 112 g after 180 seconds. What is the half-life of this substance?

  2. Image titled Calculate Half Life Step 16

    2

    Problem 2. A nuclear reactor produces 20 kg of uranium-232. If the half-life of uranium-232 is about 70 years, how long will it take to decay to 0.1 kg?

  3. Image titled Calculate Half Life Step 17

    3

    Problem 3. Os-182 has a half-life of 21.5 hours. How many grams of a 10.0 gram sample would have decayed after exactly 3 half-lives?[17]

  4. Image titled Calculate Half Life Step 18

    4

    Problem 4. A radioactive isotope decayed to 17/32 of its original mass after 60 minutes. Find the half-life of this radioisotope.[18]

  5. Advertisement

Add New Question

  • Question

    If a sample contains 100 g of a radioactive isotope that has a half-life of 2 days, how much of the isotope remains after 6 days?

    Meredith Juncker, PhD

    Meredith Juncker is a PhD candidate in Biochemistry and Molecular Biology at Louisiana State University Health Sciences Center. Her studies are focused on proteins and neurodegenerative diseases.

    Meredith Juncker, PhD

    Scientific Researcher

    Expert Answer

    Support wikiHow by
    unlocking this expert answer.

    One quick way to do this would be to figure out how many half-lives we have in the time given.

    6 days/2 days = 3 half lives

    100/2 = 50 (1 half life)
    50/2 = 25 (2 half lives)
    25/2 = 12.5 (3 half lives)

    So 12.5g of the isotope would remain after 6 days.

  • Question

    If the half-life of a material is 6 hours, how much material remains in 36 hours?

    Meredith Juncker, PhD

    Meredith Juncker is a PhD candidate in Biochemistry and Molecular Biology at Louisiana State University Health Sciences Center. Her studies are focused on proteins and neurodegenerative diseases.

    Meredith Juncker, PhD

    Scientific Researcher

    Expert Answer

  • Question

    What is the half-life of an isotope that decays to 25% of its original activity in 26.7 hours?

    Community Answer

    Since the whole is 100%, the first half-life would drop to 50% and then to 25%. Because it takes the isotope 26.7 hours to reach 25%, and there are only 2 halves from 100 to 25%, divide 26.7/2, and you’ll get 13.35 hours as the half life.

See more answers

Ask a Question

200 characters left

Include your email address to get a message when this question is answered.

Submit

Advertisement

Video

References

About This Article

Article SummaryX

To find the half life of a substance, or the time it takes for a substance to decrease by half, you’ll be using a variation of the exponential decay formula. Plug in ½ for a, use the time for x, and multiply the left side by the initial quantity of the substance. Rearrange the equation so that you’re solving for what the problem asks for, whether that’s half life, mass, or another value. Plug in the values you have and solve, writing the answer in seconds, days, or years. To see the half life equation and look at examples, read on!

Did this summary help you?

Thanks to all authors for creating a page that has been read 1,122,320 times.

Reader Success Stories

  • Georgy Komissarov

    Georgy Komissarov

    Mar 14, 2018

    «I am an IB student and am in the process of completing my Math IA. I needed an example of application of number e.…» more

Did this article help you?

Понравилась статья? Поделить с друзьями:
  • Очень крутая лестница на второй этаж как исправить
  • Как найти списочный состав работников
  • Как составить специальную доверенность от имени предприятия
  • Как найти оплату труда с отчислениями
  • Как найти оптового поставщика для wildberries