Enter the frequency of any wave into the calculator and the calculator will evaluate the wave period. This calculator can also calculate frequency when given wave period.
- Wave Speed Calculator
- Wave Amplitude Calculator
- Wavelength Calculator
- Pendulum Calculator (Frequency & Period)
Wave Period Formula
The following is the wave period formula:
- Where T is the wave period (seconds)
- f is the frequency (Hz)
To calculate a wave period, simply take the inverse of the frequency. If the frequency is in hz, this provides the period in seconds.
The wave period can also be calculated using the wavelength and velocity using the formula:
- Where WL is the wavelength
- V is the wave speed.
Wave Period Definition
A wave period is defined as the total time it takes for a wave to propagate one cycle or one wavelength. A wave period should not be confused with a wavelength or a frequency. A wavelength is the distance of one propagation and a frequency is the inverse of the period.
How to calculate a wave period?
- First, determine the information available to you. You should be provided either the frequency or both the wavelength and the wave speed.
- Next, determine the formula you should use. For this example, we will say that frequency was provided and it is equal to 50hz.
- Finally, calculate the wave period using the formula above. Using the formula we find the wave period to be 1/50z = .020 seconds.
FAQ
Is wave period the same as wavelength?
Wave period and wavelength are related, but not the same. The wave period can be calculated using the wavelength and the wave speed.
How are wave period and frequency related?
Wave periods and frequencies are the inverses of each other. To convert between the two you must divide one by the value.
Is a wave periodic motion?
Waves are typically considered periodic motion when analyzing waves of things like photons and radio waves. Waves of water are not.
What causes a wave period to change?
Looking at the equation above for calculating the wave period, it can be seen that a wave period would change with a change in wavelength or wave speed. For example, light waves would change in wave speed when moving through a different mediums.
Гармонические колебания происходят по
закону:
x
= A
cos(ωt
+ φ0),
где
x
– смещение частицы от положения
равновесия, А
– амплитуда колебаний, ω – круговая
частота, φ0
– начальная фаза, t
– время.
Период
колебаний T
=
.
Скорость колеблющейся частицы:
υ
=
= – A
ω
sin (ωt
+ φ0),
ускорение
a
=
= –
Aω2
cos
(ωt
+ φ0).
Кинетическая энергия частицы, совершающей
колебательное движение: Ek
=
=sin2(ωt+ φ0).
Потенциальная
энергия:
En
=
cos2(ωt
+ φ0).
Периоды колебаний маятников
– пружинного
T
=
,
где
m
– масса груза, k
– коэффициент жесткости пружины,
– математического
T
=
,
где
l
– длина
подвеса, g
– ускорение свободного падения,
– физического
T
=
,
где
I
– момент
инерции маятника относительно оси,
проходящей через точку подвеса, m
– масса маятника, l
– расстояние от точки подвеса до центра
масс.
Приведенная
длина физического маятника находится
из условия: lnp
=
,
обозначения те
же, что для физического маятника.
При сложении двух
гармонических колебаний одной частоты
и одного направления получается
гармоническое колебание той же частоты
с амплитудой:
A
= A12
+
A22
+
2A1
A2
cos(φ2
–
φ1)
и
начальной
фазой:
φ =
arctg
.
где
А1,
A2
– амплитуды, φ1,
φ2
– начальные фазы складываемых колебаний.
Траектория
результирующего движения при сложении
взаимноперпендикулярных колебаний
одной частоты:
+
–
cos
(φ2
– φ1)
= sin2
(φ2
– φ1).
Затухающие колебания происходят по
закону:
x
= A0
e—
βt
cos(ωt
+ φ0),
где
β – коэффициент затухания, смысл
остальных параметров тот же, что для
гармонических колебаний, А0
– начальная амплитуда. В момент времени
t
амплитуда колебаний:
A
= A0
e
— βt.
Логарифмическим
декрементом затухания называют:
λ
= ln
= βT,
где
Т
– период колебания: T
=
.
Добротностью колебательной системы
называют:
D
=
.
Уравнение плоской бегущей волны имеет
вид:
y
= y0
cos
ω(t
±
),
где
у
– смещение колеблющейся величины от
положения равновесия, у0
– амплитуда, ω – круговая частота, t
– время, х
– координата, вдоль которой распространяется
волна, υ
– скорость распространения волны.
Знак
«+» соответствует волне, распространяющейся
против оси X,
знак «–» соответствует волне,
распространяющейся по оси Х.
Длиной волны называют ее пространственный
период:
λ
= υT,
где
υ–скорость
распространения волны, T–период
распространяющихся колебаний.
Уравнение волны можно записать:
y
= y0
cos
2π
(+).
Стоячая волна описывается уравнением:
y
= (2y0
cos
)
cos ωt.
В скобки заключена амплитуда стоячей
волны. Точки с максимальной амплитудой
называются пучностями,
xп
= n,
точки с нулевой
амплитудой – узлами,
xу
=
(n
+
).
Примеры решения задач
Задача
20
Амплитуда
гармонических колебаний равна 50 мм,
период 4 с и начальная фаза
.
а) Записать уравнение этого колебания;
б) найти смещения колеблющейся точки
от положения равновесия при t=0
и при t
= 1,5 с; в) начертить график этого движения.
Решение
Уравнение
колебания записывается в виде x
= a
cos(t
+
0).
По
условию известен период колебаний.
Через него можно выразить круговую
частоту
=
.
Остальные параметры известны:
а)
x
= 0,05 cos(t
+
).
б)
Смещение x
при t
=
0.
x1
= 0,05 cos=
0,05
=
0,0355 м.
При
t
=
1,5 c
x2
= 0,05 cos(1,5
+
)=
0,05 cos
=
– 0,05 м.
в)
график функцииx=0,05cos
(t
+
)
выглядит следующим образом:
Определим
положение нескольких точек. Известны
х1(0)
и х2(1,5),
а также период колебаний. Значит, через
t
= 4 c
значение х
повторяется, а через t
=
2 c
меняет знак. Между максимумом и минимумом
посередине – 0 .
Задача
21
Точка
совершает гармоническое колебание.
Период колебаний 2 с, амплитуда 50 мм,
начальная фаза равна нулю. Найти скорость
точки в момент времени, когда ее смещение
от положения равновесия равно 25 мм.
Решение
1
способ. Записываем уравнение колебания
точки:
x
= 0,05 cos
t,
т.
к.
=
=.
Находим
скорость в момент времени t:
υ
=
= – 0,05
cos
t.
Находим
момент времени, когда смещение равно
0,025 м:
0,025
= 0,05 cos
t1,
отсюда
cos t1
=
,
t1
=
.Подставляем
это значение в выражение для скорости:
υ
= – 0,05
sin
=
–
0,05
=
0,136 м/c.
2
способ. Полная энергия колебательного
движения:
E
=
,
где
а
– амплитуда,
– круговая частота,
m
–
масса
частицы.
В
каждый момент времени она складывается
из потенциальной и кинетической энергии
точки
Ek
=
,
Eп
=
,
но k
= m2,
значит, Eп
=
.
Запишем
закон сохранения энергии:
=
+,
отсюда
получаем: a22
=
υ
2 +
2x2,
υ
=
=
=
0,136 м/c.
Задача
22
Амплитуда
гармонических колебаний материальной
точки А
= 2 см, полная энергия Е
=
3∙10-7
Дж.
При каком смещении от положения равновесия
на колеблющуюся точку действует сила
F
=
2,25∙10-5
Н?
Решение
Полная
энергия точки, совершающей гармонические
колебания, равна:
E
=
.
(13)
Модуль
упругой силы выражается через смещение
точек от положения равновесия x
следующим образом:
F
= k
x
(14)
В
формулу (13) входят масса m
и круговая частота ,
а в (14) – коэффициент жесткости k.
Но круговая частота связана с m
и k:
2
=
,
отсюда
k
= m2
и F
= m2x.
Выразив m2
из
соотношения (13) получим:
m2
=
,
F
=
x.
Откуда
и получаем выражение для смещения x:
x
=
.
Подстановка
числовых значений дает:
x
=
= 1,5∙10-2
м
= 1,5 см.
Задача
23
Точка
участвует в двух колебаниях с одинаковыми
периодами и начальными фазами. Амплитуды
колебаний А1
=
3 см и А2
= 4 см. Найти амплитуду результирующего
колебания, если: 1) колебания происходят
в одном направлении; 2) колебания взаимно
перпендикулярны.
Решение
-
Если
колебания происходят в одном направлении,
то амплитуда результирующего колебания
определится как:
A
=
,
где
А1
и А2
– амплитуды складываемых колебаний,
1
и 2–начальные
фазы. По условию начальные фазы одинаковы,
значит 2
–
1
=
0, а cos
0 = 1.
Следовательно:
A
=
==
А1+А2
=
7 см.
-
Если
колебания взаимно перпендикулярны, то
уравнение результирующего движения
будет:
cos(
2
–
1)
= sin2(
2
–
1).
Так
как по условию 2
–
1
=
0, cos
0 = 1, sin
0 = 0, то уравнение запишется в виде:
=0,
или
=0,
или
.
Полученное
соотношение между x
и у
можно
изобразить на графике. Из графика видно,
что результирующим будет колебание
точки на прямой MN.
Амплитуда этого колебания определится
как:
A
=
=
5 см.
Задача
24
Период
затухающих колебаний Т=4
с, логарифмический декремент затухания
= 1,6 , начальная фаза равна нулю. Смещение
точки при t
=
равно 4,5 см. 1) Написать уравнение этого
колебания; 2) Построить график этого
движения для двух периодов.
Решение
-
Уравнение
затухающих колебаний с нулевой начальной
фазой имеет вид:
x
= A0e
—t
cos2.
Для
подстановки числовых значений не хватает
величин начальной амплитуды А0
и
коэффициента затухания .
Коэффициент
затухания можно определить из соотношения
для логарифмического декремента
затухания:
=
Т.
Таким
образом
=
=
= 0,4 с-1.
Начальную
амплитуду можно определить, подставив
второе условие:
4,5
см
= A0
cos
2= A0
cos
=A0
.
Отсюда
находим:
A0
=
4,5∙
(см)
= 7,75 см.
Окончательно
уравнение движения:
x
= 0,0775
cost.
-
Для
построения графика сначала рисуем
огибающую x
=
0,0775
,
а затем колебательную часть.
Задача
25
Чему
равен логарифмический декремент
затухания математического маятника,
если за t
=
1 мин амплитуда колебаний уменьшилась
в два раза? Длина маятника l
=
1 м.
Решение
Логарифмический
декремент затухания можно найти из
соотношения: =
Т,
где
– коэффициент затухания, Т
– период колебаний. Собственная круговая
частота математического маятника:
0
=
= 3,13 с-1.
Коэффициент
затухания колебаний можно определить
из условия:
A0
=
A0
e—t,
t
= ln2
= 0,693 ,
=
= 0,0116c-1.
Поскольку
<< 0,
то
в формуле
=
можно пренебречь
по сравнению с 0
и
период
колебаний определить по формуле:
T
=
= 2c.
Подставляем
и Т
в выражение для логарифмического
декремента затухания и получаем:
=
T
= 0,0116 с-1
∙ 2 с = 0,0232.
Задача
26
Уравнение
незатухающих
колебаний
дано
в виде
x
=
4
sin600
t
см.
Найти
смещение от положения равновесия точки,
находящейся на расстоянии l
= 75 см от источника колебаний, через t
= 0,01 с после начала колебаний. Скорость
распространения колебаний υ
= 300 м/с.
Решение
Запишем
уравнение волны, распространяющейся
от данного источника: x
= 0,04 sin
600 (t
–
).
Находим
фазу волны в данный момент времени в
данном месте:
t
–
= 0,01 –= 0,0075 ,
600
∙
0,0075
= 4,5
,
sin
4,5
= sin
= 1.
Следовательно,
смещение точки x
= 0,04 м, т.е. на расстоянии l
=75
см от источника в момент времени t
= 0,01 c
смещение точки максимально.
Список литературы
-
Волькенштейн
В.С. Сборник задач по общему курсу
физики. – СПб.: СпецЛит, 2001. -
Савельев
И.В. Сборник вопросов и задач по общей
физике. – М.: Наука, 1998.
35
Соседние файлы в папке FIZIKA
- #
- #
- #
- #
- #
- #
- #
Основные формулы по физике — КОЛЕБАНИЯ И ВОЛНЫ
При изучении этого раздела следует иметь в виду, что колебания различной физической природы описываются с единых математических позиций. Здесь надо четко уяснить такие понятия, как гармоническое колебание, фаза, разность фаз, амплитуда, частота, период колебани.
Надо иметь в виду, что во всякой реальной колебательной системе есть сопротивления среды, т.е. колебания будут затухающими. Для характеристики затухания колебаний вводится коэффициент затухания и логарифмический декремент затухани.
Если колебания совершаются под действием внешней, периодически изменяющейся силы, то такие колебания называют вынужденными. Они будут незатухающими. Амплитуда вынужденных колебаний зависит от частоты вынуждающей силы. При приближении частоты вынужденных колебаний к частоте собственных колебаний амплитуда вынужденных колебаний резко возрастает. Это явление называется резонансом.
Переходя к изучению электромагнитных волн нужно четко представлять, что электромагнитная волна — это распространяющееся в пространстве электромагнитное поле. Простейшей системой, излучающей электромагнитные волны, является электрический диполь. Если диполь совершает гармонические колебания, то он излучает монохроматическую волну.
Смотрите также основные формулы квантовой физики
Таблица формул: колебания и волны
Физические законы, формулы, переменные |
Формулы колебания и волны |
||||
Уравнение гармонических колебаний: где х — смещение (отклонение) колеблющейся величины от положения равновесия; А — амплитуда; ω — круговая (циклическая) частота; t — время; α — начальная фаза; (ωt+α ) — фаза. |
|||||
Связь между периодом и круговой частотой: |
|||||
Частота: |
|||||
Связь круговой частоты с частотой: |
|||||
Периоды собственных колебаний 1) пружинного маятника: где k — жесткость пружины; 2) математического маятника: где l — длина маятника, g — ускорение свободного падения; 3) колебательного контура: где L — индуктивность контура, С — емкость конденсатора. |
|||||
Частота собственных колебаний: |
|||||
Сложение колебаний одинаковой частоты и направления: 1) амплитуда результирующего колебания где А1 и А2 — амплитуды составляющих колебаний, α1 и α2 — начальные фазы составляющих колебаний; 2) начальная фаза результирующего колебания |
|
||||
Уравнение затухающих колебаний: е = 2,71… — основание натуральных логарифмов. |
|||||
Амплитуда затухающих колебаний: где А0 — амплитуда в начальный момент времени; β — коэффициент затухания; t — время. |
|||||
Коэффициент затухания: колеблющегося тела где r — коэффициент сопротивления среды, m — масса тела; колебательного контура где R — активное сопротивление, L — индуктивность контура. |
|||||
Частота затухающих колебаний ω: |
|||||
Период затухающих колебаний Т: |
|||||
Логарифмический декремент затухания: |
|||||
Связь логарифмического декремента χ и коэффициента затухания β: |
|||||
Амплитуда вынужденных колебаний где ω — частота вынужденных колебаний, fо — приведенная амплитуда вынуждающей силы, при механических колебаниях: при электромагнитных колебаниях: |
|||||
Резонансная частота |
|||||
Резонансная амплитуда |
|||||
Полная энергия колебаний: |
|||||
Уравнение плоской волны: где ξ — смещение точек среды с координатой х в момент времени t; k — волновое число: |
|||||
Длина волны: где v скорость распространения колебаний в среде, Т — период колебаний. |
|||||
Связь разности фаз Δφ колебаний двух точек среды с расстоянием Δх между точками среды: |
Поделитесь ссылкой с друзьями:
Похожие таблицы
Комментарии:
Каждая волна имеет свои параметры движения.
Скорость волны — скорость распространения возмущения.
Пример:
воздействуя на стальной стержень с одного конца, можно вызвать волны сжатия и разрежения со скоростью (5000 frac{м}{с}).
Скорость волны зависит от строения вещества и взаимодействия между её молекулами (атомами). Поэтому в различных средах скорость одной и той же волны будет отличаться.
Помимо скорости, важной характеристикой волны является длина волны.
Длина волны — расстояние, на которое распространяется волна за время, равное периоду колебаний в ней.
Рассмотрим процесс передачи колебаний от точки к точке при распространении поперечной волны.
Используется модель, в которой частицы среды заменяют шариками. Для удобства их можно пронумеровать (рис. (1)).
Частицы среды связаны между собой межмолекулярными силами взаимодействия, поэтому волна передаётся от одной частицы к другой.
Рис. (1). Модель упругой среды для демонстрации колебаний
Отклоним первый шарик от положения равновесия. Силы притяжения передадут движение второму, третьему шарику. Каждый элемент вещества (молекула, атом) повторит движение первой частицы с запаздыванием, которые называют сдвигом фазы. Это запаздывание зависит от расстояния, на котором находится рассматриваемый шарик по отношению к первому шарику.
Предположим, что первый шарик достиг максимального смещения от положения равновесия (рис. (2)). В этот момент четвёртый шарик только начнет движение, следовательно, он отстаёт от первого на (1/4) колебания.
Рис. (2). Изображение максимального смещения от положения равновесия первого шарика
В момент времени, когда смещение четвертого шарика будет наибольшим (рис. (3)), седьмой шарик будет отставать от него на (1/4) колебания. А если рассмотреть отставание седьмого шарика от первого, то оно составляет (1/2) колебания.
Рис. (3). Изображение максимального смещения от положения равновесия четвёртого шарика
Между седьмым и четвёртым шариком, а также седьмым и десятым (1/4) часть колебания (рис. (4)).
Рис. (4). Изображение максимального смещения от положения равновесия седьмого шарика
Первый и тринадцатый шарик совершают одно колебание, то есть двигаются в одной фазе (рис. (5)). Это значит, что между ними все шарики с первого по двенадцатый проходят полный колебательный процесс или составляют одну волну.
Рис. (5). Изображение максимального смещения от положения равновесия десятого шарика
Начиная с тринадцатого шарика, мы можем отсчитывать новую волну (рис. (6)).
Рис. (6). Изображение модели новой волны
Длину волны измеряют расстоянием, на которое перемещается волновая поверхность за один период колебания источника волн;
Длиной волны является расстояние между двумя ближайшими точками бегущей волны на одном луче, который колеблется в одинаковой фазе:
, где (λ) («лямбда») — длина волны, (upsilon) — скорость волны, (T) — период колебания.
Период колебаний можно выразить как величину, обратную частоте колебаний:
T=1ν
.
Тогда выразим длину волны как отношение скорости и частоты:
λ=υν
.
Длина волны прямо пропорциональна скорости волны и обратно пропорциональна частоте колебаний (прямо пропорциональна периоду колебаний).
Поперечные и продольные волны описываются одними и теми же законами.
Выразим скорость волны:
как отношение длины волны к периоду колебаний:
υ=λT
;
как произведение длины волны на частоту колебаний:
υ=λν
.
За длину волны (λ) примем расстояние между шариками, колеблющимися в одинаковых фазах. Например (см. рис. (6)), между четвёртым и шестнадцатым, третьим и пятнадцатым.
Колебания проходят шарики, начиная с первого и заканчивая двенадцатым, проходят все фазы колебания. Новая волна начинается с тринадцатого шарика. Каждый шарик совершает одно полное колебание за время, которое называют периодом колебаний (T). За это время колебательный процесс проходит расстояние, называемое длиной волны (λ.)
Модель распространения продольных волн представлена на рисунке (7).
Длиной волны будет расстояние между соседними центрами сжатия пружины.
Рис. (7). Распространение продольных волн в упругой пружине
Источником колебаний генерируется волна той же частоты, поэтому вынужденные колебания совпадают по частоте с осциллятором и не зависит от плотности среды, в которой движется волна.
Если в ходе движения волна переходит в среду другой плотности, то скорость движения волны изменяется, а частота колебаний остаётся прежней.
Источники:
Рис. 1. Модель упругой среды для демонстрации колебаний. © ЯКласс.
Рис. 2. Изображение максимального смещения от положения равновесия первого шарика. © ЯКласс.
Рис. 3. Изображение максимального смещения от положения равновесия четвёртого шарика. © ЯКласс.
Рис. 4. Изображение максимального смещения от положения равновесия седьмого шарика. © ЯКласс.
Рис. 5. Изображение максимального смещения от положения равновесия десятого шарика. © ЯКласс.
Рис. 6. Изображение модели новой волны. © ЯКласс.
Рис. 7. Распространение продольных волн в упругой пружине. © ЯКласс.
Механические колебания и волны
Механические колебания – периодически повторяющееся перемещение материальной точки, при котором она движется по какой-либо траектории поочередно в двух противоположных направлениях относительно положения устойчивого равновесия.
Отличительными признаками колебательного движения являются:
- повторяемость движения;
- возвратность движения.
Для существования механических колебаний необходимо:
- наличие возвращающей силы – силы, стремящейся вернуть тело в положение равновесия (при малых смещениях от положения равновесия);
- наличие малого трения в системе.
Механические волны – это процесс распространения колебаний в упругой среде.
Содержание
- Виды волн
- Гармонические колебания
- Амплитуда и фаза колебаний
- Период колебаний
- Частота колебаний
- Свободные колебания (математический и пружинный маятники)
- Вынужденные колебания
- Резонанс
- Длина волны
- Звук
- Основные формулы по теме «Механические колебания и волны»
Виды волн
- Поперечная – это волна, в которой колебание частиц среды происходит перпендикулярно направлению распространения волны.
Поперечная волна представляет собой чередование горбов и впадин.
Поперечные волны возникают вследствие сдвига слоев среды относительно друг друга, поэтому они распространяются в твердых телах.
- Продольная – это волна, в которой колебание частиц среды происходит в направлении распространения волны.
Продольная волна представляет собой чередование областей уплотнения и разряжения.
Продольные волны возникают из-за сжатия и разряжения среды, поэтому они могут возникать в жидких, твердых и газообразных средах.
Важно!
Механические волны не переносят вещество среды. Они переносят энергию, которая складывается из кинетической энергии движения частиц среды и потенциальной энергии ее упругой деформации.
Гармонические колебания
Гармонические колебания – простейшие периодические колебания, при которых координата тела меняется по закону синуса или косинуса:
где ( x ) – координата тела – смещение тела от положения равновесия в данный момент времени; ( A ) – амплитуда колебаний; ( omega t+varphi_0 ) – фаза колебаний; ( omega ) – циклическая частота; ( varphi_0 ) – начальная фаза.
Если в начальный момент времени тело проходит положение равновесия, то колебания являются синусоидальными.
Если в начальный момент времени смещение тела совпадает с максимальным отклонением от положения равновесия, то колебания являются косинусоидальными.
Скорость гармонических колебаний
Скорость гармонических колебаний есть первая производная координаты по времени:
где ( v ) – мгновенное значение скорости, т. е. скорость в данный момент времени.
Амплитуда скорости – максимальное значение скорости колебаний, это величина, стоящая перед знаком синуса или косинуса:
Ускорение гармонических колебаний
Ускорение гармонических колебаний есть первая производная скорости по времени:
где ( a ) – мгновенное значение ускорения, т. е. ускорение в данный момент времени.
Амплитуда ускорения – максимальное значение ускорения, это величина, стоящая перед знаком синуса или косинуса:
Если тело совершает гармонические колебания, то сила, действующая на тело, тоже изменяется по гармоническому закону:
где ( F ) – мгновенное значение силы, действующей на тело, т. е. сила в данный момент времени.
Амплитуда силы – максимальное значение силы, величина, стоящая перед знаком синуса или косинуса:
Тело, совершающее гармонические колебания, обладает кинетической или потенциальной энергией:
где ( W_k ) – мгновенное значение кинетической энергии, т. е. кинетическая энергия в данный момент времени.
Амплитуда кинетической энергии – максимальное значение кинетической энергии, величина, стоящая перед знаком синуса или косинуса:
При гармонических колебаниях каждую четверть периода происходит переход потенциальной энергии в кинетическую и обратно.
В положении равновесия:
- потенциальная энергия равна нулю;
- кинетическая энергия максимальна.
При максимальном отклонении от положения равновесия:
- кинетическая энергия равна нулю;
- потенциальная энергия максимальна.
Полная механическая энергия гармонических колебаний
При гармонических колебаниях полная механическая энергия равна сумме кинетической и потенциальной энергий в данный момент времени:
Важно!
Следует помнить, что период колебаний кинетической и потенциальной энергий в 2 раза меньше, чем период колебаний координаты, скорости, ускорения и силы. А частота колебаний кинетической и потенциальной энергий в 2 раза больше, чем частота колебаний координаты, скорости, ускорения и силы.
Графики зависимости кинетической, потенциальной и полной энергий всегда лежат выше оси времени.
Если сила сопротивления отсутствует, то полная энергия сохраняется. График зависимости полной энергии от времени есть прямая, параллельная оси времени (в отсутствие сил трения).
Амплитуда и фаза колебаний
Амплитуда колебаний – модуль наибольшего смещения тела от положения равновесия.
Обозначение – ( A, (X_{max}) ), единицы измерения – м.
Фаза колебаний – это величина, которая определяет состояние колебательной системы в любой момент времени.
Обозначение – ( varphi ), единицы измерения – рад (радиан).
Фаза колебаний – это величина, стоящая под знаком синуса или косинуса. Она показывает, какая часть периода прошла от начала колебаний.
Фаза гармонических колебаний в процессе колебаний изменяется.
( varphi_0 ) – начальная фаза колебаний.
Начальная фаза колебаний – величина, которая определяет положение тела в начальный момент времени.
Важно!
Путь, пройденный телом за одно полное колебание, равен четырем амплитудам.
Период колебаний
Период колебаний – это время одного полного колебания.
Обозначение – ( T ), единицы измерения – с.
Период гармонических колебаний – постоянная величина.
Частота колебаний
Частота колебаний – это число полных колебаний в единицу времени.
Обозначение – ( nu ), единицы времени – с-1 или Гц (Герц).
1 Гц – это частота такого колебательного движения, при котором за каждую секунду совершается одно полное колебание:
Период и частота колебаний – взаимно обратные величины:
Циклическая частота – это число колебаний за 2π секунд.
Обозначение – ( omega ), единицы измерения – рад/с.
Свободные колебания (математический и пружинный маятники)
Свободные колебания – колебания, которые совершает тело под действием внутренних сил системы за счет начального запаса энергии после того как его вывели из положения устойчивого равновесия.
Условия возникновения свободных колебаний:
- при выведении тела из положения равновесия должна возникнуть сила, стремящаяся вернуть его в положение равновесия;
- силы трения в системе должны быть достаточно малы. При наличии сил трения свободные колебания будут затухающими.
При наличии сил трения свободные колебания будут затухающими.
Затухающие колебания – это колебания, амплитуда которых с течением времени уменьшается.
Математический маятник – это материальная точка, подвешенная на невесомой нерастяжимой нити.
Период колебаний математического маятника:
Частота колебаний математического маятника:
Циклическая частота колебаний математического маятника:
Максимальное значение скорости колебаний математического маятника:
Максимальное значение ускорения колебаний математического маятника:
Период свободных колебаний математического маятника, движущегося вверх с ускорением или вниз с замедлением:
Период свободных колебаний математического маятника, движущегося вниз с ускорением или вверх с замедлением:
Период свободных колебаний математического маятника, горизонтально с ускорением или замедлением:
Мгновенное значение потенциальной энергии математического маятника, поднявшегося в процессе колебаний на высоту ( h ), определяется по формуле:
где ( l ) – длина нити, ( alpha ) – угол отклонения от вертикали.
Пружинный маятник – это тело, подвешенное на пружине и совершающее колебания вдоль вертикальной или горизонтальной оси под действием силы упругости пружины.
Период колебаний пружинного маятника:
Частота колебаний пружинного маятника:
Циклическая частота колебаний пружинного маятника:
Максимальное значение скорости колебаний пружинного маятника:
Максимальное значение ускорения колебаний пружинного маятника:
Мгновенную потенциальную энергию пружинного маятника можно найти по формуле:
Амплитуда потенциальной энергии – максимальное значение потенциальной энергии, величина, стоящая перед знаком синуса или косинуса:
Важно!
Если маятник не является ни пружинным, ни математическим (физический маятник), то его циклическую частоту, период и частоту колебаний по формулам, применимым к математическому и пружинному маятнику, рассчитать нельзя. В данном случае эти величины рассчитываются из формулы силы, действующей на маятник, или из формул энергий.
Вынужденные колебания
Вынужденные колебания – это колебания, происходящие под действием внешней периодически изменяющейся силы.
Вынужденные колебания, происходящие под действием гармонически изменяющейся внешней силы, тоже являются гармоническими и незатухающими. Их частота равна частоте внешней силы и называется частотой вынужденных колебаний.
Резонанс
Резонанс – явление резкого возрастания амплитуды колебаний, которое происходит при совпадении частоты вынуждающей силы и собственной частоты колебаний тела.
Условие резонанса:
( v_0 ) – собственная частота колебаний маятника.
На рисунке изображены резонансные кривые для сред с разным трением. Чем меньше трение, тем выше и острее резонансная кривая.
Явление резонанса учитывается при периодически изменяющихся нагрузках в машинах и различных сооружениях.
Также резонанс используется в акустике, радиотехнике и т. д.
Длина волны
Длина волны – это расстояние, на которое волна распространяется за один период, т. е. это кратчайшее расстояние между двумя точками среды, колеблющимися в одинаковых фазах.
Обозначение – ( lambda ), единицы измерения – м.
Расстояние между соседними гребнями или впадинами в поперечной волне и между соседними сгущениями или разряжениями в продольной волне равно длине волны.
Скорость распространения волны – это скорость перемещения горбов и впадин в поперечной волне и сгущений или разряжений в продольной волне.
Звук
Звук – это колебания упругой среды, воспринимаемые органом слуха.
Условия, необходимые для возникновения и ощущения звука:
- наличие источника звука;
- наличие упругой среды между источником и приемником звука;
- наличие приемника звука; • частота колебаний должна лежать в звуковом диапазоне;
- мощность звука должна быть достаточной для восприятия.
Звуковые волны – это упругие волны, вызывающие у человека ощущение звука, представляющие собой зоны сжатия и разряжения, передающиеся на расстояние с течением времени.
Классификация звуковых волн:
- инфразвук (( nu ) < 16 Гц);
- звуковой диапазон (16 Гц < ( nu ) < 20 000 Гц);
- ультразвук (( nu ) > 20 000 Гц).
Скорость звука – это скорость распространения фазы колебания, т. е. области сжатия и разряжения среды.
Скорость звука зависит
- от упругих свойств среды:
в воздухе – 331 м/с, в воде – 1400 м/с, в металле – 5000 м/с;
- от температуры среды:
в воздухе при температуре 0°С – 331 м/с,
в воздухе при температуре +15°С – 340 м/с.
Характеристики звуковой волны
- Громкость – это величина, характеризующая слуховые ощущения человека, зависящая от амплитуды колебаний в звуковой волне. Единицы измерения – дБ (децибел).
- Высота тона – это величина, характеризующая слуховые ощущения человека, зависящая от частоты колебаний в звуковой волне. Чем больше частота, тем выше звук. Чем меньше частота, тем ниже звук.
- Тембр – это окраска звука.
Музыкальный звук – это звук, издаваемый гармонически колеблющимся телом. Каждому музыкальному тону соответствует определенная длина и частота звуковой волны.
Шум – хаотическая смесь тонов.
Основные формулы по теме «Механические колебания и волны»
Механические колебания и волны
3 (59.04%) 146 votes