Как найти перпендикуляр острого угла

Все формулы для треугольника

1. Как найти неизвестную сторону треугольника

Вычислить длину стороны треугольника: по стороне и двум углам или по двум сторонам и углу.

a , b , c — стороны произвольного треугольника

α , β , γ — противоположные углы

Формула длины через две стороны и угол (по теореме косинусов), ( a ):

* Внимательно , при подстановке в формулу, для тупого угла ( α >90), cos α принимает отрицательное значение

Формула длины через сторону и два угла (по теореме синусов), ( a):

2. Как узнать сторону прямоугольного треугольника

Есть следующие формулы для определения катета или гипотенузы

a , b — катеты

c — гипотенуза

α , β — острые углы

Формулы для катета, ( a ):

Формулы для катета, ( b ):

Формулы для гипотенузы, ( c ):

Формулы сторон по теореме Пифагора, ( a , b ):

3. Формулы сторон равнобедренного треугольника

Вычислить длину неизвестной стороны через любые стороны и углы

b — сторона (основание)

a — равные стороны

α — углы при основании

β — угол образованный равными сторонами

Формулы длины стороны (основания), (b ):

Формулы длины равных сторон , (a):

4. Найти длину высоты треугольника

Высота— перпендикуляр выходящий из любой вершины треугольника, к противоположной стороне (или ее продолжению, для треугольника с тупым углом).

Высоты треугольника пересекаются в одной точке, которая называется — ортоцентр.

H — высота треугольника

a — сторона, основание

b, c — стороны

β , γ — углы при основании

p — полупериметр, p=(a+b+c)/2

R — радиус описанной окружности

S — площадь треугольника

Формула длины высоты через стороны, ( H ):

Формула длины высоты через сторону и угол, ( H ):

Формула длины высоты через сторону и площадь, ( H ):

Формула длины высоты через стороны и радиус, ( H ):

Серединный перпендикуляр — определение, свойства и формулы

Общие сведения

Серединным перпендикуляром отрезка называют прямую, которая проходит под прямым углом через среднюю точку, т. е. середину отрезка. Для полного понимания материала следует остановиться на базовых элементах геометрии.

Точка — единица, при помощи которой строятся прямые, отрезки, лучи и фигуры. Прямая — простая фигура в форме бесконечной линии, состоящей из множества точек, лежащих в одной плоскости. Луч — базовая геометрическая фигура в виде бесконечной линии с одной стороны и точки-ограничителя — с другой. Иными словами, луч имеет начало, но не имеет конца. Отрезок — некоторая часть прямой (луча или другого отрезка), ограниченная двумя точками.

Кроме того, в геометрии серединный перпендикуляр встречается в треугольниках. Из определения можно сделать вывод, что им может быть прямая, отрезок и даже луч.

Аксиомы геометрии Евклида

Евклидовой геометрией называется наука о фигурах на плоскости, основанная на аксиомах и теоремах. Аксиома — базовое утверждение, не требующее доказательства. Оно используется для доказательства каких-либо теорем. Математики выделяют пять аксиом:

  1. Принадлежности.
  2. Порядка.
  3. Конгруэнтности.
  4. Параллельности прямых.
  5. Непрерывности.

Формулировка первой имеет такой вид: если существует в геометрическом пространстве плоскость, состоящая из множества точек, то через любые из них можно провести только одну прямую. Иными словами, можно взять произвольные две точки и провести через них одну прямую. Чтобы начертить еще одну прямую, следует взять две другие точки.

Следующее утверждение называется аксиомой порядка. Она гласит, что существует точка, которая лежит между двумя другими на прямой. Значение слова «конгруэнтность» не совсем понятно для новичка, однако нужно постепенно привыкать к терминологии. Оно обозначает «равенство». Третий геометрический факт формулируется таким образом: когда два отрезка или угла конгруэнтны третьему, тогда они равны между собой. Аксиома касается только отрезков и углов.

Чтобы убедиться в ее правильности, нужно разобрать следующий пример: длина первого отрезка составляет 10 см, второго — тоже, а третий равен первому. Необходимо доказать, что они равны между собой. Это делается очень просто:

  • Вводятся обозначения: первый — MN, второй — OP и третий — RS.
  • Устанавливаются значения по условию: MN = 10 см, ОР = 10 см, а RS = MN.
  • Доказательство строится таким образом: MN = RS = 10 (см). Следовательно, отрезки равны, поскольку MN = ОР = RS = 10 (см).

Следует отметить, что данные действия оказались лишними — было потрачено время на понимание простой «истины». Параллельность прямых является также аксиомой и формулируется таким образом: если существует некоторая прямая на плоскости и точка, не лежащая на ней, то через последнюю можно провести только одну параллельную ей прямую.

И последняя аксиома называется Архимедовой. Ее формулировка имеет такой вид: для произвольных отрезков, лежащих на одной прямой, существует некоторая последовательность базовых элементов (точек), лежащих на одном и другом отрезках, таких, что заданные их части равны между собой. Иными словами, на одной прямой могут быть расположены равные между собой отрезки.

Информация о треугольниках

Треугольником является любая фигура, состоящая из трех вершин (точек) соединенных отрезками (сторонами), причем точки не лежат на одной прямой в одной плоскости. Они классифицируются по такому типу:

В первом случае фигуры делятся на остроугольные, тупоугольные и прямоугольные. Остроугольным называется треугольник, у которого все углы острые (меньше 90 градусов). У тупоугольного — один угол тупой (> 90), а в прямоугольном — один из углов равен 90 градусам. Следует отметить, что сумма градусных мер углов любого треугольника эквивалентна 180.

Когда стороны у треугольника неравны между собой, тогда его называют разносторонним. При равенстве двух боковых сторон он считается равнобедренным, у которого третья сторона — основание. Если все стороны равны, то значит, фигура является равносторонней или правильной.

У треугольника есть еще и другие параметры. Их называют медианой, биссектрисой и высотой. Первый параметр является отрезком, который проводится из любой вершины на среднюю точку стороны. Высота — часть прямой, которая проводится из произвольной вершины и перпендикулярна противоположной стороне. Биссектрисой называется прямая, делящая угол на две равные части.

Медиана, высота и биссектриса, проведенные из вершины к основанию, совпадают и эквивалентны серединному перпендикуляру в треугольниках равнобедренного и равностороннего типов. Это очень важно при решении задач. Еще одним признаком, по которому выполняется классификация — подобность треугольников. У них могут быть равными только углы и некоторые стороны. Они отличаются между собой по определенному параметру, который называется коэффициентом подобия. Последний влияет только на размерность сторон. Говорят, что фигуры подобны по определенному признаку (их всего три).

Основные теоремы

Теорема — гипотеза (предположение), которую нужно доказать. Они применяются для оптимизации расчетов и вычисления отдельных параметров заданной фигуры. Кроме того, существуют следствия, полученные при доказательстве таких научных предположений. Эти аспекты упрощают и автоматизируют вычисления. Например, при вычислении площади треугольника нет необходимости выводить формулу, достаточно воспользоваться уже готовой.

Математики выделяют всего три теоремы о СП, которые могут значительно упростить расчеты. К ним можно отнести следующие:

  • Прямая.
  • Обратная.
  • Пересечение в треугольнике.

Первая теорема называется прямой о СП. Она показывает, каким свойством обладают точки серединного перпендикуляра. Ее формулировка следующая: произвольная точка, которая взятая на перпендикуляре, удалена на равные расстояния от конечных точек отрезка, ограничивающих его на плоскости.

Для доказательства следует рассмотреть два прямоугольных треугольника с общей вершиной (искомая точка), общей стороной — катетом и равными катетами (по определению). Фигуры равны по одному из признаков равенства треугольников. Следовательно, их гипотенузы (стороны, равенство которых нужно доказать), равны между собой. Первая теорема доказана.

Следующая теорема — обратная: если точка удалена на равные расстояния от концов отрезка, то значит, она лежит на СП. В этом случае следует рассматривать равнобедренный треугольник, вершиной которого она является. Удалена точка на одинаковые расстояния от вершин основания по условию. Следовательно, этот факт доказывает, что полученный треугольник является равнобедренным, а в нем медиана, проведенная к основанию, является биссектрисой и высотой. Значит, она лежит на серединном перпендикуляре. Утверждение доказано.

Следующую теорему нет необходимости доказывать, поскольку известно, что в равнобедренном и равностороннем треугольниках высоты (медианы и биссектрисы) имеют общую точку пересечения. Они являются также и СП. Следовательно, это утверждение справедливо для них.

Важные свойства

Иногда трех теорем недостаточно для решения какой-либо сложной задачи. В этом случае необходимо знать еще и некоторые свойства СП:

  1. Центр описанной окружности вокруг треугольника соответствует точке их пересечения.
  2. Точка, взятая на СП, равноудалена от конечных точек отрезка и образует равнобедренный или равносторонний треугольник.
  3. В треугольниках равнобедренного и равностороннего типов им является высота, медиана и биссектриса.

В первом случае все зависит от типа треугольника. Если он является остроугольным, то центр лежит внутри него. Для тупоугольного — во внешнем пространстве, а в прямоугольном — на середине гипотенузы.

Следует отметить, что есть формулы для его расчета. Если предположить, что существует некоторый произвольный треугольник со сторонами а, b и с. Кроме того, для них выполняется условие a >= b >= c. Исходя из полученных данных, можно записать формулы перпендикуляров (Р), проведенных к определенной стороне:

  1. а: Pa = (2 * а * S) / (a^2 + b^2 — c^2).
  2. b: Pb = (2 * b * S) / (a^2 + b^2 — c^2).
  3. c: Pc = (2 * c * S) / (a^2 — b^2 + c^2).

Иными словами, Р является отношением удвоенного произведения стороны на площадь треугольника к сумме квадратов смежных сторон без квадрата противоположной. Кроме того, справедливы неравенства: Pa >= Pb и Pс >= Pb. Стороны — известные параметры, а вот площадь находится по некоторым соотношениям, которые выглядят следующим образом:

  1. Основание и высоту, проведенную к нему: S = (1/2) * a * Ha = (1/2) * b * Hb = (1/2) * c * Hc.
  2. Через радиус вписанной окружности: S = (1/2) * r * (a + b + c).
  3. Формулу Герона через полупериметр (р) и без него: S = [p * (p — a) * (p — b) * (p — c)]^(1/2) и S = 1/4 * [(a + b + c) * (b + c — a) * (а + c — b) * (a + b — c)]^(1/2).

В основном по таким соотношениям и нужно определить площадь. Полупериметр вычисляется таким образом: р = (а + b + с) / 2.

Бывают задачи, в которых необходимо просто подставить значения в формулу. Они называются простейшими. Однако встречаются и сложные. К ним относятся все виды без некоторых промежуточных параметров фигуры.

Пример решения задачи

В интернете попадаются примеры решения простых задач, а сложные приходится решать самостоятельно, просить помощи у кого-нибудь или покупать на сайтах готовое решение. Для примера нужно решить задание с такими данными:

  1. Прямоугольник, изображенный на рисунке 1 с диагональю равной d.
  2. Серединный перпендикуляр, проведенный к диагонали прямоугольника.
  3. Точка Е делит сторону на отрезки а и 2а.

Нужно найти: углы, указанные на рисунке, стороны и ОЕ. Кроме того, дополнительные данные можно узнать из чертежа, который используется для решения задачи (рис. 1). К любому заданию нужно делать графическое представление, поскольку оно позволяет избежать ошибок при вычислении

Рисунок 1. Чертеж для решения задачи.

Числовых значений нет, тогда необходимо решать в общем виде. Углы можно найти по такому алгоритму:

  1. Нужно рассмотреть треугольник ВДЕ. Он является равнобедренным, поскольку ОЕ — СП, а диагональ — отрезок. Следовательно, ВЕ = ДЕ = 2а.
  2. Необходимо найти угол ЕВО. Сделать это проблемно. Рекомендуется обратить внимание на треугольник АВЕ.
  3. При помощи тригонометрической функции синуса можно вычислить значение угла АBE: sin(АBE) = a/2а = 0,5. Следовательно, arcsin(0,5) = 30 (градусов).
  4. Угол СВЕ вычисляется следующим образом: 90 — 30 = 60 (градусов).
  5. Следовательно, искомый угол равен 30, поскольку 90 — 30 — 30 = 30.
  6. В равнобедренном треугольнике углы при основании равны между собой: ЕДО = ЕВО = 30 (градусов).

Для нахождения сторон нужно составить уравнение в общем виде, обозначив неизвестную величину АВ литерой «х». Рассмотрев прямоугольный треугольник АВЕ, по теореме Пифагора можно вычислить АВ: x = [4a^2 + a^2]^(1/2) = a * [5]^(1/2). Следовательно, АВ = a * [5]^(1/2) и ВС = 3а. ОЕ находится по формуле: ОЕ = (2 * 2 * а * S) / (8 * a^2 — d^2). Можно править соотношение таким образом через прямоугольный треугольник ДОЕ: ОЕ = [4 * a^2 — (d^2) / 4]^(1/2).

Таким образом, нахождение серединного перпендикуляра позволяет значительно уменьшить объемы вычислений. Однако для этого нужно знать не только основные теоремы, но и его свойства.

Как обозначается перпендикуляр треугольника

Основные сведения о перпендикуляре к прямой — что это такое, как находить

Определение перпендикулярности прямой и плоскости

Каким будет определение положения прямой и плоскости, зависит от наличия общих точек. Если их больше одной, то прямая лежит на данной плоскости, если одна — то она ее пересекает. Если прямая не имеет с плоскостью точек пересечения, то прямая и плоскость параллельны.

Пересечение прямой линии и плоскости может происходить под разными углами. Если при пересечении между прямой и плоскостью образуется прямой угол, то такая прямая является к плоскости перпендикуляром. При этом она перпендикулярна всем прямым линиям, принадлежащим данной плоскости. Из этого свойства вытекает следующее определение.

Перпендикулярной к плоскости называется прямая линия, которая перпендикулярна всем без исключения прямым, лежащим в выбранной плоскости.

Следствием из данного определения является свойство плоскости, для которой установлено наличие перпендикуляра. Оно формулируется следующим образом: «Если плоскость перпендикулярна некоторой прямой, то она является также перпендикулярной для всех прямых, параллельных данной прямой».

В решении задач на построение перпендикуляров к плоскости в конкретной точке существует только одно решение, поскольку через определенную точку можно провести только одну прямую, занимающую по отношению к плоскости перпендикулярное положение.

О единственности такой прямой в геометрии существует доказательство.

Проведение перпендикуляра из точки к прямой

В жизни с перпендикуляром можно столкнуться часто. Например, если по двум параллельным направляющим движутся тела, то кратчайшее расстояние между ними будет лежать именно по перпендикуляру.

Допустим, на уроке ученикам дали задание построить перпендикуляр к имеющейся площади. Особым условием является то, что проходить этот перпендикуляр должен через выбранную точку. Технически задача проста. Для ее исполнения нужен чертежный треугольник, один угол у которого является прямым, то есть составляет 90°.

Приложив его к прямой таким образом, что одна из сторон, образующих прямой угол, лежит на прямой, а другая — проходит через точку с определенными координатами, необходимо соединить эту точку и прямую.

Такой отрезок будет кратчайшим соединением точки с прямой линией (и выбранной плоскостью).

Взаимное положение такого перпендикуляра и прямой обозначается специальным знаком.

Для перпендикуляра, проведенного из выбранной точки к прямой, можно определить длину. Она равна расстоянию от этой точки до точки пересечения с прямой плоскостью.

Как построить перпендикуляр к прямой

Построить перпендикуляр к прямой можно несколькими способами:

1. С помощью циркуля.

Из выбранной точки P проводим полуокружность, которая пересекается с прямой в точках A и B.

Затем тем же радиусом строим две окружности, центры которых совпадают с точками A и B. При этом окружности проходят через точку P.

Следующим шагом будет соединение точек P и Q.

На данном рисунке перпендикуляр к прямой AB — отрезок PQ.

2. Вторым способом построения перпендикуляра является использование транспортира. Чтобы провести перпендикуляр, внимательно откладываем 90° от выбранной точки на прямой, используя при этом линейку транспортира. Отрезок, соединяющий эту точку и деление 90°, является перпендикуляром к прямой в заданной точке.

3. Третий способ был описан выше. Он основан на применении чертежного треугольника и линейки. С помощью линейки проводим прямую. Прикладываем к ней прямым углом треугольник и очерчиваем этот угол с двух сторон. Один отрезок совпадает с имеющейся прямой, а второй является перпендикуляром к ней.

Пояснение на примерах

В конспектах по геометрии присутствует понятие высоты, представляющей собой перпендикуляр к одной из сторон геометрической фигуры (например, треугольника).

Высотой треугольника называется перпендикуляр, который выходит из вершины треугольника и следует к противоположной стороне (либо к продолжению этой стороны, если треугольник тупоугольный).

В данном определении содержится отличие от основной характеристики биссектрисы, которая, опускаясь на противолежащую углу сторону, не является перпендикуляром к ней.

Аналогичная ситуация с определением медианы — линии, исходящей из угла треугольника и делящей противоположную сторону на две равные части.

Высоту треугольника можно провести из любого его угла, поэтому у каждого треугольника имеется три высоты.

Существует теорема, что все три высоты треугольника пересекаются в одной точке, которая называется ортоцентром.

Используя свойство высоты треугольника о пересечении одной из его сторон под прямым углом, можно через высоту выразить формулу площади треугольника:

Уравнение для расчета высоты через площадь:

Найти через длины сторон:

h a = 2 p p — a p — b p — c a

где p — это полупериметр треугольника, который рассчитывается так:

p = a + b + c 2
Можно дать краткую характеристику еще двум способам выразить высоту треугольника:

4. Через длину прилежащей стороны и синус угла

h a = b sin y = c sin β

5. Через стороны и радиус описанной окружности

Треугольник и его виды. Элементы треугольника

Треугольник – это геометрическая фигура, состоящая из трех точек, попарно соединенных между собой отрезками. Точки называются вершинами треугольника, отрезки – сторонами треугольника. Треугольник имеет три вершины и три стороны. Стороны треугольника обозначаются часто малыми буквами, которые соответствуют заглавным буквам, обозначающим противоположные вершины.

Внутренние углы треугольника – это углы, образованные его сторонами. Угол А – это угол, образованный сторонами АВ и АС.

Виды треугольников по углам:

  1. Остроугольный треугольник – это треугольник, все углы которого острые (то есть градусная мера каждого угла меньше 90º).
  2. Прямоугольный треугольник – это треугольник, у которого один угол прямой (то есть имеет градусную меру 90º).
  3. Тупоугольный треугольник – это треугольник, у которого один угол тупой (то есть имеет градусную меру больше 90º).

Виды треугольников по сторонам:

  1. Равносторонний треугольник (или правильный треугольник) – это треугольник, у которого все три стороны равны.
  2. Равнобедренный треугольник – это треугольник, у которого две стороны равны.
  3. Разносторонний треугольник – треугольник, все стороны которого имеют разную длину.

Элементы треугольника

Медиана – это отрезок, соединяющий вершину треугольника с серединой противоположной стороны. Любой треугольник имеет три медианы, которые пересекаются в одной точке. Эта точка пересечения называется центроидом или центром тяжести треугольника. Центроид делит каждую медиану в отношении 1:2, считая от основания медианы.

Биссектриса – это отрезок, делящий угол треугольника на две равные части. Любой треугольник имеет три биссектрисы, которые пересекаются в одной точке.

Высота – это перпендикуляр, проведенный из вершины треугольника к прямой, содержащей противоположную сторону. Любой треугольник имеет три высоты, которые пересекаются в одной точке, называемой ортоцентром треугольника.

Средняя линия треугольника – это отрезок, соединяющий середины двух его сторон.

Средняя линия треугольника, соединяющая середины двух его сторон, параллельна третьей стороне и равна ее половине: (MN=frac12AC; MNparallel AC) .

Серединный перпендикуляр к отрезку – прямая, перпендикулярная к этому отрезку и проходящая через его середину. Три срединных перпендикуляра треугольника пересекаются в одной точке, являющейся центром описанного круга.

Основные свойства треугольников

  1. Против большей стороны лежит больший угол, и наоборот.
  2. Против равных сторон лежат равные углы, и наоборот. В частности, все углы в равностороннем треугольнике равны.
  3. Сумма углов треугольника равна 180º. Из двух последних свойств следует, что каждый угол в равностороннем треугольнике равен 60º.
  4. Продолжая одну из сторон треугольника, получаем внешний угол. Внешний угол треугольника равен сумме внутренних углов, не смежных с ним.
  5. Любая сторона треугольника меньше суммы двух других сторон и больше их разности (a b – c; b a – c; c a – b).

Один из внешних углов треугольника равен 65 (^circ) . Углы, не смежные с данным внешним углом, относятся как 6:7. Найдите наибольший из них.

Внутренние углы треугольника относятся как 3:7:8. Найдите отношение внешних углов треугольника.

Чему равна градусная мера одного из углов прямоугольного треугольника?

Если в треугольнике один угол больше суммы двух других углов, то он

Если в треугольнике один внешний угол острый, то этот треугольник

Периметр равнобедренного треугольника равен 11 см, а основание равно 3 см. Найдите боковую сторону треугольника.

Перпендикулярные прямые

Перпендикулярные прямые — это две пересекающиеся прямые,
образующие четыре прямых угла.

По другому можно сказать так: перпендикулярные
прямые
— это две прямые, которые пересекаются под прямым углом.
Эти два утверждения истинны.

Перпендикулярность прямых обозначается символом . Например,
перпендикулярность прямых, изображенных на рисунке 1 обозначается
так: AC ⊥ BD. А читается так: прямая AC перпендикулярна к прямой BD.

Для того, чтобы начертить перпендикулярные прямые используют
чертежный угольник и линейку.

Две прямые, перпендикулярные к третьей не пересекаются,
но параллельны между собой.

  1. Перпендикуляр — это прямая опущенная под прямым углом
    к другой прямой.
  2. Перпендикуляр к данной прямой — это отрезок прямой,
    перпендикулярный данной прямой, имеющий одним из
    своих концов их точку пересечения.
  3. Основание перпендикуляра — это конец отрезка прямой,
    которая перпендикулярна данной прямой.

Условие перпендикулярности двух прямых — две прямые
пересекаются под прямым углом.

Из точки, не лежащей на прямой, можно провести
перпендикуляр к этой прямой, и притом только один.

Прямая перпендикулярна плоскости, если она
перпендикулярна любой прямой, лежащей
в этой плоскости.

источники:

http://nauka.club/matematika/geometriya/seredinnyi-perpendikulyar.html

http://b4.cooksy.ru/articles/kak-oboznachaetsya-perpendikulyar-treugolnika

Перпендикулярные прямые

29 июня 2022

Перпендикулярные прямые — это просто две прямые, которые пересекаются под углом 90°:

Перпендикулярные прямые

Перпендикулярные прямые встречаются в огромном количестве задач. Прямоугольные треугольники, координаты и даже клеточки в вашей тетради — это всё перпендикулярные прямые. Поэтому разберёмся с ними.

Урок состоит из пяти частей:

  1. Краткая вводная.
  2. Определение перпендикулярных прямых.
  3. Свойства перпендикулярных прямых.
  4. Простые задачи.
  5. Злые задачи.:)

Начнём с краткой вводной: что уже нужно знать про прямые и углы в данному моменту.

1. Кратная вводная

Для работы с перпендикулярными прямыми нам потребуются два вида углов: смежные и вертикальные.

1.1.Смежные углы

Определение. Два угла называются смежными, если одна сторона у них общая, а две другие являются продолжением друг друга.

Вот пример смежных углов с общей стороной $MN$:

Смежные углы

Основное свойство таких углов: их сумма всегда равна 180°:

[angle 1+angle 2={180}^circ ]

Таким образом, зная один смежный угол, мы тут же найдём другой.

1.2. Вертикальные углы

Определение. Углы, которые образуются при пересечении двух прямых и лежат напротив друг друга, называются вертикальными.

На самом деле на пересечении двух прямых возникает сразу две пары таких углов:

Вертикальные углы

Вертикальные углы всегда равны — и это их главное свойство. На рисунке мы видим, что $angle 1=angle 3$ и $angle 2=angle 4$.

1.3. Какие бывают углы

И вообще, нам пока известны четыре типа углов: острый, прямой, тупой и развёрнутый.

Четыре типа углов

Интересное свойство прямого угла: если при пересечении двух прямых возник прямой угол, то все остальные углы (вертикальные, смежные с ним) тоже будут прямыми. И вот тут мы переходим к основной теме урока.

2. Определение перпендикулярных прямых

Определение. Если при пересечении двух прямых возникло четыре прямых угла, такие прямые называются перпендикулярными.

Мы уже знаем, что достаточно найти на таком пересечении всего один угол в 90 градусов — остальные три угла станут прямыми автоматически:

Четыре прямых угла

Перпендикулярные прямые обозначают значком «$bot $»: $ABbot CD$, $abot b$ и т.д.

Часто в задачах рассматриваются не все прямые, а лишь отрезки, лежащие на этих прямых

3. Свойства перпендикулярных прямых

Сначала разберём два «стандартных» свойства, которые вы найдёте в любом учебнике геометрии 7-го класса. А затем — одно «нестандартное», но именно оно чаще всего и встречается в настоящих задачах.

3.1. Теорема о двух прямых, перпендикулярных третьей

Теорема 1. Две прямые, перпендикулярные к третьей, не пересекаются.

Две прямые перпендикулярны третьей

Прямая $ABbot EF$ и прямая $MNbot EF$. Следовательно, прямые $AB$ и $MN$ не пересекаются. Проще говоря, они параллельны (см. урок «Параллельные прямые»).

3.2. Теорема о прямой, перпендикулярной данной

Теорема 2. Через каждую точку прямой можно провести прямую, перпендикулярную данной, и притом только одну.

Доказательство этой теоремы состоит из двух частей: сначала докажем, что такую прямую провести можно, а затем — что она единственная.

Прямая, перпендикулярная данной, строится очень просто. Рассмотрим прямую $a$, на которой отмечена точка $M$:

Прямая и точка на этой прямой

Отложим от луча $MK$ угол, равный 90°. В любую сторону: в верхнюю полуплоскость или нижнюю — не имеет значения. Получим луч $MN$:

Перпендикуляр к прямой

Наконец, продолжим луч $MN$ в противоположную другую сторону (т.е. построим дополнительный луч). Получим искомую прямую $MNbot a$:

Построение перпендикулярной прямой

Единственность такого построения следует либо из аксиомы о том, что нужный угол можно отложить в нужном направлении одним и только одним способом, либо из предыдущей теоремы о двух прямых, перпендикулярных данной. В самом деле, пусть есть ещё одна прямая $ML$, которая, как и $MN$, перпендикулярна прямой $a$:

Две перпендикулярные прямые проходят через одну точку

Поскольку $MNbot a$ и $MLbot a$, по предыдущей теореме эти прямые не пересекаются. Что противоречит нашему построению, в котором у прямых $MN$ и $ML$ есть общая точка $M$. Следовательно, прямые $MN$ и $ML$ совпадают, что и требовалось доказать.

3.3. Важное свойство прямого угла

Две теоремы, которые мы рассмотрели выше, редко встречаются в реальных примерах. Зато сейчас мы рассмотрим свойство, которое действительно помогает решать многие задачи. Звучит оно очень просто:

Теорема 3. Если прямой угол разделить на две части, то сумма этих новых углов равна 90°. Другими словами, если один угол равен $alpha $, то другой равен ${90}^circ -alpha $:

Два угла образуют прямой угол

Это утверждение может показаться очевидным. И оно действительно является таковым. Однако деление прямого угла на части встречается в задачах настолько часто, что я не мог не упомянуть об этом.

Кроме того, начинающие ученики часто не замечают такие углы на чертежах. Поэтому сейчас мы будем отрабатывать эту теорему на реальных задачах.

4. Простые задачи

Начнём с простых задач.

Задача 1. На рисунке $ABbot MN$, $angle NOT={37}^circ $, $angle BOT+angle NOS={125}^circ $. Найдите углы $MOS$ и $SOT$.

Перпендикулярные прямые задача 1 пересечение

Решение. Пусть $angle NOS=x$. Тогда из равенства

[angle BOT+angle NOS={125}^circ ]

получаем, что $angle BOT={125}^circ -x$. С другой стороны, углы $BOT$ и $NOT$ в сумме дают 90°. Потому

[begin{align}{125}^circ -x+{37}^circ &={90}^circ \ x&={72}^circ end{align}]

Теперь мы можем найти угол $SOT$:

[begin{align}angle SOT &=angle NOS+angle NOT= \ &={72}^circ +{37}^circ = \ &={109}^circ end{align}]

Кроме того, углы $MOS$ и $NOS$ — смежные, поэтому их сумма равна 180°. Отсюда получаем:

[begin{align}angle MOS&={180}^circ -angle NOS= \ &={180}^circ -{72}^circ = \ &={108}^circ end{align}]

Оба требуемых угла найдены. Задача решена.

Задача 2. Дан угол $AMC$, равный 140°. Внутри этого угла проведены лучи $MN$ и $MK$, причём $MNbot MC$ и $MKbot MA$. Найдите угол $KMN$.

Тупой угол задача 2 перпендикулярные прямые

Решение. Заметим, что угол $AMC$ составлен из углов $AMN$ и $CMN$, причём $angle CMN={90}^circ $ по условию. Найдём угол $AMN$:

[begin{align}angle AMN &=angle AMC-angle NMC= \ &={140}^circ -{90}^circ = \ &={50}^circ end{align}]

Точно так же найдём угол $CMK$, который вместе с углом прямым $AMK$ образует исходный угол $AMC$:

[begin{align}angle CMK &=angle AMC-angle AMN= \ &={140}^circ -{90}^circ = \ &={50}^circ end{align}]

Осталось найти искомый угол $KMN$:

[begin{align}angle KMN &=angle AMC-angle AMN-angle CMK= \ &={140}^circ -{50}^circ -{50}^circ = \ &={40}^circ end{align}]

Готово! Мы нашли нужный угол. Он равен 40 градусов.

Задача 3. Прямые $a$, $b$ и $c$ пересекаются в одной точке. Известно, что $abot b$ и $angle 1={36}^circ $. Найдите углы 2, 3 и 4.

Задача 3 пересекающиеся прямые разные углы

Решение. Углы 1 и 3 — вертикальные, поэтому они равны:

[angle 3=angle 1={36}^circ ]

Кроме того, углы 1 и 2 вместе образуют прямой угол, поэтому их сумма равна 90 градусов:

[begin{align}angle 1+angle 2 &={90}^circ \ angle 2 &={90}^circ -angle 1= \ &={90}^circ -{36}^circ = \ &={54}^circ end{align}]

Наконец, углы 2 и 4 — тоже вертикальные, поэтому они тоже равны:

[angle 4=angle 2={54}^circ ]

Итого мы нашли все требуемые углы. Они равны 54, 36 и 54 градуса.

Задача 4. На рисунке угол $AMC$ — развёрнутый, луч $MBbot AC$, угол $KMN={90}^circ $. Докажите, что $angle BMN=angle CMK$.

Задача 4 развёрнутый угол и прямые углы

Решение. Пусть $angle BMK=x$. Тогда, поскольку $ACbot MB$, углы $BMK$ и $CMK$ в сумме дают 90°. Отсюда получаем, что

[angle CMK={90}^circ -x]

С другой стороны, по условию задачи угол $NMK$ — прямой. Этот угол состоит из углов $BMN$ и $BMK$, поэтому

[angle BMN={90}^circ -x]

Видим, что углы $CMK$ и $BMN$ равны одной и той же величине: ${90}^circ -x$. Следовательно, эти углы равны, что и требовалось доказать.

5. Злые задачи

Деление задач на простые и сложные весьма условно. Часто «сложными» называют многошаговые задачи и доказательства.

Задача 5. Дан угол $AMB$, равный 64°. Из вершины этого угла проведены лучи $MC$ и $MD$, причём $MCbot MA$ и $MDbot MB$. Кроме того, полученный тупой угол $AMD$ содержит в себе лучи $MB$ и $MC$, которые деля этот угол на три части. Найдите углы $CMD$ и $AMD$.

Решение. Эта задача похожа на задачу 2. Взгляните на чертёж:

Задача 5 тупой угол и перпендикулярные лучи

Поскольку угол $AMC$ — прямой, можем найти угол $BMC$:

[begin{align}angle BMC &={90}^circ -angle AMB= \ &={90}^circ -{64}^circ \ &={26}^circend{align}]

С другой стороны, угол $BMD$ — тоже прямой, поэтому можем найти угол $CMD$:

[begin{align}angle CMD &={90}^circ -angle BMC= \ &={90}^circ -{26}^circ = \ &={64}^circend{align}]

Вновь, как и в задаче 2, получили, что углы $AMB$ и $DMC$ равны. Но это не относится к делу. Найдём угол $AMD$, представив его как сумму углов $AMB$ и $BMD$:

[begin{align}angle AMD &=angle AMB+angle BMD= \ &={64}^circ +{90}^circ = \ &={154}^circ end{align}]

Задача 6. Дан прямой угол $AMB$. Луч $MC$ делит этот угол на два острых угла: $AMC$ и $BMC$. Угол между биссектрисами углов $AMC$ и $AMB$ равен 18°. Найдите углы $AMC$ и $BMC$.

Решение. Вот это уже довольно интересная задача. Взгляните на чертёж:

Задача 6 биссектрисы внутри прямого угла

Красным цветом обозначена биссектриса прямого угла $AMB$. Она разбивает этого угол на два маленьких угла по 45°.

Синим цветом обозначена биссектриса искомого угла $AMC$. Обозначим половинки этого угла за $x$ (имеется в виду, что каждая из половин угла $AMC$ содержит по $x$ градусов).

Но тогда угол между биссектрисами — это часть угла между стороной $MA$ прямого угла $AMB$ и биссектрисой этого же угла. Откуда получаем уравнение

[begin{align}{45}^circ &=x+{18}^circ \ x &={45}^circ -{18}^circ ={27}^circ end{align}]

Но тогда угол $AMC$ будет вдвое больше:

[angle AMC=2x={54}^circ ]

А угол $BMC$, который дополняет $angle AMC$ до прямого, можно найти по формуле

[begin{align}angle BMC &={90}^circ -angle AMC= \ &={90}^circ -{54}^circ ={36}^circend{align}]

Итого искомые углы равны 54 и 36 градусов.

Задача 7. Два равных тупых угла имеют общую сторону. Две другие стороны этих углов взаимно перпендикулярны. Найдите величину тупого угла.

Задача 7 три угла вместе дают 360 градусов

Решение. Пусть два равных тупых угла содержат по $x$ градусов. Вместе с прямым углом (т.е. углом в 90 градусов) они образуют полный поворот, т.е. 360 градусов. Получаем уравнение:

[begin{align}2x+{90}^circ&={360}^circ\ 2x &={270}^circ \ x &={135}^circend{align}]

Задача 8. Из вершины развёрнутого угла проведены два луча, которые делят этот угол на три равные части. Докажите, что биссектриса среднего угла перпендикулярна сторонам развёрнутого угла.

Задача 8 развёрнутый угол биссектриса и доказательство

Доказательство. Обозначим развёрнутый угол как $AOD$, а дополнительные лучи — $OB$ и $OC$. Биссектриса угла $BOC$ — это луч $MO$ (отмечен красным цветом).

Поскольку углы $AOB$, $BOC$ и $COD$ равны и в сумме образуют развёрнутый угол, их градусные меры также равны и составляют треть от 180°:

[angle AOB=angle BOC=angle COD={60}^circ ]

Кроме того, поскольку $OM$ — биссектриса, то углы $BOM$ и $COM$ равны между собой:

[angle BOM=angle COM={30}^circ ]

Однако угол $AOM$ составлен из углов $AOB$ и $BOM$, поэтому

[begin{align}angle AOM &=angle AOB+angle BOM= \ &={60}^circ +{30}^circ ={90}^circ end{align}]

Получили, что $OMbot AD$, что и требовалось доказать.

Смотрите также:

  1. Что такое вертикальные углы
  2. Что такое смежные углы
  3. Комбинаторика в задаче B6: легкий тест
  4. Задача B15 — исследование функции с помощью производной
  5. Координаты вершин правильного тетраэдра
  6. Задача B4: обмен валют в трех различных банках

Как построить Перпендикуляр угла?

Как построить Перпендикуляр угла?

Вопрос Как построить Перпендикуляр угла?, расположенный на этой странице сайта, относится к
категории Геометрия и соответствует программе для 5 — 9 классов. Если
ответ не удовлетворяет в полной мере, найдите с помощью автоматического поиска
похожие вопросы, из этой же категории, или сформулируйте вопрос по-своему.
Для этого ключевые фразы введите в строку поиска, нажав на кнопку,
расположенную вверху страницы. Воспользуйтесь также подсказками посетителей,
оставившими комментарии под вопросом.

На этой странице вы узнаете

  • Как мы сталкиваемся с двугранными углами, когда читаем книгу?
  • Где в комнате можно найти перпендикулярные плоскости?
  • Как с помощью линейки и листа воспроизвести в жизни теорему о трех перпендикулярах?

Стереометрия — это не просто раздел математики, который нужно долго и нудно учить. На самом деле стереометрия описывает всю нашу жизнь. Стало интересно? Давайте разбираться. 

Углы между плоскостями

Мы точно знаем, что угол между стеной и полом равен 90°. Также, как и угол между стеной и потолком, или полом и любым предметом мебели. 

Но чему равен угол между двумя открытыми страницами тетради? Или угол между стеной и полуоткрытой дверью? Угол между перилами и плоскостью пола? Все эти углы достаточно легко найти. И ответы на все эти вопросы нам дает именно стереометрия. 

Начнем разбирать в углах между плоскостями с того, что введем понятие двугранного угла. 

Двугранный угол — это часть пространства, заключенная между двумя полуплоскостями, имеющими общую границу. 

Если мы откроем книгу не полностью и посмотрим на пространство между двумя страницами, это пространство и будет двугранным углом.

На рисунке: 
АВ — общая прямая для плоскостей, ее называют ребром двугранного угла;
a, b  — плоскости, которые образуют двугранный угол, они называются гранями двугранного угла.  

Как мы сталкиваемся с двугранными углами, когда читаем книгу?

Если раскрыть книгу не полностью, то ее страницы будут образовывать двугранный угол, то есть часть пространства, заключенную между двумя страницами. 

Заметим, что при пересечении двух плоскостей обычно образуется четыре двугранных угла. Нас интересует меньший из них.

Настало время ввести понятие угла между двумя плоскостями. Но для этого нам нужно провести перпендикуляры к ребру двугранного угла в каждой плоскости. Важно, чтобы перпендикуляры пересекались в одной точке.

Проведенные перпендикуляры образовали четыре угла. Меньший из них и будет называться углом между плоскостями.

Угол между плоскостями — это угол между перпендикулярами, проведенными к линии пересечения плоскостей. Перпендикуляры должны лежать в данных плоскостях. 

Обозначим нужный нам угол на рисунке как угол COD. Он и будет являться углом между данными плоскостями. 

Угол COD также будет называться линейным углом двугранного угла. 

Линейный угол двугранного угла показывает градусную меру двугранного угла. Поскольку двугранный угол — это часть пространства, то в этом пространстве можно провести множество линейных углов, которые будут равны между собой. 

Как и обычные углы, углы между плоскостями бывают трех видов:

  • Острые, то есть меньше 900
  • Прямые, равные 900
  • Тупые, которые больше 90и меньше 1800

Как уже было сказано выше, за угол между плоскостями всегда принимается острый угол, образованный этими плоскостями.

А что будет, если между плоскостями получится прямой угол?

Такие плоскости называются перпендикулярными. 

Где в комнате можно найти перпендикулярные плоскости?

Достаточно посмотреть на стены и пол, или стены и потолок. А еще на углы потолка — в них будет три перпендикулярные плоскости. 

У перпендикулярных плоскостей есть одна очень интересная особенность: все углы, образованные ими, равны между собой и равняются 90° градусам. 

Чтобы найти угол между плоскостями, необходимо следовать следующему алгоритму. 

Алгоритм нахождения угла между плоскостями

1 шаг. Найти линию пересечения плоскостей.

2 шаг. Достроить к этой линии перпендикуляр в каждой плоскости. 

3 шаг. Найти острый угол между построенными перпендикулярами. 

Углы между прямой и плоскостью

Если нарисовать две прямые на листе бумаги, мы с легкостью можем измерить угол между ними с помощью транспортира. А если провести прямую к плоскости, как точно измерить угол между ними?

И в этом вопросе к нам снова на помощь приходит стереометрия. Но для начала рассмотрим, что такое угол между прямой и плоскостью.

Угол между прямой и плоскостью — это угол между прямой и ее проекцией на эту плоскость. 

Что такое проекция? Предположим, мы проткнем лист бумаги (плоскость) очень длинной иглой. 

А теперь сделаем этот рисунок ближе к чертежу. Пусть плоскость а пересекает прямая а в точке О. 

Начнем строить проекцию. Прежде чем разобраться, что такое проекция прямой на плоскость, найдем проекцию точки на плоскость. 

Возьмем на нашей прямой а точку А и опустим из нее перпендикуляр к плоскости а. Точка, в которой перпендикуляр пересечет плоскость, будет называться проекцией точки на плоскость. На рисунке обозначим ее как А1

Проекция точки на плоскость — это основание перпендикуляра, опущенного из этой точки на плоскость. 

Теперь, если мы будем брать каждую точку на прямой и проектировать ее на плоскость а, то получим проекцию этой прямой на плоскость. Но поскольку на прямой бесконечное множество точек, достаточно соединить точки А1 и О, получаем, что А1О — проекция прямой а на плоскость а

Заметим, что если мы проведем из любой точки прямой проекцию к плоскости, то попадем на прямую А1О. 

Проекция прямой а на плоскость — это прямая а1, образованная проекциями всех точек прямой а на плоскость. 

Таким образом можно построить проекции не только прямой, но и любой фигуры.

Мы построили угол из определения. Тогда углом между прямой а и плоскость а будет угол А1ОА. 

В этом случае мы также берем острый угол, образованный прямой и плоскостью. 

Алгоритм нахождения угла между прямой и плоскостью

Шаг 1. Построить проекцию прямой на плоскость.

Шаг 2. Найти угол между прямой и построенной проекцией. 

Если прямая параллельна плоскости угол будет равен 0

Проекция прямой на плоскость будет этой же прямой, просто лежащей в плоскости.  

Когда прямая перпендикулярна плоскости, проекцией прямой на плоскость будет точка пересечения прямой и плоскости. Угол между прямой и плоскостью будет равен 90°.

Чуть подробнее остановимся на случае, когда прямая перпендикулярна плоскости. 

Прямая, перпендикулярная плоскости — прямая, которая перпендикулярна к каждой прямой, лежащей в этой плоскости. 

А что делать, если прямая будет перпендикулярна только одной прямой из плоскости? По определению обязательно, чтобы она была перпендикулярна всем прямым из плоскости. Как тогда проверить перпендикулярность?

Для этого существует признак перпендикулярности прямой и плоскости:

  • Если прямая перпендикулярна к двум пересекающимся прямым в этой плоскости, то она будет перпендикулярна этой плоскости. 

Следовательно, если необходимо в задаче доказать перпендикулярность прямой и плоскости, достаточно доказать, что прямая будет перпендикулярна всего двум пересекающимся прямым в этой плоскости, а не всему множеству прямых, лежащий в данной плоскости.

Рассмотрим несколько интересных свойств, связанных с прямой, перпендикулярной к плоскости. 

Свойство 1. Через любую точку пространства можно провести единственную прямую, перпендикулярную плоскости. 

Попробуйте подставить уголок к стене из любой точки. Получится ли у вас сделать так, что из одной и той же точки уголок встанет перпендикулярно стене несколько раз? Нет. 

Свойство 2. Если две прямые перпендикулярны одной и той же плоскости, то такие прямые параллельны. 

Здесь тоже просто все доказать. Достаточно построить в плоскости прямую, которая пересечет две данные прямые и посмотреть на рисунок “сбоку”. Заметим, что соответственные углы равны, а значит, прямые параллельны. 

Подробнее про соответственные углы и параллельные прямые можно прочитать в статье “Основы планиметрии”. 

Свойство 3. Если к одной прямой перпендикулярны две плоскости, то такие плоскости параллельны. 

Тут такие же рассуждения, как и в предыдущем свойстве: достаточно построить прямые, принадлежащие плоскостям, и посмотреть на них “сбоку”. 

Свойство 4. Если через перпендикулярную к плоскости прямую проходит плоскость, то данные плоскости будут перпендикулярны. 

Это легко проверить, если найти любой двугранный угол между построенными плоскостями. 

Теорема о трех перпендикулярах

Разберем еще одну очень интересную теорему, связанную с проекциями прямой на плоскость. А именно мы рассмотрим теорему о трех перпендикулярах. 

Для начала попробуем понять ее на реальных предметах. 

Как с помощью линейки и листа воспроизвести в жизни теорему о трех перпендикулярах?

Возьмем уголок и зафиксируем его строго вертикально на листе. Для удобства назовем уголок АВС, где С — прямой угол. 

Сразу заметим, что прямая АС будет перпендикулярна плоскости листа (поскольку уголок стоит строго вертикально, а лист лежит строго горизонтально). 
Дальше заметим, что прямые АС и ВС также перпендикулярны, поскольку в уголке угол С равен 90°. 
Посмотрим чуть-чуть внимательнее и обратим внимание, что прямая ВС при этом будет проекцией на плоскость листа прямой АВ.

Немного достроим наш рисунок и через точку В проведем прямую, перпендикулярную ВС. Назовем эту прямую КМ. 
Сразу отмечаем, что прямая КМ перпендикулярна ВС по построению, а также перпендикулярна прямой АС (поскольку АС — перпендикуляр к плоскости листа).

Можем ли мы что-то еще сказать про нашу ситуацию? Оказывается, прямая АВ также будет перпендикулярна прямой КМ. 

Возникнет вопрос, почему? 

1. Вспомним признак перпендикулярности прямой и плоскости: если прямая перпендикулярна к двум пересекающимся прямым в этой плоскости, то она будет перпендикулярна этой плоскости. 

Теперь узнаем, как этот признак выполняется в данной ситуации. 

2. Посмотрим на ситуацию немного под другим углом и в этот раз возьмем за плоскость не лист, а нашу линейку. 

3. Тогда две пересекающиеся прямые в плоскости линейки будут перпендикулярны прямой КМ: BCKM по построению, а ACKM как прямая, перпендикулярная к плоскости листа, а значит, и перпендикулярная всем прямым в этой плоскости. 

4. Получается, что прямая КМ перпендикулярна плоскости АВС, следовательно, перпендикулярна и всем прямым в этой плоскости, в том числе прямой АВ. 

Таким образом, длинная сторона линейки будет наклонной прямой, основание — ее проекцией, а начерченная линия — перпендикуляром к проекции. 

Мы рассмотрели теорему о трех перпендикулярах. Осталось ее только сформулировать математическим языком. 

Теорема о трех перпендикулярах 
Если наклонная прямая АВ к плоскости а перпендикулярна прямой КМ в этой плоскости, то и проекция прямой АВ на плоскость а перпендикулярна к прямой КМ. 

Для построения чертежа заменим линейку на несколько отрезков. Тогда АВ — наклонная, ВС — проекция, КМ — прямая в плоскости. 

Как с помощью линейки и листа воспроизвести в жизни теорему о трех перпендикулярах?

Для этого нужно взять лист бумаги и треугольную линейку. На листе бумаги построить произвольную прямую, а после поставить линейку строго вертикально так, чтобы основание линейки на листе было перпендикулярно начерченной прямой. 

Таким образом, длинная сторона линейки будет наклонной прямой, основание — ее проекцией, а начерченная линия — перпендикуляром к проекции. 

Вот и все, ничего сложного. А называется теорема так потому, что в построении действительно присутствуют три перпендикуляра, которые отлично видно на рисунке.

Теорему о трех перпендикулярах можно активно использовать для доказательства и решении задач. 

Фактчек

  • Двугранный угол — это часть пространства, заключенная между двумя полуплоскостями, имеющими общую границу. Градусной мерой двугранного угла будет линейный угол двугранного угла или, другими словами, угол между плоскостями. 
  • Угол между плоскостями — это угол между перпендикулярами, проведенными к линии пересечения плоскостей. Перпендикуляры должны лежать в данных плоскостях. За угол между плоскостями принимают острый угол, образованный этими плоскостями. Если угол между плоскостями равен 90°, то такие плоскости перпендикулярны. 
  • Угол между прямой и плоскостью — это угол между прямой и ее проекцией на эту плоскость. Чтобы найти угол между прямой и плоскостью, необходимо построить проекцию прямой на плоскость и найти угол между прямой и ее проекцией. Если прямая параллельна плоскости, то угол между ними будет равен 0°. Если прямая перпендикулярна плоскости, то угол между ними будет равен 90°. 
  • Прямая, перпендикулярная плоскости — прямая, которая перпендикулярна к каждой прямой, лежащей в этой плоскости. Чтобы доказать, что прямая перпендикулярна плоскости, достаточно доказать, что эта прямая перпендикулярна двум пересекающимся в плоскости прямым. 
  • Теорема о трех перпендикулярах гласит, что если наклонная прямая а к плоскости а перпендикулярна прямой b в этой плоскости, то и проекция прямой а на плоскость а перпендикулярна к прямой b. 

Проверь себя

Задание 1. 
Выберите верное утверждение. 

  1. Градусной мерой двугранного угла будет линейный угол двугранного угла. При этом все линейные углы двугранного угла равны между собой;
  2. Градусной мерой двугранного угла будет линейный угол двугранного угла. При этом линейные углы двугранного угла не равны между собой;
  3. Грань двугранного угла — это общая прямая плоскостей, которые его образуют;
  4. Ребра двугранного угла — это плоскости, которые его образуют. 

Задание 2. 
Угол между плоскостями — это…

  1. Тупой угол между перпендикулярами, проведенными к линии пересечения плоскостей;
  2. Острый или прямой угол между перпендикулярами, проведенными к линии пересечения плоскостей;
  3. Тупой угол между двумя произвольными линиями, проведенными к линии пересечения плоскостей;
  4. Острый или прямой угол между двумя произвольными линиями, проведенными к линии пересечения плоскостей.

Задание 3. 
Что такое проекция прямой на плоскость?

  1. Это любая прямая, проведенная из точки пересечения прямой и плоскости;
  2. Это перпендикуляр, опущенный из любой точки на плоскость;
  3. Это всегда точка пересечения прямой и плоскости;
  4. Это прямая, образованная проекциями всех точек прямой на плоскость. 

Задание 4. 
Какой будет проекция прямой, перпендикулярной к плоскости, на эту плоскость?

  1. Проекция будет равна этой прямой и параллельна ей;
  2. Проекция будет меньше прямой и образовывать с ней угол;
  3. Проекция будет точкой пересечения прямой и плоскости;
  4. Проекция будет больше прямой и образовывать с ней угол.  

Задание 5. 
Как доказать, что прямая перпендикулярна плоскости?

  1. Достаточно доказать, что прямая перпендикулярна одной любой прямой в плоскости;
  2. Достаточно доказать, что прямая перпендикулярна двум параллельным прямым в плоскости;
  3. Достаточно доказать, что угол между прямой и любой прямой в плоскости равен 90°;
  4. Достаточно доказать, что прямая перпендикулярна к двум пересекающимся прямым в этой плоскости.

Ответы: 1. — 1 2. — 2 3. — 4 4. — 3 5. — 4

Как найти перпендикуляр в треугольнике

В геометрии одна задача может скрывать в себе множество подзадач, требующих от решающего их человека наличия большого количества знаний. Так для операций с треугольниками, нужно знать о соотношениях между медианами, биссектрисами и сторонами, уметь разными способами вычислять площадь фигур, а также находить перпендикуляр.

Как найти перпендикуляр в треугольнике

Инструкция

Обратите внимание на то, что перпендикуляр в треугольнике необязательно должен лежать внутри фигуры. Высота, опущенная на основание, может оказаться и на продолжении стороны, как это происходит в том случае, если один из углов больше девяноста градусов, или совпадать со стороной, если треугольник прямоугольный.

Воспользуйтесь формулой для вычисления высоты треугольника, если задача содержит все требуемые для этого данные. Для нахождения перпендикуляра составьте дробь, в числителе которой удвоенный квадратный корень из следующего произведения: р*(р-а)(р-в)(р-с), где а, в и с – стороны треугольника, а р – его полупериметр. В знаменателе дроби должна стоять длина того основания, на которое опущен перпендикуляр.

Найдите высоту треугольника, воспользовавшись формулой для вычисления площади этой фигуры: для этого достаточно удвоенную площадь поделить на длину основания. Для нахождения площади используйте другие формулы: например, найти эту величину можно через полупроизведение двух сторон треугольника на синус угла между ними.

Запомните основное соотношение между высотами треугольника: оно обратно пропорционально отношению оснований. Также выучите стандартные формулы, позволяющие быстро найти перпендикуляр в равностороннем и равнобедренном треугольнике. В первом случае высота являет собой произведение стороны треугольника на синус угла в 60 градусов (как следствие формулы для вычисления площади), во втором – удвоенному корню из разности квадрата двойной длины боковой стороны и квадрата основания.

Посчитайте перпендикуляр треугольника, введя данные в графы онлайн-калькулятора. Для этого вам необходимо знать длины сторон данной фигуры, так как расчет проводится по первой указанной выше формуле, использующей полупериметр.

Войти на сайт

или

Забыли пароль?
Еще не зарегистрированы?

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

Понравилась статья? Поделить с друзьями:
  • Как найти отца германа
  • Как найти периметр всех фигур в геометрии
  • Как составить маршрут электрички
  • Как найти работа программиста в минске
  • Anvir task manager как найти майнер