Как найти период полураспада в часах


Загрузить PDF


Загрузить PDF

Периодом полураспада вещества, которое находится в стадии распада, называют время, в течение которого количество этого вещества уменьшится в два раза. Первоначально этот термин использовался для описания распада радиоактивных элементов, таких как уран или плутоний, но, вообще говоря, он может быть использован для любого вещества, которое подвергается распаду в установленной или экспоненциальной скорости. Вы можете рассчитать период полураспада любого вещества, зная скорость распада, которая является разницей между начальным количеством вещества и количеством вещества, оставшимся после определенного периода времени. Читайте далее, чтобы узнать, как быстро и легко подсчитать период полураспада вещества.

  1. Изображение с названием Calculate Half Life Step 1

    1

    Разделите количество вещества в одной точке во времени на количество вещества, оставшееся после определенного периода времени.

    • Формула для вычисления периода полураспада: t1/2 = t * ln(2)/ln(N0/Nt)
    • В этой формуле: t — прошедшее время, N0 — начальное количество вещества и Nt — количество вещества через прошедшее время.
    • Например, если вначале количество составляет 1500 граммов, а конечный объем составляет 1000 граммов, начальное количество, деленное на конечный объем, равно 1,5. Предположим, что время, которое прошло, составляет 100 минут, то есть (t) = 100 мин.
  2. Изображение с названием Calculate Half Life Step 2

    2

    Вычислите десятичный логарифм числа (log), полученного на предыдущем шаге. Для этого введите полученное число в научный калькулятор, а затем нажмите кнопку log, либо введите log(1,5) и нажмите знак равенства для получения результата.

    • Логарифмом числа по заданному основанию называется такой показатель степени, в который необходимо возвести основание (то есть столько раз, сколько необходимо основание умножить на само себя), чтобы получить это число. В десятичных логарифмах используется основание 10. Кнопка log на калькуляторе соответствует десятичному логарифму. Некоторые калькуляторы вычисляют натуральные логарифмы ln.
    • Когда log (1,5) = 0,176, то это означает, что десятичный логарифм 1,5 равен 0,176. То есть если число 10 возвести в степень 0,176, то получится 1,5.
  3. Изображение с названием Calculate Half Life Step 3

    3

    Умножьте прошедшее время на десятичный логарифм 2. Если вы рассчитаете log(2) на калькуляторе, то получится 0,30103. Следует помнить, что прошедшее время составляет 100 минут.

    • Например, если прошедшее время составляет 100 минут, умножьте 100 на 0,30103. Результат равен 30,103.
  4. Изображение с названием Calculate Half Life Step 4

    4

    Разделите число, полученное на третьем шаге, на число, вычисленное на втором шаге.

    • Например, если 30,103 разделить на 0,176, то получится 171,04. Таким образом, мы получили период полураспада вещества, выраженный в единицах времени, используемых в третьем шаге.
  5. Изображение с названием Calculate Half Life Step 5

    5

    Готово. Теперь, когда вы рассчитали период полураспада для этой задачи, необходимо обратить внимание на то, что для расчетов мы использовали десятичный логарифм, но вы могли использовать и натуральный логарифм ln — результат был бы таким же. И, на самом деле, при расчете периода полураспада натуральный логарифм используется чаще.

    • То есть, вам было бы необходимо рассчитать натуральные логарифмы: ln(1,5) (результат 0,405) и ln(2) (результат 0,693). Затем, если вы умножите ln(2) на 100 (время), получится 0,693 x 100=69,3, и разделите на 0,405, вы получите результат 171,04 — тот же, что и при использовании десятичного логарифма.

    Реклама

  1. Изображение с названием 1425718 6

    1

    Узнайте, сколько вещества с известным периодом полураспада осталось через определенное количество времени. Решите следующую задачу: Пациенту было дано 20 мг йода-131. Сколько останется через 32 дня? Период полураспада йода-131 составляет 8 дней. Вот, как решить эту задачу:

    • Узнаем, сколько раз вещество сократилось вдвое за 32 дня. Для этого узнаем, сколько раз по 8 (таков период полураспада йода) умещается в 32 (в количестве дней). Для этого необходимо 32/8 = 4, так, количество вещества сокращалось вдвое четыре раза.
    • Другими словами, это означает, что через 8 дней останется 20мг/2, то есть 10 мг вещества. Через 16 дней будет 10мг/2, или 5мг вещества. Через 24 дня останется 5мг/2, то есть 2,5 мг вещества. Наконец, через 32 дня у пациента будет 2,5мг/2, или 1,25 мг вещества.
  2. Изображение с названием 1425718 7

    2

    Узнайте период полураспада вещества, если известно начальное и оставшееся количество вещества, а также прошедшее время. Решите следующую задачу: Лаборатория получила 200 г технеция-99m и через сутки осталось только 12,5 г изотопов. Каков период полураспада технеция-99m? Вот, как решить эту задачу:

    • Будем действовать в обратном порядке. Если осталось 12,5г вещества, тогда прежде, чем его количество сократилось в 2 раза, вещества было 25 г (так как 12,5 x 2); до этого было 50г вещества, а еще до этого было 100г, и, наконец, до этого было 200г.
    • Это означает, что прошло 4 периода полураспада прежде, чем от 200 г вещества осталось 12,5 г. Получается, что период полураспада составляет 24 часа/4 раза, или 6 часов.
  3. Изображение с названием 1425718 8

    3

    Узнайте, сколько периодов полураспада необходимо для того, чтобы количество вещества сократилось до определенного значения. Решите следующую задачу: Период полураспада урана-232 составляет 70 лет. Сколько периодов полураспада пройдет, чтобы 20 г вещества сократилось до 1,25 г? Вот, как решить эту задачу:

    • Начните с 20г и постепенно уменьшайте. 20г/2 = 10г (1 период полураспада), 10г/2 = 5 (2 периода полураспада), 5г/2 = 2,5 (3 периода полураспада) и 2,5/2 = 1,25 (4 периода полураспада). Ответ: необходимо 4 периода полураспада.

    Реклама

Предупреждения

  • Период полураспада — это приблизительное определение времени, необходимого для распада половины оставшегося вещества, а не точный расчет. Например, если остался только один атом вещества, то после полураспада не останется только половина атома, а останется один или ноль атомов. Чем больше количество вещества, тем более точным будет расчет по закону больших чисел

Реклама

Что вам понадобится

  • Инженерный калькулятор

Об этой статье

Эту страницу просматривали 55 661 раз.

Была ли эта статья полезной?


Download Article


Download Article

  • Understanding Half-Life
  • |

  • Learning the Half-Life Equation
  • |

  • Calculating from a Graph
  • |

  • Using a Calculator
  • |

  • Example Problems
  • |

  • Calculator, Practice Problems, and Answers
  • |

  • Video
  • |

  • Expert Q&A
  • |

  • Tips

The half-life of a substance undergoing decay is the time it takes for the amount of the substance to decrease by half. It was originally used to describe the decay of radioactive elements like uranium or plutonium, but it can be used for any substance which undergoes decay along a set, or exponential, rate. You can calculate the half-life of any substance, given the rate of decay, which is the initial quantity of the substance and the quantity remaining after a measured period of time.[1]

  1. Image titled Calculate Half Life Step 1

    1

    What is half-life? The term “half-life” refers to the amount of time that half of the starting substance takes to decay or change. It’s most often used in radioactive decay to figure out when a substance is no longer harmful to humans.[2]

    • Elements like uranium and plutonium are most often studied with half-life in mind.
  2. Image titled Calculate Half Life Step 2

    2

    Does temperature or concentration affect the half-life? The short answer is no. While chemical changes are sometimes affected by their environment or concentration, each radioactive isotope has its own unique half-life that isn’t affected by these changes.[3]

    • Therefore, you can calculate the half-life for a particular element and know for certain how quickly it will break down no matter what.

    Advertisement

  3. Image titled Calculate Half Life Step 3

    3

    Can half-life be used in carbon dating? Yes! Carbon dating, or figuring out how old something is based on how much carbon it has, is a very practical way to use half-life. Every living thing intakes carbon while it’s alive, so when it dies, it has a certain amount of carbon in its body. The longer it decays, the less carbon is present, which can be used to date the organism based on carbon’s half-life.[4]

    • Technically, there are 2 types of carbon: carbon-14, which decays, and carbon-12, which stays constant.
  4. Advertisement

  1. Image titled Calculate Half Life Step 4

    1

    Understand exponential decay. Exponential decay occurs in a general exponential function f(x)=a^{{x}}, where |a|<1.[5]

  2. Image titled Calculate Half Life Step 5

    2

    Rewrite the function in terms of half-life. Of course, our function does not depend on generic variable x, but time t.[6]

  3. Image titled Calculate Half Life Step 6

    3

  4. Image titled Calculate Half Life Step 7

    4

    Solve for the half-life. In principle, the above formula describes all the variables we need. But suppose we encountered an unknown radioactive substance. It is easy to directly measure the mass before and after an elapsed time, but not its half-life. So, let’s express half-life in terms of the other measured (known) variables. Nothing new is being expressed by doing this; rather, it is a matter of convenience. Below, we walk through the process one step at a time.[8]

  5. Advertisement

  1. Image titled Calculate Half Life Step 8

    1

    Read the original count rate at 0 days. Take a look at your graph and find the starting point, or the 0 day mark, on the x-axis. The 0 day mark is right before the material starts decaying, so it’s at its original point.[9]

    • On half-life graphs, the x-axis will usually show the timeline, while the y-axis usually shows the rate of decay.
  2. Image titled Calculate Half Life Step 9

    2

    Go down half the original count rate and mark it on the graph. Starting from the top of the curve, note the count rate on the y-axis. Then, divide that number by 2 to get the number at the halfway point. Mark that point on the graph with a horizontal line.[10]

    • For example, if the starting point is 1,640, divide 1,640 / 2 to get 820.
    • If you are working with a semi log  plot, meaning the count rate is not evenly spaced, you’ll have to take the logarithm of any number from the vertical axis.[11]
  3. Image titled Calculate Half Life Step 10

    3

    Draw a vertical line down from the curve. Starting from the halfway point that you just marked on the graph, draw a second line going downward until it touches the x-axis. Hopefully, the line will touch an easy-to-read number that you can identify.[12]

  4. Image titled Calculate Half Life Step 11

    4

    Read the half-life where the line crosses the time axis. Take a look at the point that your line touched and read where on the timeline it hits. Once you identify the point on your timeline, you’ve found your half-life.[13]

  5. Advertisement

  1. Image titled Calculate Half Life Step 12

    1

    Determine 3 of the 4 relevant values. If you’re solving for half-life, you’ll need to know the initial quantity, the quantity that remains, and the time that has passed. Then, you can use any half-life calculator online to determine the half-life.[14]

    • If you know the half-life but you don’t know the initial quantity, you can input the half-life, the quantity that remains, and the time that has passed. As long as you know 3 of the 4 values, you’ll be able to use a half-life calculator.
  2. Image titled Calculate Half Life Step 13

    2

    Calculate the decay constant with a half-life calculator. If you want to calculate how old an organism is, you can input the half-life and the mean lifetime to get the decay constant. This is a great tool to use for carbon dating or figuring out the lifespan of an organism.[15]

    • If you don’t know the half-life but you do know the decay constant and the mean lifetime, you can input those instead. Just like the initial equation, you only need to know 2 of the 3 values to get the third one.
  3. Image titled Calculate Half Life Step 14

    3

    Plot your half-life equation on a graphing calculator. If you know your half-life equation and you want to graph it, open up your Y-plots and input the equation into Y-1. Then, hit “graph” to open up your graph and adjust the window until you can see the whole curve. Finally, move your cursor above and below the midpoint of the graph to get your half-life.[16]

    • This is a helpful visual, and it can be useful if you don’t want to do all of the equation work.
  4. Advertisement

  1. Image titled Calculate Half Life Step 15

    1

    Problem 1. 300 g of an unknown radioactive substance decays to 112 g after 180 seconds. What is the half-life of this substance?

  2. Image titled Calculate Half Life Step 16

    2

    Problem 2. A nuclear reactor produces 20 kg of uranium-232. If the half-life of uranium-232 is about 70 years, how long will it take to decay to 0.1 kg?

  3. Image titled Calculate Half Life Step 17

    3

    Problem 3. Os-182 has a half-life of 21.5 hours. How many grams of a 10.0 gram sample would have decayed after exactly 3 half-lives?[17]

  4. Image titled Calculate Half Life Step 18

    4

    Problem 4. A radioactive isotope decayed to 17/32 of its original mass after 60 minutes. Find the half-life of this radioisotope.[18]

  5. Advertisement

Calculator, Practice Problems, and Answers

Add New Question

  • Question

    If a sample contains 100 g of a radioactive isotope that has a half-life of 2 days, how much of the isotope remains after 6 days?

    Meredith Juncker, PhD

    Meredith Juncker is a PhD candidate in Biochemistry and Molecular Biology at Louisiana State University Health Sciences Center. Her studies are focused on proteins and neurodegenerative diseases.

    Meredith Juncker, PhD

    Scientific Researcher

    Expert Answer

    Support wikiHow by
    unlocking this expert answer.

    One quick way to do this would be to figure out how many half-lives we have in the time given.

    6 days/2 days = 3 half lives

    100/2 = 50 (1 half life)
    50/2 = 25 (2 half lives)
    25/2 = 12.5 (3 half lives)

    So 12.5g of the isotope would remain after 6 days.

  • Question

    If the half-life of a material is 6 hours, how much material remains in 36 hours?

    Meredith Juncker, PhD

    Meredith Juncker is a PhD candidate in Biochemistry and Molecular Biology at Louisiana State University Health Sciences Center. Her studies are focused on proteins and neurodegenerative diseases.

    Meredith Juncker, PhD

    Scientific Researcher

    Expert Answer

  • Question

    What is the half-life of an isotope that decays to 25% of its original activity in 26.7 hours?

    Community Answer

    Since the whole is 100%, the first half-life would drop to 50% and then to 25%. Because it takes the isotope 26.7 hours to reach 25%, and there are only 2 halves from 100 to 25%, divide 26.7/2, and you’ll get 13.35 hours as the half life.

See more answers

Ask a Question

200 characters left

Include your email address to get a message when this question is answered.

Submit

Advertisement

Video

References

About This Article

Article SummaryX

To find the half life of a substance, or the time it takes for a substance to decrease by half, you’ll be using a variation of the exponential decay formula. Plug in ½ for a, use the time for x, and multiply the left side by the initial quantity of the substance. Rearrange the equation so that you’re solving for what the problem asks for, whether that’s half life, mass, or another value. Plug in the values you have and solve, writing the answer in seconds, days, or years. To see the half life equation and look at examples, read on!

Did this summary help you?

Thanks to all authors for creating a page that has been read 1,122,672 times.

Reader Success Stories

  • Georgy Komissarov

    Georgy Komissarov

    Mar 14, 2018

    «I am an IB student and am in the process of completing my Math IA. I needed an example of application of number e.…» more

Did this article help you?

История изучения радиоактивности началась 1 марта 1896 года, когда известный французский ученый Анри Беккерель случайно обнаружил странность в излучении солей урана. Оказалось, что фотопластинки, расположенные в одном ящике с образцом, засвечены. К этому привело странное, обладающее высокой проникающей способностью излучение, которым обладал уран. Это свойство обнаружилось у самых тяжелых элементов, завершающих периодическую таблицу. Ему дали название «радиоактивность».

Вводим характеристики радиоактивности

Данный процесс – самопроизвольное превращение атома изотопа элемента в иной изотоп с одновременным выделением элементарных частиц (электронов, ядер атомов гелия). Превращение атомов оказалось самопроизвольным, не требующим поглощения энергии извне. Основной величиной, характеризующей процесс выделения энергии в ходе радиоактивного распада, называют активность.

период полураспада атома зависит от

Активностью радиоактивного образца называют вероятное количество распадов данного образца за единицу времени. В СИ (Системе интернациональной) единицей измерения ее назван беккерель (Бк). В 1 беккерель принята активность такого образца, в котором в среднем происходит 1 распад в секунду.

А=λN, где λ- постоянная распада, N – число активных атомов в образце.

Выделяют α, β, γ-распады. Соответствующие уравнения называют правилами смещения:

название

Что происходит

Уравнение реакции

α –распад

превращение атомного ядра Х в ядро Y с выделением ядра атома гелия

ZАХZ-2YА-4+2He4

β — распад

превращение атомного ядра Х в ядро Y с выделением электрона

ZАХZ+1YА+-1eА

γ — распад

не сопровождается изменением ядра, энергия выделяется в виде электромагнитной волны

ZХАZXА

Временной интервал в радиоактивности

Момент развала частицы невозможно установить для данного конкретного атома. Для него это скорее «несчастный случай», нежели закономерность. Выделение энергии, характеризующее этот процесс, определяют как активность образца.

определение периода полураспада

Замечено, что она с течением времени меняется. Хотя отдельные элементы демонстрируют удивительное постоянство степени излучения, существуют вещества, активность которых уменьшается в несколько раз за достаточно короткий промежуток времени. Удивительное разнообразие! Возможно ли найти закономерность в этих процессах?

Установлено, что существует время, в течение которого ровно половина атомов данного образца претерпевает распад. Этот интервал времени получил название «период полураспада». В чем смысл введения этого понятия?

Что такое период полураспада?

Представляется, что за время, равное периоду, ровно половина всех активных атомов данного образца распадается. Но означает ли это, что за время в два периода полураспада все активные атомы полностью распадутся? Совсем нет. Через определенный момент в образце остается половина радиоактивных элементов, через такой же промежуток времени из оставшихся атомов распадается еще половина, и так далее. При этом излучение сохраняется длительное время, значительно превышающее период полураспада. Значит, активные атомы сохраняются в образце независимо от излучения

Период полураспада — это величина, зависящая исключительно от свойств данного вещества. Значение величины определено для многих известных радиоактивных изотопов.

Таблица: «Полупериод распада отдельных изотопов»

Название

Обозначение

Вид распада

Период полураспада

Радий

88Ra219

альфа

0,001 секунд

Магний

12Mg27

бета

10 минут

Радон

86Rn222

альфа

3,8 суток

Кобальт

27Co60

бета, гамма

5,3 года

Радий

88Ra226

альфа, гамма

1620 лет

Уран

92U238

альфа, гамма

4,5 млрд лет

Определение периода полураспада выполнено экспериментально. В ходе лабораторных исследований многократно проводится измерение активности. Поскольку лабораторные образцы минимальных размеров (безопасность исследователя превыше всего), эксперимент проводится с различным интервалом времени, многократно повторяясь. В его основу положена закономерность изменения активности веществ.

С целью определения периода полураспада производится измерение активности данного образца в определенные промежутки времени. С учетом того, что данный параметр связан с количеством распавшихся атомов, используя закон радиоактивного распада, определяют период полураспада.

Пример определения для изотопа

период полураспада плутония

Пусть число активных элементов исследуемого изотопа в данный момент времени равно N, интервал времени, в течение которого ведется наблюдение t2— t1, где моменты начала и окончания наблюдения достаточно близки. Допустим, что n – число атомов, распавшихся в данный временной интервал, тогда n = KN(t2— t1).

В данном выражении K = 0,693/T½ — коэффициент пропорциональности, называющийся константой распада. T½ — период полураспада изотопа.

Примем временной интервал за единицу. При этом K = n/N указывает долю от присутствующих ядер изотопа, распадающихся в единицу времени.

Зная величину константы распада, можно определить и полупериод распада: T½ = 0,693/K.

Отсюда следует, что за единицу времени распадается не определенное количество активных атомов, а определенная их доля.

Закон радиоактивного распада (ЗРР)

Период полураспада положен в основу ЗРР. Закономерность выведена Фредерико Содди и Эрнестом Резерфордом на основе результатов экспериментальных исследований в 1903 году. Удивительно, что многократные измерения, выполненные при помощи приборов, далеких от совершенства, в условиях начала ХХ столетия, привели к точному и обоснованному результату. Он стал основой теории радиоактивности. Выведем математическую запись закона радиоактивного распада.

период полураспада формула

— Пусть N0 – количество активных атомов в данный момент времени. По истечении интервала времени t нераспавшимися останутся N элементов.

— К моменту времени, равному периоду полураспада, останется ровно половина активных элементов: N=N0/2.

— По прошествии еще одного периода полураспада в образце остаются: N=N0/4=N0/22 активных атомов.

— По прошествии времени, равному еще одному периоду полураспада, образец сохранит только: N=N0/8=N0/23.

— К моменту времени, когда пройдет n периодов полураспада, в образце останется N=N0/2n активных частиц. В этом выражении n=t/T½: отношение времени исследования к периоду полураспада.

— ЗРР имеет несколько иное математическое выражение, более удобное в решении задач: N=N02t/ .

Закономерность позволяет определить, помимо периода полураспада, число атомов активного изотопа, нераспавшихся в данный момент времени. Зная число атомов образца в начале наблюдения, через некоторое время можно определить время жизни данного препарата.

Определить период полураспада формула закона радиоактивного распада помогает лишь при наличии определенных параметров: числа активных изотопов в образце, что узнать достаточно сложно.

Следствия закона

Записать формулу ЗРР можно, используя понятия активности и массы атомов препарата.

Активность пропорциональна числу радиоактивных атомов: A=A0•2-t/T. В этой формуле А0 – активность образца в начальный момент времени, А – активность по истечении t секунд, Т – период полураспада.

Масса вещества может быть использована в закономерности: m=m0•2-t/T

В течение любых равных промежутков времени распадается абсолютно одинаковая доля радиоактивных атомов, имеющихся в наличии в данном препарате.

Границы применимости закона

Закон во всех смыслах является статистическим, определяя процессы, протекающие в микромире. Понятно, что период полураспада радиоактивных элементов – величина статистическая. Вероятностный характер событий в атомных ядрах предполагает, что произвольное ядро может развалиться в любой момент. Предсказать событие невозможно, можно лишь определить его вероятность в данный момент времени. Как следствие, период полураспада не имеет смысла:

  • для отдельного атома;
  • для образца минимальной массы.

Время жизни атома

что такое период полураспада

Существование атома в его первоначальном состоянии может длиться секунду, а может и миллионы лет. Говорить о времени жизни данной частицы также не приходится. Введя величину, равную среднему значению времени жизни атомов, можно вести разговор о существовании атомов радиоактивного изотопа, последствиях радиоактивного распада. Период полураспада ядра атома зависит от свойств данного атома и не зависит от других величин.

Можно ли решить проблему: как найти период полураспада, зная среднее время жизни?

Определить период полураспада формула связи среднего времени жизни атома и постоянной распада помогает не меньше.

τ= T1/2/ln2= T1/2/0,693=1/ λ.

В этой записи τ – среднее время жизни, λ – постоянная распада.

Использование периода полураспада

Применение ЗРР для определения возраста отдельных образцов получило широкое распространение в исследованиях конца ХХ века. Точность определения возраста ископаемых артефактов настолько возросла, что может дать представление о времени жизни за тысячелетия до нашей эры.

Радиоуглеродный анализ ископаемых органических образцов основан на изменении активности углерода-14 (радиоактивного изотопа углерода), присутствующего во всех организмах. Он попадает в живой организм в процессе обмена веществ и содержится в нем в определенной концентрации. После смерти обмен веществ с окружающей средой прекращается. Концентрация радиоактивного углерода падает вследствие естественного распада, активность уменьшается пропорционально.

При наличии такого значения, как период полураспада, формула закона радиоактивного распада помогает определить время с момента прекращения жизнедеятельности организма.

Цепочки радиоактивного превращения

период полураспада это

Исследования радиоактивности проводились в лабораторных условиях. Удивительная способность радиоактивных элементов сохранять активность в течение часов, суток и даже лет не могла не вызывать удивления у физиков начала ХХ столетия. Исследования, к примеру, тория, сопровождались неожиданным результатом: в закрытой ампуле активность его была значительной. При малейшем дуновении она падала. Вывод оказался прост: превращение тория сопровождается выделением радона (газ). Все элементы в процессе радиоактивности превращаются в совершенно иное вещество, отличающееся и физическими, и химическими свойствами. Это вещество, в свою очередь, также нестабильно. В настоящее время известно три ряда аналогичных превращений.

Знания о подобных превращениях крайне важны при определении времени недоступности зон, зараженных в процессе атомных и ядерных исследований или катастроф. Период полураспада плутония — в зависимости от его изотопа — лежит в интервале от 86 лет (Pu 238) до 80 млн лет (Pu 244). Концентрация каждого изотопа дает представление о периоде обеззараживания территории.

Самый дорогой металл

Известно, что в наше время есть металлы значительно более дорогие, чем золото, серебро и платина. К ним относится и плутоний. Интересно, что в природе созданный в процессе эволюции плутоний не встречается. Большинство элементов получены в лабораторных условиях. Эксплуатация плутония-239 в ядерных реакторах дала возможность ему стать чрезвычайно популярным в наши дни. Получение достаточного для использования в реакторах количества данного изотопа делает его практически бесценным.

период полураспада изотопа

Плутоний-239 получается в естественных условиях как следствие цепочки превращений урана-239 в нептуний-239 (период полураспада — 56 часов). Аналогичная цепочка позволяет накопить плутоний в ядерных реакторах. Скорость появления необходимого количества превосходит естественную в миллиарды раз.

Применение в энергетике

Можно много говорить о недостатках атомной энергетики и о «странностях» человечества, которое практически любое открытие использует для уничтожения себе подобных. Открытие плутония-239, который способен принимать участие в цепной ядерной реакции, позволило использовать его в качестве источника мирной энергии. Уран-235, являющийся аналогом плутония, встречается на Земле крайне редко, выделить его из урановой руды значительно сложнее, чем получить плутоний.

Возраст Земли

Радиоизотопный анализ изотопов радиоактивных элементов дает более точное представление о времени жизни того или иного образца.

Использование цепочки превращений «уран – торий», содержащихся в земной коре, дает возможность определить возраст нашей планеты. Процентное соотношение этих элементов в среднем по всей земной коре лежит в основе этого метода. По последним данным, возраст Земли составляет 4,6 миллиарда лет.

Сразу после смерти начинается процесс распада нестабильных изотопов. Радиоактивные часы позволяют определить, сколько лет назад умер объект, если он когда-то был живым, или сколько лет объекту, если смерть его не касается.

Чем дольше ученые пытаются узнать возраст Земли, тем старше она становится. В XVII веке Джон Лайтфут предположил, трактуя библию, что Земля была сотворена в 4004 году до н.э. В 1895 году ирландский ученый Джон Перри высказал предположение, что ей несколько миллиардов лет.

В 1905 году Эрнест Резерфорд изобретает метод радиоактивного датирования, и у науки появляется возможность определять время событий в самом далеком прошлом. Метод радиоактивного датирования — это целая группа разных методов, в основе которых — анализ распада нестабильных изотопов.

Атомы одного элемента могут существовать в разных «версиях» — изотопах. Так, помимо обычного стабильного углерода-12 (12 означает, что у него 6 протонов и 6 нейтронов) существует очень важный для радиоактивного датирования углерод-14 (6 протонов, 8 нейтронов).

Нестабильные изотопы называются так потому, что с течением времени они самопроизвольно проходят радиоактивный распад и превращаются в другие изотопы, порой и другого вещества. Хотя нельзя предсказать, когда распадется каждый конкретный атом, можно с большой точностью для каждого изотопа рассчитать, когда распадется половина от начального числа атомов. Эта величина называется периодом полураспада, что на английском звучит как half-life. Об этом знают поклонники доктора Гордона Фримена и хэдкрабов из научно-фантастического шутера Half-Life. Для разных изотопов это время колеблется от долей секунды до миллиардов лет.

Радиоуглеродным анализом три лаборатории в разных странах измерили возраст льна, из которого соткана Туринская плащаница. В Оксфорде получили цифру 1200 лет, в Аризоне — 1304 года, в Цюрихе — 1274 года. Если образец не был загрязнен, можно смело заявлять, что эта вещь совсем не из библейских времен. Да и в исторических источниках она появляется только в середине XIII века.

Допустим, мы пробуем определить возраст магматической породы с помощью калий-аргонного метода. Нам интересно, сколько в образце калия-40 (K-40) и сколько аргона-40 (Ar-40). Когда порода только сформировалась из застывшей лавы, в ней есть только K-40 и совсем нет Ar-40, но со временем K-40 будет распадаться и превращаться в Ar-40. Период полураспада K-40 — 1,26 миллиарда лет, поэтому соотношение K-40 и Ar-40 1:1 означает, что прошел один период полураспада и нашему камню 1,26 миллиарда лет. Если K-40 в породе содержится 12,5%, а Ar-40 — 87,5%, то прошло три периода полураспада, почти весь калий разложился в аргон и образцу 3,78 миллиарда лет.

Самое важно здесь, что мы знаем изначальную пропорцию: 100% K-40 и 0% Ar-40. А такая пропорция есть только в магматических породах, так как они затвердевают примерно в одно время. Если мы попробуем таким методом измерить возраст песка, ничего не выйдет: каждая песчинка будет показывать разные пропорции, так как они затвердели в разное время.

Калий-аргонный метод широко применяют в геологии — у него очень удобный для этого период полураспада, как раз геологических масштабов. А вот кости и прочие живые останки проверяют как раз по изотопу углерода С-14.

В живом организме живут оба изотопа углерода: C-12 и C-14. Их соотношение — величина постоянная, пока организм не умрет. После смерти углерод-14, до этого поступавший вместе с пищей, перестает поступать и начинает медленно распадаться. Период его полураспада 5730 лет, так что этим методом удобно измерять время до 50000 лет незад, его погрешность около 1%, так что мы можем, найдя на прогулке кости неандертальца, определить дату смерти с точностью до века.

Калькулятор периода полураспада — это инструмент, помогающий понять принципы радиоактивного распада. Вы можете использовать его не только для того, чтобы узнать, как рассчитать период полураспада, но также для начального и конечного количества вещества или его константы распада.

Статья ниже также представит вам определение периода полураспада и наиболее распространенную формулу периода полураспада.

Калькулятор периода полураспада

Omni

Определение периода полураспада

Каждый радиоактивный материал содержит стабильные и нестабильные ядра. Стабильные не изменяются, а нестабильные подвергаются радиоактивному распаду, испуская альфа-частицы, бета-частицы или гамма-лучи. Период полураспада определяется как время, необходимое для того, чтобы половина нестабильных ядер претерпела этот распад.

Каждое вещество имеет различный период полураспада. Например, углерод-10 имеет период полураспада всего 19 секунд, что делает невозможным то, чтобы этот изотоп встречался в природе. Уран-233, с другой стороны, имеет период полураспада до 160 000 лет.

Этот термин также можно использовать в более общем смысле для описания любого вида экспоненциального распада, например, биологического периода полураспада метаболитов.

Формула полураспада

Количество нестабильных ядер, остающихся после времени t, может быть определено согласно этому уравнению:

N (t) = N (0) * 0,5 ^ (т / т)

где:

N (t) — оставшееся количество вещества по истечении времени t;
N (0) — оставшееся количество этого вещества;
Т — это период полураспада.
Также можно определить оставшееся количество вещества, используя другие параметры:

N (t) = N (0) * e ^ (- t / τ)

N (t) = N (0) * e ^ (- λt)

τ — среднее время жизни — среднее количество времени, в течение которого ядро остается неповрежденным;
λ — постоянная распада (скорость распада).
Три параметра, характеризующие радиоактивность вещества, связаны следующим образом:

T = ln (2) / λ = ln (2) * τ

Как рассчитать период полураспада

Определите начальное количество вещества. Например, N (0) = 2,5 кг.

Определите конечное количество вещества — например, N (t) = 2,1 кг.

Решите, сколько времени понадобилось для того, чтобы большая часть материала распалась. Допустим, это заняло 5 минут.

Введите эти значения в наш калькулятор периода полураспада. Вы получите результат — в этом случае период полураспада равен 19,88 минутам.

Вы также можете проверить результат, используя формулу полураспада.

Понравилась статья? Поделить с друзьями:
  • Как найти площадь окружности через вписанный треугольник
  • Как найти кпп банка по инн
  • Как найти точное значение функции в точке
  • Как составить ведомость на молоко
  • Отсутствие пиров в торренте как исправить