5.3.6. Как найти плоскость, перпендикулярную данной?
Очевидно, что к любой плоскости можно провести бесконечно много перпендикулярных плоскостей, и для того, чтобы зафиксировать конкретную перпендикулярную плоскость, нужно задать точку и вектор либо две точки:
Задача 142
Дана плоскость (координаты декартовы). Найти плоскость , перпендикулярную данной и проходящую через точки .
Решение начнём с вопроса задачи: что мы знаем о плоскости ?
Известны две точки. Можно найти вектор , параллельный данной плоскости. Маловато. Было бы неплохо раздобыть ещё один подходящий вектор. Так как плоскости должны быть перпендикулярны, то подойдёт нормальный вектор плоскости (для лучшего понимания задачи отложите вектор нормали от точки в плоскости ).
Проводить подобные рассуждения здОрово помогает схематический чертёж! – повторю этот красный, а точнее, золотой совет Итак, задача «раскручена», и решение удобно оформить по пунктам (это совет серебряный:):
1) Найдём вектор .
2) Из уравнения снимем вектор нормали: .
3) Уравнение плоскости составим по точке (можно взять ) и двум неколлинеарным векторам :
Ответ:
Проверка состоит из двух этапов:
1) Проверяем, действительно ли плоскости будут перпендикулярны. Если две плоскости перпендикулярны, то их векторы нормали будут ортогональны. Логично. Из полученного уравнения снимаем вектор нормали и рассчитываем скалярное произведение векторов:
, а значит,
К слову, здесь мы разобрали ещё одну задачу – проверили плоскости на перпендикулярность, и теперь вы знаете, как это сделать.
2) В уравнение плоскости подставляем координаты точек . Обе точки должны «подойти».
И первый, и второй пункт можно выполнить устно. Но выполнить обязательно! И это уже даже не платиновый совет – это аксиома!
…Что-то не хочется мне вас сегодня отпускать…, наверное, хорошо себя вели и добросовестно прорешали все задачи =) Придётся рассказать что-нибудь ещё:
5.3.7. Взаимное расположение трёх плоскостей
5.3.5. Как найти угол между плоскостями?
| Оглавление |
Автор: Aлeксaндр Eмeлин
§ 15.Перпендикулярность плоскостей
15.1. Признаки перпендикулярности двух плоскостей
Рис. 102
Определение. Две плоскости называются перпендикулярными (взаимно перпендикулярными), если угол между ними равен 90° (рис. 102).
Взаимную перпендикулярность плоскостей α и β обозначают α ⊥ β. При этом также говорят, что плоскость α перпендикулярна плоскости β или плоскость β перпендикулярна плоскости α.
Заметим, что все четыре двугранных угла, образованные взаимно перпендикулярными плоскостями, прямые.
Примерами взаимно перпендикулярных плоскостей могут служить плоскости пола и стены комнаты в хорошо построенном доме, плоскости двух соседних граней куба или прямоугольного параллелепипеда.
Для стены и пола перпендикулярность проверяют при помощи «отвеса». А как определить, проверить, перпендикулярны ли две плоскости? Ответы на эти вопросы дают признаки перпендикулярности двух плоскостей, а также свойства, которыми обладают перпендикулярные плоскости.
Рассмотрим признаки перпендикулярности двух плоскостей.
Теорема 28 (признак перпендикулярности двух плоскостей). Если одна из двух плоскостей проходит через прямую, перпендикулярную другой плоскости, то эти плоcкости перпендикулярны.
Дано: α и β пересекаются; a ⊥ α; a ⊂ β (рис. 103).
Доказать: β ⊥ α.
Доказательство. Обозначим: A = a ∩ α, b = α ∩ β. Так как по условию теоремы прямая a перпендикулярна плоскости α, то эта прямая перпендикулярна любой прямой, лежащей в плоскости α. Значит, a ⊥ b.
Рис. 103
Проведём в плоскости α через точку A прямую AC, перпендикулярную прямой b. Тогда ∠ BAC — линейный угол двугранного угла, образованного при пересечении плоскостей α и β. Так как AB ⊥ α, то ∠ BAC = 90° (почему?). Это означает, что (α; β) = 90°, т. е. α ⊥ β (по определению перпендикулярных плоскостей). Теорема доказана. ▼
Следствие 1. Если в плоскости есть хотя бы одна прямая, перпендикулярная другой плоскости, то эти плоскости взаимно перпендикулярны.
Следствие 2. Если плоскость перпендикулярна прямой, по которой пересекаются две данные плоскости, то эта плоскость перпендикулярна каждой из данных плоскостей.
Докажите эти следствия самостоятельно.
15.2. Свойства перпендикулярных плоскостей
Теорема 29. Если прямая лежит в одной из двух взаимно перпендикулярных плоскостей и перпендикулярна линии их пересечения, то эта прямая перпендикулярна другой плоскости.
Дано: α ⊥ β; α ∩ β = c; a ⊂ α, a ⊥ c (рис. 104).
Доказать: a ⊥ β.
Доказательство. Обозначим O = a ∩ c и в плоскости β проведём через точку O прямую b, перпендикулярную прямой c. Тогда (a; b) = 90° (как линейный угол прямого двугранного угла, образованного при пересечении плоскостей α и β). Получаем (a ⊥ c, a ⊥ b) ⇒ a ⊥ β (по признаку перпендикулярности прямой и плоскости). Теорема доказана. ▼
Рис. 104
Рис. 105
Теорема 30. Если прямая, проведённая через точку одной из двух взаимно перпендикулярных плоскостей, перпендикулярна другой плоскости, то она лежит в первой из них.
Дано: α ⊥ β, A ∈ α, A ∈ a, a ⊥ β (рис. 105).
Доказать: a ⊂ α.
Доказательство. Обозначим c = α ∩ β и через точку A проведём в плоскости α прямую m, перпендикулярную прямой c. По теореме 29 прямая m перпендикулярна плоскости β. Так как в пространстве через точку можно провести лишь одну прямую, перпендикулярную данной плоскости, то прямая a совпадает с прямой m, лежащей в плоскости α. Значит, a ⊂ α. Теорема доказана. ▼
Докажите самостоятельно следующее предложение («теорему отвеса»). Если прямая, проведённая через точку одной из двух пересекающихся плоскостей, перпендикулярна другой плоскости и не лежит в первой, то данные плоскости не перпендикулярны.
В планиметрии две прямые, перпендикулярные третьей прямой, не могут пересекаться. Проводя аналогию, можно предположить, что не могут пересекаться и две плоскости, перпендикулярные третьей плоскости. Однако это не так. Достаточно посмотреть на две соседние стены вашей комнаты (мы надеемся, что они обе перпендикулярны к полу), чтобы убедиться, что эти стены не параллельны. Вообще, если две плоскости пересекаются по прямой, перпендикулярной третьей плоскости, то каждая из них перпендикулярна этой третьей плоскости.
Верно и обратное утверждение.
Теорема 31. Если две плоскости, перпендикулярные третьей плоскости, пересекаются, то прямая их пересечения перпендикулярна третьей плоскости.
Дано: α ⊥ γ, β ⊥ γ; α ∩ β = a (рис. 106, а).
Рис. 106
Доказать: a ⊥ γ.
Доказательство. Отметим на прямой a произвольную точку A и проведём через неё прямую b, перпендикулярную плоскости γ. Так как точка A принадлежит плоскости α (A ∈ a = α ∩ β), которая перпендикулярна плоскости γ, то прямая b лежит в плоскости α (т. 30). Аналогично, точка A принадлежит плоскости β, поэтому прямая b лежит в плоскости β.
Таким образом, прямая b проходит через точку A, перпендикулярна плоскости γ и лежит в плоскостях α и β. Это означает, что прямая b совпадает с прямой a, т. е. a ⊥ γ. Теорема доказана. ▼
Рис. 107
В дальнейшем придётся часто рассматривать три попарно взаимно перпендикулярные плоскости, имеющие общую точку (рис. 106, б).
Вернёмся к вопросу об измерении угла между двумя пересекающимися плоскостями.
Прямую, перпендикулярную данной плоскости, называют нормалью к этой плоскости.
Пусть плоскости α и β, величина угла между которыми равна ϕ, пересекаются по прямой c. На рисунке 107 плоскость γ, перпендикулярная прямой c, пересекает плоскость α по прямой m, а плоскость β по прямой n; через точки P ∈ m и H ∈ n проведены прямые соответственно a и b, перпендикулярные плоскостям α и β.
Так как c ⊥ γ, то по признаку перпендикулярности двух плоскостей каждая из плоскостей α и β перпендикулярна плоскости γ. По теореме 30 прямые a и b лежат в плоскости γ, в которой лежат также и прямые m и n. Тогда в плоскости γ угол между прямыми m и n (линейный угол двугранного угла, образованного плоскостями α и β) и угол между прямыми a и b равны (как острые углы с соответственно перпендикулярными сторонами). Таким образом, величина угла между двумя пересекающимися плоскостями равна величине угла между нормалями к этим плоскостям.
Перпендикулярность плоскостей
Ирина Алексеевна Антоненко
Эксперт по предмету «Математика»
Задать вопрос автору статьи
Понятие перпендикулярных плоскостей
При пересечении двух плоскостей у нас получается $4$ двугранных угла. Два угла равны $varphi $, а два другие равны ${180}^0-varphi $.
Определение 1
Углом между плоскостями называется минимальный из двугранных углов, образованных этими плоскостями.
Определение 2
Две пересекающиеся плоскости называются перпендикулярными, если угол между этими плоскостями равен $90^circ$ (рис. 1).
Рисунок 1. Перпендикулярные плоскости
Признак перпендикулярности двух плоскостей
Если прямая плоскости перпендикулярна другой плоскости, то эти плоскости перпендикулярны друг другу.
Доказательство.
Пусть нам даны плоскости $alpha $ и $beta $, которые пересекаются по прямой $AC$. Пусть прямая $AB$, лежащая в плоскости $alpha $ перпендикулярна плоскости $beta $ (рис. 2).
Рисунок 2.
Так как прямая $AB$ перпендикулярна плоскости $beta $, то она перпендикулярна и прямой $AC$. Проведем дополнительно прямую $AD$ в плоскости $beta $, перпендикулярно прямой $AC$.
Получаем, что угол $BAD$ — линейный угол двугранного угла, равный $90^circ$. То есть, по определению 1, угол между плоскостями равен $90^circ$, значит, данные плоскости перпендикулярны.
Теорема доказана.
Из этой теоремы следует следующая теорема.
Теорема 2
Если плоскость перпендикулярна прямой, по которой пересекаются две другие плоскости, то она перпендикулярна и этим плоскостям.
Доказательство.
Пусть нам даны две плоскости $alpha $ и $beta $, пересекающиеся по прямой $c$. Плоскость $gamma $ перпендикулярна прямой $c$ (рис. 3)
Рисунок 3.
Так как прямая $c$ принадлежит плоскости $alpha $ и плоскость $gamma $ перпендикулярна прямой $c$, то, по теореме 1, плоскости $alpha $ и $gamma $ перпендикулярны.
Так как прямая $c$ принадлежит плоскости $beta $ и плоскость $gamma $ перпендикулярна прямой $c$, то, по теореме 1, плоскости $beta $ и $gamma $ перпендикулярны.
Теорема доказана.
Для каждой из этих теорем справедливы и обратные утверждения.
Примеры задач
Пример 1
Пусть нам дан прямоугольный параллелепипед $ABCDA_1B_1C_1D_1$. Найти все пары перпендикулярных плоскостей (рис. 5).
Рисунок 4.
Решение.
По определению прямоугольного параллелепипеда и перпендикулярных плоскостей видим следующие восемь пар перпендикулярных между собой плоскостей: $(ABB_1)$ и $(ADD_1)$, $(ABB_1)$ и $(A_1B_1C_1)$, $(ABB_1)$ и $(BCC_1)$, $(ABB_1)$ и $(ABC)$, $(DCC_1)$ и $(ADD_1)$, $(DCC_1)$ и $(A_1B_1C_1)$, $(DCC_1)$ и $(BCC_1)$, $(DCC_1)$ и $(ABC)$.
«Перпендикулярность плоскостей» 👇
Пример 2
Пусть нам даны две взаимно перпендикулярные плоскости. Из точки одной плоскости проведен перпендикуляр к другой плоскости. Доказать, что эта прямая лежит в данной плоскости.
Доказательство.
Пусть нам даны перпендикулярные плоскости $alpha $ и $beta $, пересекающиеся по прямой $c$. Из точки $A$ плоскости $beta $ проведен перпендикуляр $AC$ к плоскости $alpha $. Предположим, что $AC$ не лежит в плоскости $beta $ (рис. 6).
Рисунок 5.
Рассмотрим треугольник $ABC$. Он является прямоугольным с прямым углом $ACB$. Следовательно, $angle ABCne {90}^0$.
Но, с другой стороны, $angle ABC$ является линейным углом двугранного угла, образованного этими плоскостями. То есть двугранный угол, образованный этими плоскостями не равняется 90 градусам. Получаем, что угол между плоскостями не равен $90^circ$. Противоречие. Следовательно, $AC$ лежит в плоскости $beta $.
ч. т. д.
Находи статьи и создавай свой список литературы по ГОСТу
Поиск по теме
Дата последнего обновления статьи: 27.04.2023
Содержание:
Я думаю, что мы еще никогда не жили в такой геометрический период. Все вокруг — геометрия. Ле Корбюзье
Перпендикулярность прямых в пространстве
В модуле 3 мы рассматривали взаимное расположение прямых в пространстве.
Естественно, что пересекающиеся прямые
образуют углы. Углом между прямыми является меньший из двух смежных. Например, на рисунке 5.1 изображены две пересекающиеся прямые
Две прямые в пространстве называются перпендикулярными, если они пересекаются под прямым углом.
Свойства перпендикулярных прямых пространства выражают теоремы 1-4.
Теорема 1
Через произвольную точку прямой в пространстве можно провести перпендикулярную ей прямую.
Доказательство:
Пусть — данная прямая и — точка на ней (рис. 5.2). Возьмем вне прямой а произвольную точку и проведем через эту точку и прямую плоскость (следствие из аксиом). В плоскости через точку можно провести прямую , перпендикулярную . Теорема доказана.
Теорема 2
Если две пересекающиеся прямые соответственно параллельны двум перпендикулярным прямым, то они также перпендикулярны.
Доказательство:
Пусть и — данные перпендикулярные прямые и , а также прямая пересекает в точке , а прямая пересекает в точке (рис. 5.3). Тогда и лежат в плоскости , а прямые и — в плоскости , которые будут параллельными по признаку параллельности плоскостей. Соединим точки и . Выберем на прямой точку , а на прямой — точку Проведем и .Тогда .
Четырехугольники и — параллелограммы, отсюда и . Поскольку , то они лежат в одной плоскости , пересекающей плоскость по прямой , а плоскость — по прямой , которые параллельны, т.е. .
Итак, четырехугольник -параллелограмм, у которого . Таким образом, треугольники и равны по третьему признаку равенства треугольников. , отсюда , поэтому . Итак, прямая перпендикулярна прямой Теорема доказана.
Теорема 3
Через любую точку пространства, не принадлежащую прямой, можно провести прямую, перпендикулярную данной (рис. 5.4, а).
Теорема 4
Если прямая перпендикулярна одной из двух параллельных прямых и лежит с ними в одной плоскости, то она перпендикулярна и второй прямой (рис. 5.4, б).
Доказательство теорем 3 и 4 выполните самостоятельно.
Расположение трех прямых в пространстве, когда они между собой попарно перпендикулярны и имеют общую точку, является особым случаем (рис. 5.4, в).
Отметим, что в пространстве существует множество плоскостей, которые можно провести через одну и ту же прямую. Выбирая точку А вне прямой, мы попадем на одну из этих плоскостей и в выбранной плоскости к данной прямой через точку А проводим прямую, перпендикулярную данной.
Итак, в пространстве к прямой можно провести сколь угодно много перпендикулярных прямых, проходящих через данную точку этой прямой.
Пример №1
Прямые и попарно перпендикулярны (рис. 5.5). Найдите отрезок , если .
Дано:
Найти:
Решение:
Из по теореме Пифагора . поэтому , отсюда .
Из по теореме Пифагора . поэтому
Ответ. 6,5 см
Почему именно так?
Каждая пара данных прямых и — перпендикулярна, т.е. образует прямые углы. Соединив последовательно точки с , с и с , получим прямоугольные треугольники.
- : известны катет и гипотенуза, неизвестна сторона, являющаяся вторым катетом. — сторона .
- : один катет известен по условию, второй — найден из ; неизвестной является третья сторона — гипотенуза. По теореме Пифагора составляем выражение и выполняем вычисление длины отрезка .
Перпендикулярность прямой и плоскости в пространстве
Мы уже рассматривали взаимное расположение прямой и плоскости, детально ознакомились со случаем, когда прямая не пересекает плоскость. В этом параграфе мы рассмотрим случай, когда прямая пересекает плоскость и, кроме того, образует с произвольной прямой этой плоскости, проходящей через точку пересечения, прямой угол. Такую прямую называют перпендикулярной плоскости. Все другие неперпендикулярные прямые, пересекающие плоскость, называют наклонными.
Моделью прямой, перпендикулярной плоскости, может быть установленная вышка, столб, вкопанный в землю, гвоздь, вбитый в стену, и т.п.
Прямая, пересекающая плоскость, называется перпендикулярной этой плоскости, если она перпендикулярна произвольной прямой, которая лежит на этой плоскости и проходит через их точку пересечения.
Чтобы определить, будет ли прямая перпендикулярной плоскости , нужно через точку ее пересечения с плоскостью провести множество прямых (рис. 5.10) и доказать, что она перпендикулярна каждой из них. Этот путь нерациональный. Поэтому, чтобы установить перпендикулярна ли прямая плоскости, пользуются признаком перпендикулярности прямой и плоскости.
Теорема 5 (признак перпендикулярности прямой и плоскости)
Если прямая перпендикулярна двум пересекающимся прямым этой плоскости, то она перпендикулярна и данной плоскости.
Доказательство:
Пусть — данная плоскость, — прямая, пересекающая ее в точке , и — прямые, которые принадлежат плоскости , проходят через точку (рис. 5.11) и перпендикулярны прямой . Докажем, что , т.е., что прямая с перпендикулярна любой прямой плоскости , которая проходит через точку .
Для этого выполним дополнительное построение:
- отложим в разных полупространствах на прямой от точки равные отрезки и ;
- обозначим на прямой некоторую точку , а на прямой — точку ; соединим точки: с , с , с , с и с ;
- проведем через точку произвольную прямую , которая пересечет в точке , и также соединим ее с и .
Рассмотрим образованные при этом треугольники.
- — медиана и высота; по построению; — общая сторона треугольников и ; . Итак, по двум сторонам и углу между ними. Отсюда .
- . Равенство отрезков и доказывается аналогично, как и равенство отрезков и .
- , поскольку и -общая сторона. Отсюда вытекает равенство соответствующих углов: .
- по двум сторонам и углу между ними: — общая сторона; по доказательству выше. Итак, , т.е. — равнобедренный: — основание треугольника, — середина , поэтому — медиана . В равнобедренном треугольнике медиана является высотой, т.е. , а это означает, что . Поскольку прямая — произвольная прямая плоскости , проходит через точку пересечения прямой и плоскости , перпендикулярна прямой , то .
Теорема доказана.
Отметим, что вы впервые столкнулись с таким громоздким доказательством. Доказательство не следует заучивать наизусть или запоминать шаги, необходимо понять его и последовательно, опираясь на известные факты, изложить рассуждения. Для этого важно спланировать последовательность логических шагов и не допускать ошибок.
Итак, для установления перпендикулярности прямой и плоскости достаточно проверить перпендикулярность прямой двум прямым плоскости, проходящим через точку их пересечения (по признаку).
Из данной теоремы вытекают два следствия.
Следствие 1. Если плоскость перпендикулярна одной из двух параллельных прямых, то она перпендикулярна и второй прямой.
Доказательство:
Пусть — плоскость, и — две прямые, пересекающие ее в точках и , причем , (рис. 5.12). Проведем через точку произвольную прямую на плоскости , а через точку -прямую , параллельную . Поскольку прямая , перпендикулярна плоскости , то прямые и перпендикулярны. Тогда, по теореме 2, прямые и также перпендикулярны. Таким образом, прямая перпендикулярна произвольной прямой, которая лежит на плоскости и проходит через их точку пересечения . Это определяет перпендикулярность прямой к плоскости .
Следствие 2. Две прямые, перпендикулярные одной плоскости, параллельны.
Доказательство:
Пусть и две прямые, перпендикулярные плоскости (рис. 5.13). Допустим, что прямые и не параллельные. Выберем на прямой точку , которая не принадлежит плоскости . Проведем через точку прямую параллельную прямой . Она перпендикулярна плоскости по предыдущему следствию. Пусть прямая пересекает плоскость в точке , а прямая пересекает в точке . Тогда пряма перпендикулярна пересекающимся прямым и . А это невозможно, предположение неверно. Таким образом, прямые параллельны.
Пример №2
Докажите, что через любую точку А можно провести прямую, перпендикулярную данной плоскости.
Доказательство:
Рассмотрим два случая.
Первый случай. Пусть точка принадлежит плоскости (рис. 5.14). Тогда через точку в плоскости проведем прямую . Выбрав точку , не принадлежащую , проведем через нее и прямую плоскость (следствие из аксиом). Проведем в плоскости прямую , а в плоскости -прямую . Через эти две прямые проходит плоскость у, которая будет перпендикулярна прямой (теорема о перпендикулярности прямой и плоскости).
Тогда в плоскости достаточно провести прямую . Она будет перпендикулярна и прямой , поскольку лежит в у и проходит через точку пересечения. Поскольку перпендикулярна двум прямым плоскости , то она перпендикулярна и самой плоскости. Итак, мы построили прямую , которая перпендикулярна плоскости и проходит через заданную точку .
Второй случай. Пусть точка не принадлежит плоскости . Выбрав произвольную точку на плоскости , аналогично предыдущему случаю, проведем прямую , которая проходит через точку . Тогда через эту прямую и точку можно провести некоторую плоскость , а на ней -некоторую прямую , которая проходит через точку параллельно . Прямая будет перпендикулярна (если одна из двух параллельных прямых перпендикулярна плоскости, то вторая также перпендикулярна). Построение выполнено. Итак, прямую построить можно. Ч.т.д.
Перпендикуляр и наклонная. Теорема о трех перпендикулярах
Рассмотрим изображение прямой а, перпендикулярной плоскости (рис. 5.20). Обозначим на прямой произвольный отрезок.
Отрезок называется перпендикулярным плоскости, если он лежит на прямой, перпендикулярной плоскости.
Итак, на прямой , перпендикулярной плоскости , можно разместить множество отрезков, которые будут перпендикулярны плоскости .
На рисунке 5.21 изображены различные случаи расположения перпендикулярного плоскости отрезка:
- отрезок лежит по одну сторону от плоскости и не пересекает ее (рис. 5.21, а);
- отрезок пересекает плоскость (концы отрезка находятся в разных полупространствах) (рис. 5.21, б);
- отрезок лежит по одну сторону от плоскости и точка — конец отрезка — принадлежит плоскости (рис. 5.21, в).
Чаще всего на практике встречается третий случай. Такой отрезок называют перпендикуляром, проведенным из данной точки к плоскости.
Перпендикуляром, проведенным из данной точки к данной плоскости, называется отрезок, который соединяет данную точку с точкой плоскости и лежит на прямой, перпендикулярной этой плоскости (рис. 5.21, в). Конец отрезка, лежащий на плоскости, называется основанием перпендикуляра.
Наклонной, проведенной из данной точки к данной плоскости, называется любой отрезок, который соединяет данную точку с точкой плоскости и не является перпендикуляром к плоскости. Конец отрезка, лежащий на плоскости, называется основанием наклонной. Отрезок, который соединяет основание перпендикуляра и основание наклонной, проведенных из одной и той же точки, называется проекцией наклонной.
На рисунке 5.22 отрезок — перпендикуляр, проведенный из точки на плоскость . Отрезок — наклонная, проведенная из точки на ту же плоскость . Точка — основание перпендикуляра, а точка — основание наклонной, отрезок — проекция наклонной на плоскость . Угол , образованный наклонной и ее проекцией , называют углом наклона наклонной к плоскости .
Углом между наклонной и плоскостью называется угол между наклонной и проекцией этой наклонной на плоскость.
Свойства перпендикуляра и наклонных
Если из одной точки вне плоскости провести к ней перпендикуляр и наклонные, то:
- из точки, не принадлежащей плоскости, можно провести один и только один перпендикуляр и множество наклонных;
- длина перпендикуляра меньше длины любой наклонной;
- наклонные, имеющие равные проекции, равны между собой, и наоборот, равные наклонные имеют равные проекции;
- из двух наклонных большую длину имеет та, которая имеет большую проекцию, и наоборот, большая наклонная имеет большую проекцию.
Докажите эти свойства самостоятельно.
Широко используется свойство прямой, перпендикулярной проекции наклонной или наклонной, которое называют теоремой о трех перпендикулярах.
Теорема 6 (о трех перпендикулярах)
Если прямая, проведенная на плоскости через основание наклонной, перпендикулярна ее проекции, то она перпендикулярна и наклонной. И наоборот, если прямая, проведенная на плоскости через основание наклонной, перпендикулярна наклонной, то она перпендикулярна и проекции наклонной.
Дано:
Доказать: прямая .
Доказательство:
Докажем вторую часть теоремы. Пусть — перпендикуляр к плоскости , — наклонная. Прямая принадлежит плоскости , проходит через основание наклонной и перпендикулярна ей (рис. 5.23). Т.е. . Проведем через основание наклонной прямую , параллельную . , т.е. . Прямые и лежат в одной плоскости . Поскольку и , то по признаку . . Итак,. Ч.т.д. Первую часть теоремы докажите самостоятельно.
Пример №3
Из точки к плоскости проведены две наклонные. Найдите длины наклонных, если одна из них на 26 см больше другой, а проекции наклонных равны 12 см и 40 см.
Дано: — перпендикуляр к плоскости (рис. 5.24); и — наклонные; на 26 см; .
Найти: и .
Решение:
Пусть , тогда . В — гипотенуза; — катет. По теореме Пифагора: , отсюда , .(1)
В — гипотенуза; — катет. По теореме Пифагора: , отсюда , , .(2)
Из (1) и (2) имеем:
Ответ. 15 см и 41 см.
Почему именно так?
— перпендикуляр к , поэтому и . Перпендикуляр, наклонная и ее проекция образуют прямоугольный треугольник. Две различные наклонные, один перпендикуляр и две проекции образуют два прямоугольных треугольника с общим катетом. Составить соотношение между сторонами прямоугольного треугольника можно по теореме Пифагора.
Алгебраический метод решения упрощает процесс поиска решения. Находим общий катет для и:
и
Отсюда имеем равенство: и соответствующее уравнение с одной переменной, что приводит к решению задачи.
Перпендикулярность плоскостей
Две пересекающиеся плоскости называются перпендикулярными, если третья плоскость, перпендикулярная прямой пересечения этих плоскостей, пересекает их по перпендикулярным прямым (рис. 5.31).
Если .
Моделями перпендикулярных плоскостей в окружающем мире являются различные конфигурации предметов. Например, шкатулка с крышкой, двери, окна, которые открываются, и т.д. Принцип «открывания» частей моделей основывается на перпендикулярности прямых, проведенных перпендикулярно прямой пересечения (линии крепления) (рис. 5.32).
Перпендикулярные плоскости обладают такими свойствами:
- Любая плоскость, перпендикулярная линии пересечения перпендикулярных плоскостей, пересекает их по перпендикулярным прямым. И наоборот, плоскость, перпендикулярная двум пересекающимся плоскостям, перпендикулярна линии их пересечения.
- Если две плоскости взаимно перпендикулярны, то любая прямая, лежащая в одной из них и перпендикулярная их линии пересечения, перпендикулярна другой плоскости.
- Если две плоскости взаимно перпендикулярны и из произвольной точки одной из них опущен перпендикуляр на вторую, то этот перпендикуляр лежит в первой плоскости.
Рассмотрим их несколько позднее. Докажем сначала признак перпендикулярности двух плоскостей.
Теорема 7 (признак перпендикулярности плоскостей)
Если одна из двух плоскостей проходит через прямую, перпендикулярную другой плоскости, то эти плоскости перпендикулярны.
Дано: ; плоскость проходит через . Доказать:
Доказательство:
Построим произвольную плоскость через прямую и некоторую точку вне ее (рис. 5.33). — общая точка плоскостей и , поэтому они пересекаются по некоторой прямой , проходящей через точку . Проведем на плоскости некоторую прямую (на плоскости такая прямая единственная). Поскольку и , то . Итак, прямая с перпендикулярна двум пересекающимся прямым и . Построим через прямые и плоскость . Она перпендикулярна прямой (поскольку две ее прямые перпендикулярны ). Поэтому ее линии пересечения с плоскостями и образуют прямой угол. Т.е. плоскость , перпендикулярная прямой пересечения плоскостей и , пересекает их по перпендикулярным прямым и , что по определению доказывает перпендикулярность плоскостей и .
Теорема доказана.
Теперь вернемся к свойствам перпендикулярных прямых и плоскостей и докажем некоторые из них.
Теорема 8
Если две плоскости взаимно перпендикулярны, то любая прямая, лежащая в одной из них и перпендикулярная линии их пересечения, перпендикулярна второй плоскости.
Дано:
Доказать:
Доказательство:
Пусть плоскости и взаимно перпендикулярны (рис. 5.34), т.е. некоторая плоскость , перпендикулярная прямой , пересекает их по перпендикулярным прямым и .
Проведем через точку прямую . Тогда , отсюда плоскость, проходящая через прямые и , будет перпендикулярна прямой . Поскольку , то перпендикулярными будут и прямые . Кроме того, (по условию), поэтому . Теорема доказана.
Теорема 9
Если две плоскости взаимно перпендикулярны и из некоторой точки одной из них опущен перпендикуляр на вторую, то этот перпендикуляр лежит в первой плоскости.
Дано:
Доказать:
Доказательство:
Пусть плоскости и взаимно перпендикулярны (рис. 5.35). Тогда некоторая плоскость , перпендикулярная прямой , пересекает их по перпендикулярным прямым и .
Итак, дано и . Т.е. . В плоскости через точку проведен отрезок По следствию, две прямые, перпендикулярные одной и той же плоскости, будут параллельными. . Таким образом, они лежат в одной плоскости — . Если одна из двух параллельных прямых пересекает в плоскости прямую , то и другая пересекает ее. Отсюда вытекает, что точка должна принадлежать прямой . Тогда она будет общей для двух плоскостей. Но если две точки и принадлежат , то вся прямая принадлежит плоскости .
Теорема доказана.
Остальные свойства докажите самостоятельно.
Пример №4
Из точек и , лежащих на двух взаимно перпендикулярных плоскостях (рис. 5.36), проведены перпендикуляры и на прямую пересечения плоскостей и . Найдите длину отрезка , если , .
Дано:
Найти:
Решение:
Поскольку , отсюда .
— прямоугольный: — катет, — катет, — гипотенуза (искомый отрезок). Рассмотрим на плоскости , тогда , поэтому и — прямоугольный.
Из — катет; — катет; — гипотенуза, которая является неизвестным катетом для . Из Из
Отсюда, учитывая что , имеем .
Ответ. 11 см.
Почему именно так?
Для каждой геометрической задачи важно построить цепочку логических рассуждений. В этой задаче важно видеть не только прямоугольные треугольники на плоскостях и , но и использовать признак и свойства перпендикулярных плоскостей. Таким образом можно выйти на новый прямоугольный треугольник или , третью сторону которого находят по известному и найденному катетам. В том или ином случае остается наклонной, меняются только перпендикуляры к соответствующим плоскостям и и проекции наклонной на плоскость или на плоскость .
Перпендикулярность прямой и плоскости
А) Напомним, что перпендикулярными называют прямые, угол между которыми равен 90°. Перпендикулярные прямые могут быть пересекающимися и могут быть скрещивающимися. На рисунке 210 перпендикулярные прямые и пересекаются, а перпендикулярные прямые и скрещиваются.
Прямая называется перпендикулярной плоскости, если она перпендикулярна каждой прямой этой плоскости.
Перпендикулярность прямой плоскости записывают так: Говорят также, что и плоскость перпендикулярна прямой и пишут
Прямая перпендикулярная плоскости обязательно эту плоскость пересекает. Если допустить, что прямая лежит в плоскости или параллельна ей, то в плоскости есть прямые, параллельные прямой и угол между и такими прямыми не равен 90°.
Окружающее пространство даёт много примеров, иллюстрирующих перпендикулярность прямой и плоскости. Столбы с осветительными лампами и колонны устанавливают перпендикулярно горизонтальной поверхности земли (рис. 211).
Из теоремы 6 параграфа 5 следует, что при определении угла между прямыми эти прямые можно заменять параллельными прямыми. Поэтому если одна из параллельных прямых перпендикулярна плоскости, то и другая также перпендикулярна этой плоскости. Верно и обратное утверждение.
Теорема 1. Если две прямые перпендикулярны плоскости, то они параллельны друг другу.
Доказательство: Пусть прямые и обе перпендикулярны плоскости (рис. 212). Докажем, что прямые и параллельны друг другу.
Через какую-либо точку прямой проведём прямую параллельную прямой Тогда Докажем, что прямая совпадает с прямой Допустим, что это не так. Тогда получается, что в плоскости заданной прямыми и через точку проведены две прямые, перпендикулярные прямой по которой пересекаются плоскости и что невозможно. Значит, прямые и совпадают, тогда и параллельны.
Пусть имеются плоскость и прямая которая её пересекает и не перпендикулярна (рис. 213). Основания перпендикуляров, опущенных из точек прямой на плоскость образуют прямую Эта прямая называется проекцией прямой на плоскость
Следующая теорема устанавливает признак перпендикулярности прямой и плоскости.
Теорема 2. Если прямая перпендикулярна двум пересекающимся прямым плоскости, то она перпендикулярна этой плоскости.
Доказательство: Пусть прямая пересекает плоскость в точке и перпендикулярна пересекающимся прямым и лежащим в плоскости а (рис. 214). Докажем, что прямая перпендикулярна плоскости т. е. что прямая перпендикулярна прямой произвольно выбранной в плоскости
Проведём через точку прямые и соответственно параллельные прямым и В плоскости проведём какую-либо прямую так, чтобы она пересекала прямые и в точках (рис. 215). На прямой отметим точки и на равных расстояниях от точки Прямые и — серединные перпендикуляры к отрезку поэтому и Значит, треугольники и равны по трём сторонам, поэтому углы и равны. Учитывая это, получим, что треугольники и равны по двум сторонам и углу между ними. Поэтому Это означает, что треугольник является равнобедренным, поэтому его медиана является и высотой, т. е. прямые и а также прямые и перпендикулярны.
Следствие 1. Если прямая перпендикулярна одной из параллельных плоскостей, то она перпендикулярна и другой плоскости.
Пусть плоскости и параллельны и прямая перпендикулярна плоскости а (рис. 216). Докажем, что прямая перпендикулярна плоскости Для доказательства проведём через прямую две какие-либо плоскости и Пусть они пересекают плоскость по прямым и а параллельную ей плоскость — по прямым и Поскольку и и то и По теореме 2 получаем, что
Следствие 2. Если одной прямой перпендикулярны две плоскости, то они параллельны.
Проведите самостоятельно обоснование этого утверждения, используя рисунок 216
Б) Теорема 3. Через каждую точку пространства проходит единственная плоскость, перпендикулярная данной прямой.
Доказательство: Пусть даны прямая и точка В случае, когда точка не лежит на прямой (рис. 217), в плоскости, которая определяется точкой и прямой через точку проведём прямую перпендикулярную прямой и через точку пересечения прямых и — ещё одну прямую перпендикулярную прямой
В случае, когда точка лежит на прямой (рис. 218), через точку проведём прямые и перпендикулярные прямой . Через прямые и проведём плоскость Эти плоскости и прямая перпендикулярны по признаку перпендикулярности прямой и плоскости.
Докажем теперь, что построенная плоскость а единственная. Допустим, что это не так. Пусть через точку проведены две плоскости и перпендикулярные прямой (рис. 219 и 220). Через прямую и точку проведём какую-либо плоскость Она пересекает плоскости и по некоторым прямым и так как плоскость имеет с плоскостями и общую точку Поскольку и то и Получается, что в плоскости через точку проведены две прямые и перпендикулярные прямой что невозможно.
Теорема 4. Через каждую точку пространства проходит единственная прямая, перпендикулярная данной плоскости.
Доказательство: Пусть даны точка и плоскость Пусть — прямая в плоскости а — плоскость, которая проходит через точку и перпендикулярна прямой Пусть плоскости и пересекаются по прямой (рис. 221). В плоскости через точку проведём прямую перпендикулярную прямой Прямая — искомая, так как она перпендикулярна пересекающимся прямым и по построению; так как и принадлежит
Прямая — единственная. Допустим, что это не так. Пусть через точку проходит ещё одна прямая перпендикулярная плоскости (рис. 222 и 223). Тогда по теореме 1 прямые и параллельны друг другу. Но такое невозможно, так как прямые и пересекаются в точке
Следствие 3. Квадрат диагонали прямоугольного параллелепипеда равен сумме квадратов трёх его измерений.
Пусть — прямоугольный параллелепипед (рис. 224). Поскольку ребро перпендикулярно плоскости то треугольник прямоугольный с прямым углом Поэтому А поскольку треугольник также прямоугольный с прямым углом то Учитывая, что и получаем, что
Пример №5
Докажите, что если рёбра и а также и четырёхугольной пирамиды основанием которой является параллелограмм, равны между собой (рис. 225), то отрезок, соединяющий вершину с точкой пересечения диагоналей этого параллелограмма, перпендикулярен основанию
Решение:
— параллелограмм и поэтому и
Поскольку равнобедренный и то
Поскольку равнобедренный и то
и и поэтому (теорема 2).
Используя рисунок 226, докажите самостоятельно обратное утверждение: «Если отрезки и а также и соединяют точку перпендикуляра, проведённого из центра параллелограмма с противоположными его вершинами, то эти отрезки попарно равны».
Пример №6
В правильной треугольной пирамиде точка — середина ребра (рис. 227). Докажите, что прямая перпендикулярна плоскости
Решение:
— правильная треугольная пирамида, поэтому — равносторонний и — равнобедренный.
— равносторонний, и — середина поэтому
— равнобедренный, и — середина поэтому
и поэтому
Пример №7
Докажите, что диагональ куба перпендикулярна плоскости треугольника (рис. 228).
Решение:
— квадрат, поэтому
— куб, поэтому
и поэтому
и поэтому
— квадрат, поэтому
— куб, поэтому
и поэтому
и поэтому
и поэтому
Используя рисунок 228, установите, в какой точке прямая пересекает плоскость
Пространственное моделирование
При выполнении задания на определение вертикальности столба для забора (рис. 240) ученик проверил вертикальность первого из столбов, а дальше, измерив высоту первого и второго столбов и расстояние между ними снизу и сверху, сделал вывод о том, что и второй столб тоже вертикальный. Определите, обеспечивают ли полученные учеником сведения правильность его вывода. Ответ обоснуйте.
Расстояния
А) Пусть даны плоскость и точка вне её (рис. 241). Через точку проведём прямую перпендикулярную плоскости и пусть — точка пересечения прямой с плоскостью Отрезок называется перпендикуляром к плоскости, проведённым из точки а точка — основанием перпендикуляра.
Соединим точку ещё с какой-либо точкой плоскости Отрезок называется наклонной к плоскости, проведённой из точки а точка — основанием наклонной. Отрезок называется проекцией наклонной на плоскость
Свойства перпендикуляра и наклонных
Если из одной точки вне плоскости проведены к этой плоскости две наклонные (рис. 242), то:
- а) наклонные, имеющие равные проекции, равны между собой;
- б) та наклонная больше, проекция которой больше;
- в) равные наклонные имеют равные проекции;
- г) большая наклонная имеет большую проекцию.
Свойства перпендикуляров и наклонных докажите самостоятельно, используя рисунок.
Теорема 5. Перпендикуляр к плоскости, проведённый из некоторой точки, меньше любой наклонной к этой плоскости, проведённой из той же точки.
Доказательство: Пусть отрезок на рисунке 243 — перпендикуляр, а отрезок — наклонная к плоскости Эти перпендикуляр и наклонная в прямоугольном треугольнике являются соответственно катетом и гипотенузой. Поэтому
В соответствии с утверждением теоремы 5, из всех расстояний от данной точки до различных точек данной плоскости наименьшим является расстояние, измеренное по перпендикуляру.
Б) Расстоянием от точки до плоскости называется длина перпендикуляра, проведённого из этой точки к плоскости.
Когда мы говорим, например, что уличный фонарь находится на высоте 8 м от земли, то подразумеваем, что расстояние от фонаря до поверхности земли, измеренное по перпендикуляру, проведённому от фонаря к плоскости земли, составляет 8 м (рис. 244).
Теорема 6. Расстояние от любой точки одной из параллельных плоскостей к другой плоскости одно и то же и равно длине их общего перпендикуляра.
Доказательство: Пусть даны параллельные плоскости и (рис. 245). Пусть какая-либо точка плоскости отрезок — перпендикуляр, проведённый из точки к плоскости Возьмём произвольную точку плоскости и проведём из неё перпендикуляр к плоскости Тогда по теореме 1 прямые и параллельны, а по теореме 12 из параграфа 6 отрезки и равны друг другу. Это означает, что расстояние от любой точки плоскости до плоскости равно отрезку Поскольку отрезок перпендикулярен плоскости то он является расстоянием от точки до плоскости Понятно, что расстояние от любой точки плоскости до плоскости равно отрезку
Расстоянием между параллельными плоскостями называется длина перпендикуляра, проведённого из какой-либо точки одной плоскости к другой плоскости.
Все точки одной стены комнаты находятся на одинаковом расстоянии от противоположной стены (рис. 246). Это расстояние и есть ширина комнаты.
Теорема 7. Расстояние от любой точки прямой, параллельной плоскости, до этой плоскости одно и то же и равно перпендикуляру, проведённому из какой-либо точки прямой к плоскости.
Используя рисунок 247, проведите доказательство теоремы самостоятельно.
Расстоянием между прямой и параллельной ей плоскостью называется длина перпендикуляра, проведённого из какой-либо точки прямой к плоскости.
Все точки края стола находятся на одном расстоянии от пола (рис. 248).
Теорема 8. Две скрещивающиеся прямые имеют единственный общий перпендикуляр.
Доказательство: Пусть даны скрещивающиеся прямые и (рис. 249). Докажем, что на этих прямых можно выбрать такие точки и что прямая перпендикулярна и прямой и прямой
Пусть — плоскость, проходящая через прямую параллельно прямой Возьмём на прямой точку и опустим перпендикуляр на плоскость Пусть — плоскость, проходящая через пересекающиеся прямые и Обозначим — прямую, по которой пересекаются плоскости и Поскольку то прямые и пересекаются в некоторой точке В плоскости опустим перпендикуляр на прямую Прямые и лежат в одной плоскости и перпендикулярны прямой Поэтому и значит, и
Этим самым существование общего перпендикуляра скрещивающихся прямых обосновано. Докажем теперь его единственность.
Пусть скрещивающиеся прямые и имеют ещё один общий перпендикуляр причём точка принадлежит прямой а точка — прямой (рис. 250).
Точки и и совпадать не могут, так как из одной точки к прямой можно провести только один перпендикуляр. Поскольку и то прямая как и прямая перпендикулярна плоскости проходящей через прямую параллельно прямой Поэтому и точки принадлежат одной плоскости. Значит, и прямые и принадлежат одной плоскости. Получили противоречие с тем, что эти прямые скрещиваются.
Расстоянием между скрещивающимися прямыми называется длина их общего перпендикуляра.
Из доказательства теоремы 8 следует, что расстояние между скрещивающимися прямыми равно расстоянию от любой точки одной из них до плоскости, содержащей другую прямую и параллельную первой.
Чтобы найти расстояние между скрещивающимися прямыми, можно действовать по-разному.
а) Можно построить отрезок с концами на этих прямых, перпендикулярный им обеим, и найти его длину.
Пример №8
Найдём расстояние между прямыми, которые содержат ребро куба длиной и диагональ грани, которая с этим ребром не имеет общих точек.
Решение:
Пусть нужно найти расстояние между прямыми и (рис. 251). Поскольку и то — общий перпендикуляр скрещивающихся прямых и а потому искомое расстояние равно ребру куба, т. е.
б) Можно построить плоскость, которая содержит одну из прямых и параллельна другой. Тогда искомое расстояние будет равно расстоянию от этой плоскости до другой прямой.
Пример №9
В правильной четырёхугольной пирамиде рёбра основания равны 4, а боковые рёбра — 6. Найдём расстояние между прямыми и где — середина ребра
Решение:
Пусть — центр квадрата Через прямую проведём плоскость параллельную прямой (рис. 252). Поскольку плоскость перпендикулярна прямой и содержит прямую то перпендикуляр, опущенный из любой точки прямой на плоскость принадлежит плоскости
Пусть — такая точка на прямой что Учитывая, что — середина стороны треугольника получаем, что равно половине высоты треугольника проведённой к стороне Поэтому Найдем площадь треугольника и его медиану
Теперь
в) Можно построить две параллельные плоскости, каждая из которых содержит одну из скрещивающихся прямых и параллельна другой. Тогда искомое расстояние будет равно расстоянию между этими плоскостями.
Пример №10
Найдём расстояние между прямыми, содержащими непересекающиеся диагонали двух смежных граней куба с ребром
Решение:
Пусть нужно найти расстояние между прямыми и (рис. 253). Плоскость, которая содержит и параллельна пересекает грань по прямой, параллельной т. е. по прямой а грань — по прямой Рассуждая так же, получаем, что плоскость, которая содержит и параллельна пересекает грань по прямой а грань — по прямой
Диагональ куба как прямая плоскости образует прямой угол с прямыми и которые перпендикулярны этой плоскости, а как прямая плоскости образует прямой угол с прямыми и которые перпендикулярны этой плоскости. Поэтому прямая перпендикулярна как плоскости так и параллельной ей плоскости
Плоскость пересекается с плоскостями и по прямым и где и — центры граней и (рис. 254), прямая пересекает плоскости и в точках и на прямых и Поскольку то по теореме Фалеса и Поэтому общий перпендикуляр плоскостей и имеет длину т. е.
Ответ:
Диагональ куба делится плоскостью треугольника, сторонами которого служат диагонали граней куба, имеющие с рассматриваемой диагональю куба общую точку, в отношении 1 : 2.
г) Можно построить плоскость, перпендикулярную одной из скрещивающихся прямых, и построить проекцию на неё другой прямой. Тогда искомое расстояние будет равно длине перпендикуляра, опущенного из точки, являющейся проекцией первой прямой на построенную плоскость, на проекцию другой прямой.
Пример №11
В четырёхугольной пирамиде все рёбра равны Найдём расстояние между скрещивающимися рёбрами и (рис. 255).
Решение:
Из теоремы 8 следует, что на прямых и есть такие точки и что прямая перпендикулярна как прямой так и прямой и, вместе с этим, плоскости, проходящей через одну из этих прямых параллельно другой.
Пусть — плоскость, проходящая через точку перпендикулярно прямой Она проходит через середины и рёбер и Тогда и проекцией отрезка на плоскость будет отрезок, равный
Определим, в какие точки спроектируются точки и Поскольку то вся прямая проектируется в точку Значит, точка проектируется в точку
Поскольку точки и проектируются в точки и N соответственно, то прямая проектируется в прямую Учтём также, что прямая принадлежит плоскости, параллельной прямой Поэтому искомая проекция отрезка — перпендикуляр к прямой проведённый из точки
Длину этого перпендикуляра найдём, используя площадь равнобедренного треугольника с основанием и боковыми сторонами
Получим откуда
Ответ:
Пример №12
Точка отстоит на 40 см от каждой вершины правильного треугольника со стороной 60 см. Найдите расстояние от точки до плоскости
Решение:
и — правильный треугольник, поэтому — центр окружности, описанной около треугольника и — её радиус (рис. 257).
поэтому — прямоугольный.
Тогда
Ответ: 20 см.
Пример №13
Из вершины равнобедренного треугольника с основанием возведён перпендикуляр и точка соединена с серединой этого основания (рис. 258). Докажите, что прямые и перпендикулярны.
Решение:
— перпендикуляр к плоскости поэтому и — проекции наклонных и на
— равнобедренный треугольник с основой поэтому
и — проекции наклонных и на и поэтому
и — середина поэтому
Угол между прямой и плоскостью
А) С помощью чисел, выражающих расстояние между двумя прямыми и величину угла между ними, можно описать взаимное расположение этих прямых в пространстве. Если прямые и пересекаются, то их взаимное расположение характеризует угол между ними, расстояние между такими прямыми считается равным нулю (рис. 266). Если прямые и параллельны, то их взаимное расположение характеризует расстояние между ними, угол между такими прямыми равен нулю (рис. 267). Если прямые и скрещиваются, то их взаимное расположение характеризует угол и расстояние между ними (рис. 268).
Теорема 9. Если прямая плоскости перпендикулярна проекции наклонной на эту плоскость, то она перпендикулярна и самой наклонной, а если прямая плоскости перпендикулярна наклонной к плоскости, то она перпендикулярна и проекции этой наклонной.
Доказательство: Пусть отрезки и — соответственно перпендикуляр и наклонная к плоскости а, тогда отрезок — проекция наклонной на эту плоскость (рис. 269).
Пусть прямая плоскости а перпендикулярна проекции Докажем, что прямая перпендикулярна самой наклонной
Прямая перпендикулярна пересекающимся прямым и плоскости — первой прямой по условию, а второй — так как она лежит в плоскости которой перпендикулярна прямая Поэтому прямая перпендикулярна и прямой плоскости
Пусть прямая плоскости перпендикулярна наклонной Докажем, что прямая перпендикулярна проекции этой наклонной.
Прямая перпендикулярна пересекающимся прямым и плоскости Поэтому она перпендикулярна и прямой плоскости
Теорема 9 называется теоремой о трёх перпендикулярах, потому что в ней идёт речь об отношении перпендикулярности между тремя прямыми. Приведём примеры использования этой теоремы.
Пример №14
Из вершины к плоскости треугольника стороны которого равны 13, 20, 11 соответственно, возведён перпендикуляр длиной 36 (рис. 270). Найдём расстояние от точки до прямой
Решение:
Искомое расстояние — длина перпендикуляра, опущенного из точки на прямую Проведение этого перпендикуляра потребует найти его основание на прямой Для этого в плоскости треугольника построим высоту этого треугольника. Поскольку прямая перпендикулярна высоте которая является проекцией наклонной то по теореме о трёх перпендикулярах прямая перпендикулярна наклонной т. е. отрезок выражает искомое расстояние.
Найдём сначала высоту треугольника По формуле Герона определим площадь этого треугольника, что позволит найти и его высоту
Треугольник — прямоугольный с прямым углом по теореме Пифагора найдём
Ответ: 36,6.
Пример №15
Докажем, что если данная точка пространства равноудалена от сторон многоугольника, то в этот многоугольник можно вписать окружность, центр которой совпадает с основанием перпендикуляра, опущенного из данной точки на плоскость многоугольника.
Доказательство: Пусть точка равноудалена от сторон многоугольника и — перпендикуляр из точки на плоскость этого многоугольника. Тогда перпендикуляры опущенные из точки на стороны многоугольника, равны друг другу (рис. 271).
Соединим точку с точками Поскольку отрезки — проекции отрезков на плоскость многоугольника, стороны которого перпендикулярны наклонным то эти стороны и, соответственно, отрезки перпендикулярны.
Треугольники прямоугольные, и все они имеют общий катет и равные гипотенузы. Значит, эти треугольники равны, соответственно, равны и отрезки что означает равноудалённость точки от сторон многоугольника. Значит, в этот многоугольник можно вписать окружность с центром
Пример №16
Если данная точка пространства равноудалена от вершин многоугольника, то около этого многоугольника можно описать окружность, центр которой совпадает с основанием перпендикуляра, опущенного из данной точки на плоскость многоугольника.
Используя рисунок 272, проведите доказательство этого утверждения самостоятельно.
Б) Теперь введём понятие угла между прямой и плоскостью. Пусть дана плоскость и прямая которая её пересекает и не перпендикулярна (рис. 273). Основания перпендикуляров, опущенных из точек прямой на плоскость образуют прямую Эта прямая называется проекцией прямой на плоскость
Углом между прямой и плоскостью, пересекающей эту прямую и не перпендикулярной ей, называется угол между прямой и её проекцией на плоскость.
Угол между прямой и плоскостью — наименьший из углов, которые образует эта прямая со всеми прямыми плоскости. Докажите утверждение самостоятельно.
Если прямая перпендикулярна плоскости то её проекцией на эту плоскость является точка пересечения прямой с плоскостью (рис. 274). В этом случае прямая образует со всеми прямыми плоскости углы, равные 90°. Этот угол и принимается в качестве угла между прямой и перпендикулярной ей плоскостью.
Если прямая параллельна плоскости то её проекцией на плоскость является прямая параллельная . Угол между параллельными прямыми считается равным 0°. Поэтому угол между параллельными прямой и плоскостью принимается равным 0°.
Пример №17
В треугольной пирамиде рёбра основания равны 6, а боковые рёбра — 5. Найдём угол между медианой основания и плоскостью
Решение:
Пусть — перпендикуляр, опущенный из точки на плоскость Поскольку наклонная перпендикулярна прямой то и её проекция перпендикулярна прямой Значит, точка К находится на серединном перпендикуляре к отрезку (рис. 275).
Искомый угол между медианой основания и плоскостью — это угол Его можно найти через теорему косинусов, если знать стороны треугольника Находим:
тогда
Значит,
Ответ:
При вычислении угла между скрещивающимися прямыми бывает полезной следующая теорема о трёх косинусах.
Угол между прямой и плоскостью угол между другой прямой этой плоскости и проекцией на неё прямой и угол между прямыми и связаны равенством
Доказательство: Пусть точка принадлежит прямой — точка пересечения прямой с плоскостью прямая лежит в плоскости и проходит через точку — основание перпендикуляра, опущенного из точки на прямую — проекция точки на плоскость (рис. 276).
Пусть и Поскольку — проекция и то Тогда из прямоугольных треугольников и имеем:
и
Пример №18
В треугольной пирамиде ребро перпендикулярно плоскости и равно 20. Найдём угол между прямыми и учитывая, что и
Решение:
Используем теорему о трёх косинусах, учитывая, что угол между прямыми и равен углу между прямой и прямой которая проходит через точку параллельно (рис. 277), поэтому
Поскольку и
то и Значит,
Ответ:
Пример №19
Основанием треугольной пирамиды является прямоугольный треугольник с гипотенузой и углом в 30° (рис. 279). Найдите высоту грани проведённую из вершины учитывая, что боковое ребро перпендикулярно плоскости основания и равно 4 см, а катет равен 6 см.
Решение:
поэтому — проекция наклонной на
— высота грани — проекция наклонной на поэтому
и поэтому
прямоугольный,
прямоугольный, поэтому
Ответ: 5 см.
Пример №20
Докажите, что если луч не лежит в плоскости неразвёрнутого угла и острые углы и равны, то проекция луча на плоскость является биссектрисой угла (рис. 280).
Решение:
Пусть и
(по гипотенузе и острому углу), поэтому
— проекция на и
— проекция на и
(проекции равных наклонных).
— биссектриса угла (точка равноудалена от сторон угла
Пространственное моделирование
Определим, как при движении на эскалаторе можно оценить глубину расположения станции метро, длину эскалатора (рис. 289).
Обратим внимание на то, что при спуске или подъёме на эскалаторе мы проезжаем вдоль ряда ламп, расположенных на равных расстояниях друг от друга. Нормативами задаётся освещённость тоннеля, исходя из которой устанавливается и расстояние между соседними лампами. Также учтём, что оптимальный угол наклона линии эскалатора к плоскости земли равен 30°.
Будем рассматривать эскалатор как наклонную к плоскости земли. Тогда глубину расположения станции можно интерпретировать как длину перпендикуляра к плоскости земли.
Для ответа на вопрос достаточно рассмотреть прямоугольный треугольник в котором гипотенуза представляет эскалатор, а катет — глубину расположения той станции метро, на которую ведёт данный эскалатор.
- а) Подсчитайте длину эскалатора, учитывая, что расстояние между лампами равно а.
- б) Составьте формулу для нахождения глубины закладки станции метро.
Перпендикулярность плоскостей
А) Два луча на плоскости с общим началом разделяют эту плоскость на две части, каждая из которых называется углом.
Аналогично две полуплоскости с общей границей разделяют пространство на две части (рис. 290). Каждую из этих частей вместе с полуплоскостями называют двугранным углом. Полуплоскости, ограничивающие двугранный угол, называют гранями угла, а общую прямую — ребром двугранного угла (рис. 291).
Обычно рассматривают меньший из двугранных углов с данными гранями (рис. 292). Точки угла, не лежащие на его гранях, составляют внутреннюю область двугранного угла (рис. 293).
Двугранный угол обычно обозначают по ребру: (см. рис. 293) или (рис. 294). При необходимости можно присоединить названия граней или названия точек на гранях: (3 (см. рис. 293), или (см. рис. 294), или (см. рис. 294).
Моделью двугранного угла может служить двускатная крыша (рис. 295), стена вместе с открытой дверью (рис. 296), полураскрытая книга (рис. 297).
Для измерения двугранных углов вводится понятие линейного угла. Выберем на ребре двугранного угла точку и в его гранях и из этой точки проведём лучи и перпендикулярные ребру (рис. 298). Полученный угол стороны которого и ограничивают часть плоскости принадлежащую двугранному углу называют линейным углом двугранного угла. Плоскость линейного угла перпендикулярна ребру двугранного угла, так как по построению лучи и перпендикулярны ребру
Понятно, что двугранный угол имеет бесконечно много линейных углов (рис. 299).
Теорема 10. Все линейные углы двугранного угла равны друг другу.
Доказательство: Пусть и — линейные углы двугранного угла (рис. 300). Докажем, что
Отложим на сторонах углов и равные отрезки Тогда получатся четырёхугольники и у которых противоположные стороны и а также и равны по построению и параллельны как перпендикуляры к одной прямой, проведённые в соответствующей плоскости. Поэтому и А это означает, что четырёхугольник является параллелограммом, что позволяет сделать вывод о равенстве отрезков PS и QR. Получили, что у треугольников и равны соответственные стороны, поэтому треугольники равны, а значит, равны и их углы и
Измерение двугранных углов связывается с измерением их линейных углов. В зависимости от того, каким — острым, прямым, тупым, развёрнутым — является линейный угол двугранного угла, отличают острые, прямые, тупые, развёрнутые двугранные углы. Двугранный угол, изображённый на рисунке 301, — острый, на рисунке 302 — прямой, на рисунке 303 — тупой.
Две пересекающиеся плоскости разделяют пространство на четыре двугранных угла с общим ребром (рис. 304). Если один из них равен то ещё один из них также равен а, а два остальных — 180° — Среди этих углов есть не превосходящий 90°, его величину и принимают за величину угла между пересекающимися плоскостями.
Если один из двугранных углов, образовавшихся при пересечении двух плоскостей, прямой, то три остальных также прямые (рис. 305).
Б) Плоскости, при пересечении которых образуются прямые двугранные углы, называются перпендикулярными плоскостями.
Для обозначения перпендикулярности плоскостей, как и для обозначения перпендикулярности прямых, используют знак
Моделями перпендикулярных плоскостей могут служить столешница и боковина стола (рис. 306), пол в комнате и дверь в неё (рис. 307).
Теорема 11. Если одна из двух плоскостей проходит через прямую, перпендикулярную другой плоскости, то такие плоскости перпендикулярны.
Доказательство: Пусть через прямую которая перпендикулярна плоскости и пересекает её в точке проходит плоскость (рис. 308). Докажем, что a
Плоскости и пересекаются по некоторой прямой перпендикулярной прямой так как по условию прямая и плоскость перпендикулярны.
В плоскости проведём прямую перпендикулярную прямой Полученный угол где — точка прямой является линейным углом двугранного угла Поскольку по условию то угол — прямой, и, значит, плоскости и перпендикулярны.
Теорема 11 выражает признак перпендикулярности плоскостей.
Следствие. Плоскость, перпендикулярная линии пересечения двух данных плоскостей, перпендикулярна каждой из них (рис. 309).
Докажем теперь утверждение, обратное утверждению теоремы 11.
Теорема 12. Если через точку одной из перпендикулярных плоскостей провести прямую, перпендикулярную другой плоскости, то эта прямая принадлежит первой плоскости.
Доказательство: Пусть две перпендикулярные плоскости и пересекаются по прямой и через точку плоскости проведена прямая перпендикулярная плоскости Докажем, что эта прямая принадлежит плоскости
Через точку в плоскости проведём прямую перпендикулярную и через точку их пересечения в плоскости — прямую также перпендикулярную (рис. 310). Угол между прямыми и прямой как линейный угол прямого двугранного угла. Получили, что прямая проходит через точку и перпендикулярна плоскости так как она перпендикулярна пересекающимся прямым и этой плоскости. А поскольку через эту точку к данной плоскости можно провести только одну перпендикулярную прямую, то прямые и совпадают. Значит, прямая а принадлежит плоскости
Пример №21
Точка — середина ребра при основании правильной пирамиды (рис. 311). Докажем, что плоскость перпендикулярна плоскости основания
Решение:
Прямая является основанием равнобедренных треугольников и Поэтому она перпендикулярна медианам и этих треугольников и вместе с этим плоскости Из теоремы 12 следует, что плоскость проходящая через перпендикуляр к плоскости ей перпендикулярна.
Следствие. Если две пересекающиеся плоскости перпендикулярны третьей плоскости, то их линия пересечения перпендикулярна той же плоскости (рис. 312).
Пример №22
В правильной треугольной пирамиде плоский угол при вершине равен Найдём величину двугранного угла при боковом ребре.
Решение:
Пусть — середина ребра — перпендикуляр к ребру проведённый из точки (рис. 313).
Из равенства треугольников и следует, что . Поэтому угол — линейный угол двугранного угла
Из прямоугольных треугольников и получаем: Из прямоугольного треугольника находим, что
Поэтому
Ответ:
В) При вычислениях бывает полезной теорема о трёх синусах.
Теорема 13. Линейный угол двугранного угла, угол между ребром этого двугранного угла и прямой, лежащей в одной из его граней, и угол между этой прямой и плоскостью другой грани связаны равенством
Доказательство: Пусть прямая лежит в плоскости точка принадлежит прямой — точка пересечения прямой с ребром двугранного угла — основание перпендикуляра, опущенного из точки на грань ) — основание перпендикуляра, опущенного из точки на ребро угла (рис. 314). Пусть и Поскольку — проекция и то Тогда из прямоугольных треугольников и будем иметь: и
Следствие 1. Если точка лежит в грани двугранного угла величиной то расстояние от неё до плоскости другой грани угла равно где — точка на ребре двугранного угла, а — угол между прямой и ребром двугранного угла (рис. 315).
Пример №23
Стороны и правильного треугольника лежат соответственно в гранях и острого двугранного угла величиной Сторона образует угол с ребром двугранного угла. Найдём величину угла между плоскостью и плоскостью
Решение:
Пусть искомый угол равен сторона треугольника имеет длину Тогда расстояние от точки до плоскости можно найти двумя способами (рис. 316): и Поэтому
Ответ:
Следствие 2. Пусть рёбра и — грани двугранных углов величиной и соответственно. Тогда (рис. 317).
Пример №24
Плоскости правильных треугольника и четырёхугольника перпендикулярны (рис. 319). Найдите учитывая, что
Решение:
и тогда по теореме 12
поэтому — прямоугольный. так как правильный и
так как четырёхугольник правильный и
Тогда по теореме Пифагора
Ответ:
Пример №25
Из точек и ребра двугранного угла в разных его гранях возведены перпендикуляры и (рис. 320). Определите величину двугранного угла, учитывая, что и расстояние между точками и равно 50 см.
Решение:
Пусть и Тогда — параллелограмм и см, 48 см.
и поэтому
— линейный угол двугранного угла
и тогда
и , тогда
и тогда
поэтому — прямоугольный.
Тогда по теореме Пифагора
Из треугольника
Поэтому
Ответ:
Пространственное моделирование
Отдельным видом параллельного проектирования, применяемого в геометрии для изображения пространственных фигур, является ортогональное проектирование.
Ортогональной проекцией точки на плоскость называется точка пересечения с этой плоскостью прямой, проходящей через данную точку перпендикулярно
Ортогональной проекцией фигуры на плоскость называется множество ортогональных проекций всех точек этой фигуры на плоскость.
Если — треугольная пирамида, и то
«…Разум заключается не только в знаниях, но и в умении применять знания на деле…»
(Аристотель).
- Ортогональное проецирование
- Декартовы координаты на плоскости
- Декартовы координаты в пространстве
- Геометрические преобразования в геометрии
- Теорема синусов и теорема косинусов
- Параллельность прямых и плоскостей
- Перпендикулярность прямой и плоскости
- Взаимное расположение прямых в пространстве, прямой и плоскости
Уравнение плоскости перпендикулярной плоскости xoy
Если A = B = 0, т. е. уравнение имеет вид Cz + D = 0, или .
то вектор нормали коллинеарен вектору k = (0, 0, 1). Поэтому плоскость перпендикулярна оси OZ, а значит параллельна плоскости XOY. Координатная плоскость XOY имеет уравнение z = 0.
Аналогично, x = 0 — уравнение координатной плоскости YOZ; x = а — уравнение плоскости, параллельной YOZ; y = 0 — уравнение плоскости XOZ; y = b — уравнение плоскости, параллельной XOZ.
Если равна нулю только одна из координат вектора нормали, то нормаль перпендикулярна, а плоскость, следовательно, параллельна соответствующей оси. Например, плоскость Ax + Cz + D = 0 параллельна оси OY (возможно, содержит эту ось).
Вопросы о взаимном расположении плоскостей решаются с помощью вектора нормали. Пусть две плоскости заданы своими уравнениями: A1x + B1y + C1z + D1 = 0 (плоскость P1), A2x + B2y + C2z + D2 = 0 (плоскость P2).
Запишем в краткой, символической форме условия параллельности и перпендикулярности плоскостей:
Угол между плоскостями равен углу между векторами нормали и находится с помощью скалярного произведения (см. раздел 4.2).
Пример 9. Найти угол между плоскостями 2x — 2y + z — 5 = 0, x — z + 7 = 0.
Решение. Найдём косинус угла между векторами нормали N1 = (2, —2, 1) и N2 = (1, 0, —1):
Используя таблицы или калькулятор, можно найти.
Как известно, через любые 3 точки, не лежащие на одной прямой, можно провести единственную плоскость. Научимся решать эту важную задачу в общем виде, а затем рассмотрим пример.
Пусть точки M1(x1, y1,z1), M2(x2,y2,z2), M3(x3,y3,z3) не лежат на одной прямой. Мы помним, что главное для записи уравнения плоскости — найти вектор нормали, т. е. какой-нибудь вектор, перпендикулярный плоскости. В качестве такого вектора можно взять векторное произведение:
Общее уравнение плоскости
В данной статье мы рассмотрим общее уравнение плоскости в пространстве. Определим понятия полного и неполного уравнения плоскости. Для построения общего уравнения плоскости пользуйтесь калькулятором уравнение плоскости онлайн.
Пусть задана произвольная декартова прямоугольная система координат Oxyz. Общим уравнением плоскости называется линейное уравнение вида:
где A, B, C, D − некоторые постоянные, причем хотя бы один из элементов A , B и C отлично от нуля.
Мы покажем, что линейное уравнение (1) в пространстве определяет плоскость и любой плоскость в пространстве можно представить линейным уравнением (1). Докажем следующую теорему.
Теорема 1. В произвольной декартовой прямоугольной системе координат в пространстве каждая плоскость α может быть задана линейным уравнением (1). Обратно, каждое линейное уравнение (1) в произвольной декартовой прямоугольной системе координат в пространстве определяет плоскость.
Доказательство. Достаточно доказать, что плоскость α определяется линейным уравнением при какой нибудь одной декартовой прямоугольной системе координат, поскольку тогда она будет определяться линейным уравнением и при любом выборе декартовой прямоугольной системы координат.
Пусть в пространстве задана плоскость α. Выберем оси Ox и Oy так, чтобы они располагались на плоскости α, а ось Oz направим перпендикулярно к этой плоскости. Тогда линейное уравнение z=0 будет уравнением плоскости, т.к. координаты любой точки, принадлежащей этой плоскости удовлетворяют уравнению z=0, а координаты любой точки, не лежащей на этой плоскости − нет. Первая часть теоремы доказана.
Пусть фиксирована произвольная декартова прямоугольная система координат Oxyz. Рассмотрим линейное уравнение (1), где хотя бы один из элементов A , B и C отлично от нуля. Тогда уравнение (1) имеет хотя бы одно решение x0, y0, z0. Действительно. Пусть из коэффициентов A≠0. Возьмем произвольные числа y0, z0. Тогда
.
Таким образом, существует точка M0(x0, y0, z0), координаты которой удовлетворяют уравнению (1):
Вычитая из уравнения (1) тождество (2), получим
A(x−x0)+B(y−y0)+С(z−z0)=0, | (3) |
которая эквивалентна уравнению (1).
Покажем, что (3) определяет некоторую плоскость, проходящую через точку M0(x0, y0, z0) и перпендикулярную вектору n=<A,B,C> (n≠0, так как хотя бы один из чисел A,B,C отлично от нуля).
Если точка M0(x0, y0, z0) принадлежит плоскости α, то ее координаты удовлетворяют уравнению (3), т.к. векторы n=<A,B,C> и перпендикулярны (Рис.1) и их скалярное произведение равно нулю:
Если же точка M(x, y, z) не лежит на плоскости α, то векторы n=<A,B,C> и не ортогональны. Тогда их скалярное произведение не равно нулю, т.е. координаты точки M(x, y, z) не удовлетворяют условию (3). Теорема доказана.
Одновременно с доказательством теоремы 1 мы получили следующее утверждение.
Утверждение 1. В декартовой прямоугольной системе координат вектор с компонентами (A,B,C) перпендикулярен плоскости Ax+By+Cz+D=0.
Вектор n=(A,B,C) называется нормальным вектором плоскости , определяемой линейным уравнением (1).
Утверждение 2. Если два общих уравнения плоскости
определяют одну и ту же плоскость, то найдется такое число λ, что выпонены равенства
A2=A1λ, B2=B1λ, C2=C1λ, D2=D1λ. | (6) |
Умножая уравнение (7) на λ и вычитая из него уравнение (8) получим:
(A1λ−A2)x0+(B1λ−B2)y0+(C1λ−C2)z0+(D1λ−D2)=0.
Так как выполнены первые три равенства из выражений (6), то D1λ−D2=0. Т.е. D2=D1λ. Утверждение доказано.
Неполные уравнения плоскости
Определение 1. Общее уравнение плоскости (1) называется полным , если все коэффициенты A, B, C, D отличны от нуля. Если же хотя бы один из коэффициентов A, B, C, D равен нулю, то общее уравнение плоскости называется неполным .
Рассмотрим все возможные варианты неполных уравнений плоскости:
При D=0, имеем уравнение плоскости Ax+By+Cz=0, проходящей через начало координат (Рис.2). Действительно, точка O(0,0,0) удовлетворяет этой системы линейных уравнений.
При A=0, имеем уравнение плоскости By+Cz+D=0, которая параллельна оси Ox (Рис.3). В этом случае нормальный вектор плоскости n=<0,B,C> лежит на координатной плоскости Oyz.
При B=0, имеем уравнение плоскости Ax+Cz+D=0, которая параллельна оси Oy (Рис.4).
При C=0, имеем уравнение плоскости Ax+By+D=0, которая параллельна оси Oz (Рис.5).
При A=0,B=0 имеем уравнение плоскости Cz+D=0, которая параллельна координатной плоскости Oxy (Рис.6).
При B=0,C=0 имеем уравнение плоскости Ax+D=0, которая параллельна координатной плоскости Oyz (Рис.7).
При A=0,C=0 имеем уравнение плоскости By+D=0, которая параллельна координатной плоскости Oxz (Рис.8).
При A=0,B=0,D=0 имеем уравнение плоскости Cz=0, которая совпадает с координатной плоскостью Oxy (Рис.9).
При B=0,C=0,D=0 имеем уравнение плоскости Ax=0, которая совпадает с координатной плоскостью Oyz (Рис.10).
При A=0,C=0,D=0 имеем уравнение плоскости By=0, которая совпадает с координатной плоскостью Oxz (Рис.11).
Рассмотрим примеры построения общего уравнения плоскости.
Пример 1. Построить общее уравнение плоскости, проходящей через точку M(4,−1,2) параллельной координатной плоскости Oxy.
Решение. Общее уравнение плоскости, проходящей через некоторую точку M(x0,y0,z0) имеет вид (3). Подставляя координаты точки M в (3), получим:
A(x−4)+B(y−(−1))+C(z−2)=0 | (9) |
Так как плоскость параллельна координатной плоскости Oxy, то направляющий вектор имеет следующий вид n=<A,B,C>=<0,0,1>, т.е. A=0, B=0, C=1.
Подставляя коэффициенты A,B,C в (9), получим:
0(x−4)+0(y−(−1))+1(z−2)=0 | (9) |
Пример 2. Построить общее уравнение плоскости, проходящей через начало координат и имеющий нормальный вектор n==<2,3,1>.
Решение. Начало координат имеет коэффициенты (0,0,0). Общее уравнение плоскости, проходящей через некоторую точку M(x0,y0,z0) имеет вид (3). Подставляя коэффициенты начальной точки в (3), получим:
A(x−0)+B(y−0)+C(z−0)=0 | (10) |
Так как плоскость имеет нормальный вектор n=<A,B,C>=<2,3,1>, т.е. A=2, B=3, C=1, подставляя коэффициенты A,B,C в (10), получим:
2(x−0)+3(y−0)+1(z−0)=0 | (9) |
Онлайн калькулятор для построения общего уравнения плоскости находится здесь. Там же вы найдете примеры построения общего уравнения плоскости, если известны три точки этой плоскости или если известна одна точка и нормальный вектор этой плоскости.
1.3.2. Аналитическая геометрия в пространстве
1. Всякая плоскость в координатном пространстве OXYZ имеет векторное уравнение следующего вида: r ¦ п = p. Здесь
r = xi + yj + zk — радиус-вектор текущей точки плоскости
M(x, у, z); п = i cosa + j cos b + k cosg — единичный вектор, имеющий направление перпендикуляра, опущенного на плоскость из начала координат, a, b, g — углы, образованные этим перпендикуляром с осями координат OX, OY, OZ, и р — длина этого перпендикуляра.
При переходе к координатам это уравнение принимает вид xcos a + ycos b + zcos g — p = 0 (нормальное уравнение плоскости).
2. Уравнение всякой плоскости может быть записано также в виде Ах + Ву +Cz + D = 0 (общее уравнение). Здесь А, B, C можно рассматривать как координаты некоторого вектора
N = Ai + Bj + Ck, перпендикулярного к плоскости. Для приведения общего уравнения плоскости к нормальному виду все члены уравнения надо умножить на нормирующий множитель
где знак перед радикалом противоположен знаку свободного члена D в общем уравнении плоскости.
3. Частные случаи расположения плоскости, определяемой уравнением Ах + Ву +Cz + D = 0:
А = 0; плоскость параллельна оси ОХ;
В = 0; плоскость параллельна оси О^
C = 0; плоскость параллельна оси ОZ;
D = 0; плоскость проходит через начало координат;
А = В = 0; плоскость перпендикулярна оси ОZ (параллельна плоскости ХОY);
А = C = 0; плоскость перпендикулярна оси ОY (параллельна плоскости ХОZ);
В = C = 0; плоскость перпендикулярна оси ОХ (параллельна плоскости YОZ);
А = D = 0; плоскость проходит через ось ОХ;
В = D = 0; плоскость проходит через ось OY;
C = D = 0; плоскость проходит через ось OZ;
А = В = D = 0; плоскость совпадает с плоскостью XOY (z = 0);
А = C = D = 0; плоскость совпадает с плоскостью XOZ (у = 0);
B = C = D = 0; плоскость совпадает с плоскостью YOZ (х = 0).
Если в общем уравнении Ах + By +Cz + D = 0 коэффициент D ф 0, то, разделив все члены уравнения на — D, можно уравнение
плоскости привести к виду^ здесь
. Это уравнение плоскости называется уравнением в отрезках: в нем а — абсцисса точки пересечения плоскости с осью OX, b и с — соответственно ордината и аппликата точек пересечения плоскости с осями OY и OZ.
4. Угол j между плоскостями А1х + В1У + Qz + D1 = 0 и А2х + В2У +C2z + D2 = 0 определяется по формуле
Условие параллельности плоскостей:
Условие перпендикулярности плоскостей:
5. Расстояние от точки М0(х0; у0; z0) до плоскости, определяемой уравнениемНаходится по формуле
Оно равно взятому по абсолютной величине результату подстановки координат точки в нормальное уравнение плоскости; знак результата этой подстановки характеризует взаимное расположение точки M0 и начала координат относительно данной плоскости: этот знак положителен, если точка M0 и начало координат расположены по разные стороны от плоскости, и отрицателен, если они расположены по одну сторону от плоскости.
6. Уравнение плоскости, проходящей через точку М0(х0; у0; z0)
и перпендикулярной к вектору N = Ai + Bj + Ck, имеет вид А(х — х0) + B(y — у0) + C(z — z0) = 0. При произвольных А, В и C последнее уравнение определяет некоторую плоскость, принадлежащую к связке плоскостей, проходящих через точку М0. Его часто поэтому называют уравнением связки плоскостей.
7. Уравнение А1х + B1y +C1z + D1 + А(А2х + B^y +C2z + D2) = 0 при произвольном I определяет некоторую плоскость, проходящую через прямую, по которой пересекаются плоскости, определяемые уравнениями
некоторую плоскость, принадлежащую пучку плоскостей, проходящих через эту прямую (в силу чего такое уравнение часто называют уравнением пучка плоскостей). Если плоскости, определяемые уравнениями I и II, параллельны, то пучок плоскостей превращается в совокупность плоскостей, параллельных этим плоскостям.
8. Уравнение плоскости, проходящей через три заданные точки M1(r 1Х M1(Jj), M3(r 3) (Л = x1i + yd + z1k; r2 = x2i + У2 j + z2k; r3 = x3i + y3 j + z3 к), проще всего найти из условия компланарности векторов r — T1, r2 — rl, r3 — rl, где r = xi + yj+zk — радиус-вектор текущей точки искомой плоскости M:
или в координатной форме:
Пример 1.21. Составить уравнение плоскости, проходящей через линию пересечения плоскостей x + у + 5z — 1 = 0, 2x + 3у — z + 2 = 0 и через точку М(3, 2, 1).
Решение. Воспользуемся уравнением пучка плоскостей
Значение I определяем из условия, что координаты точки М должны удовлетворять этому уравнению:
Получаем искомое уравнение в виде:
или, умножая на 13 и приводя подобные члены, в виде:
Пример 1.22. Составить уравнение плоскости, проходящей через линию пересечения плоскостей x + 3у + 5z — 4 = 0 и X — у — 2z + 7 = 0 и параллельной оси оу.
Решение. Воспользуемся уравнением пучка x + 3у + 5z — 4 + + l(x — у — 2z + 7) = 0, преобразуем уравнение к виду (1 + Х)х + (3 -1)у + (5 — 2l)z + (71 — 4) = 0.
Так как искомая плоскость параллельна оси ординат, то коэффициент при у должен равняться нулю, т. е. 3 — l = 0, I = 3. Подставив значение I в уравнение пучка, получаем
Пример 1.23. Найти уравнение плоскости, проходящей через точки М (2; -1; 4) и N(3; 2; -1) перпендикулярно к плоскости X + у + z — 3 = 0.
Решение. Воспользуемся уравнением плоскости, проходящей через первую из данных точек:
Условие прохождения этой плоскости через вторую точку и условие перпендикулярности определяются равенствами:
Исключая коэффициенты А, В и C из системы уравнений
получаем искомое уравнение в виде:
Пример 1.24. Из точки P(2; 3; -5) на координатные плоскости опущены перпендикуляры. Найти уравнение плоскости, проходящей через их основания.
Решение. Основаниями перпендикуляров, опущенных на координатные плоскости, будут следующие точки М1(2; 3; 0), М2(2; 0; -5), М3(0; 3; -5). Напишем уравнение плоскости, проходящей через точки М1, М2, М3, для чего воспользуемся уравнением
Пример 1.25. Составить уравнение плоскости, проходящей через точку M (2; 3; 5) и перпендикулярной к вектору
Решение. Достаточно воспользоваться уравнением плоскости, проходящей через данную точку и перпендикулярной к данному вектору:
1. Прямая может быть задана уравнениями 2-х плоскостей
пересекающихся по этой прямой.
2. Исключив поочередно х и у из предыдущих уравнений, получим уравнения х = аz + с, у = bz + d. Здесь прямая определена двумя плоскостями, проектирующими ее на плоскости хoz и yoz.
3. Если даны две точки M(x1, у1, z1) и N(x2, у2, z2), то уравнения прямой, проходящей через них, будут иметь вид:
4. Так называемые канонические уравнения
определяют прямую, проходящую через точку M(x1, у1, z1)
и параллельную вектору S = li + mj + nk. В частности, эти уравнения могут быть записаны в виде:
где a, b и g — углы, образованные прямой с осями координат.
5. От канонических уравнений прямой, вводя параметр t, нетрудно перейти к параметрическим уравнениям прямой:
6. Угол между двумя прямыми, заданными их каноническими
деляется по формуле
перпендикулярности двух прямых:
условие параллельности двух прямых:
7. Необходимое и достаточное условие расположения двух прямых, заданных их каноническими уравнениями, в одной плоскости (условие компланарности двух прямых):
Если величины /1, т, П1 непропорциональны величинам /2, m2, «2, то указанное соотношение является необходимым и достаточным условием пересечения двух прямых в пространстве.
условие параллельности прямой и плоскости: условие перпендикулярности прямой и плоскости:
Определяется по формуле
9. Для определения точки пересечения прямой
С плоскостью Ах + Ву + Cz + D = 0 нужно решить совместно их уравнения, для чего следует воспользоваться параметрическими уравнениями прямой x = /t + X0, у = mt + у0, z = nt + z0:
а) если А/ + Вт + Cn ф 0, то прямая пересекает плоскость в одной точке;
б) если А/ + Вт + Cn = 0 и Ах0 + Ву0 + Cz0 + D ф 0, то прямая параллельна плоскости;
в) если А/ + Вт + Cn = 0 и Ах0 + Ву0 + Cz0 + D = 0, то прямая лежит в плоскости.
Пример 1.26. Привести к каноническому виду уравнения прямой 2х — у + 3z — 1 = 0 и 5х + 4у — z — 7 = 0.
Решение. Исключив вначале у, а затем z, получим:
Если разрешим каждое из уравнений относительно х, то будем иметь:
отсюда
Второй способ: найдем вектор S = li + mj + nk, параллельный искомой прямой. Так как он должен быть перпендикулярен к нормальным векторам заданных плоскостей N1 = 2i — j + 3k и N2= 5i + 4 j — k, то за него можно принять векторное произведение векторов N1 и N2.
Таким образом, l = -11; m = 17; n = 13.
За точку M1(x1, у1, z1), через которую проходит искомая прямая, можно принять точку пересечения ее с любой из координатных плоскостей, например с плоскостью yoz. Т ак как при этом x1 = 0, то координаты y1 и z1 этой точки определятся из системы уравнений заданных плоскостей, если в них положить х = 0:
Решая эту систему, находим у1 = 2; z1 = 1.
Итак, искомая прямая определяется уравнениями:
Мы получили прежний ответ.
Пример 1.27. Построить прямую
Решение. Искомую прямую можно построить как линию пересечения плоскостей. Для этого напишем уравнения плоскостей, которыми определена прямая, в отрезках на осях:
Пример 1.28. Из начала координат опустить перпендикуляр на прямую
Решение. Составим уравнение плоскости, проходящей через начало координат и перпендикулярной заданной прямой: 2х + 3у + z = 0. (Для этой плоскости можно принять А = l; B = m; C = n; D = 0; использовано условие перпендикулярности прямой и плоскости, см. п. 8 введения к настоящему разделу).
Найдем точку пересечения этой плоскости и данной прямой. Параметрические уравнения прямой имеют вид:
Построив данные плоскости, мы получим искомую прямую как линию пересечения этих плоскостей (рис. 20).
Для определения t имеем уравнение:
Остается составить уравнения прямой, проходящей через начало координат и через точку М (см. п. 3 введения к настоящему разделу):
Пример 1.29. В уравнениях прямойОпределить
параметр n так, чтобы эта прямая пересекалась с прямой
, и найти точку их пересечения.
Решение. Для нахождения параметра n используем условие пересечения 2-х прямых:
Следовательно, уравнения пересекающихся прямых таковы: искомой:
Для вычисления координат точки пересечения этих прямых выразим из первого уравнения х и у через z: х = 2z, у = -3z. Подставляя их значения в равенствоИмеем,
отсюда z = 1. Зная z, находим х и у: х = 2z = 2, у = -3z = -3. Следовательно M(2; -3; 1).
Пример 1.30. Прямая задана каноническими уравнениями
Составить общие уравнения этой прямой.
Решение. Канонические уравнения прямой можно записать в виде системы двух независимых уравнений:
Получили общие уравнения прямой, которая теперь задана пересечением 2-х плоскостей, одна из которых 5х — 3у — 13 = 0 параллельна оси Oz, а другая х + 3z — 11 = 0 параллельна оси Oy.
Пример 1.31. Найти координаты точки M, делящей попалам отрезок прямой
заключенный между плоскостями хoz и xoy.
Решение. Найдем точку А пересечения прямой с плоскостью хoz, полагая в уравнениях прямой у = 0. Тогда получим:
отсюда x = 2,6; z = 2,8. Тогда А(2,6; 0; 2,8).
отсюда X = 11, у = 14, или В(11; 14; 0).
Определяем координаты точки М, делящей отрезок АВ пополам:
Следовательно, координаты искомой точки М будут: М(6,8; 7; 1,4).
Пример 1.32. Составить уравнение плоскости, проходящей через прямую
Решение. Составим уравнение пучка плоскостей, проходящих через первую из данных прямых:
которое делим на а ф 0, и пусть b /а = I:
Аналогично, полагая в уравнениях прямой z = 0, найдем координаты точки В пересечения прямой с плоскостью хоу:
В этом пучке нужно выбрать плоскость, параллельную 2-й данной прямой. Из условия параллельности плоскости и прямой, имеем:
Подставляя I = 1 в уравнение пучка плоскостей, получим: Тогда искомое уравнение плоскости будет:
Пример 1.33. Дана прямая Найти ее проекцию на плоскость
Решение. Нужно найти плоскость, которая проходит через данную прямую перпендикулярно к данной плоскости; тогда искомая проекция определится как пересечение этой плоскости с данной.
Составим уравнение пучка плоскостей, проходящих через данную прямую:
Эта плоскость должна быть перпендикулярной к данной плоскости, что можно записать как:
Тогда уравнение плоскости, проходящей через данную прямую и перпендикулярной данной плоскости, будет:
Проекция данной прямой на данную плоскость определяется как прямая пересечения плоскостей:
Запишем эту прямую в каноническом виде. Найдем на прямой какую-либо точку. Для этого положим, например х0 = 1, и система запишется в виде:
Отсюда, у0 = 1, z0 = 0, т. е. точка M(1; 1; 0) принадлежит искомой прямой.
Направляющий вектор прямой S = (l; m; n) найдем из того условия, что он перпендикулярен нормальным векторам
N1 = (2; -3; -2) и N2 = (5; 2; 2) плоскостей, определяющих искомую прямую.
В качестве S берем векторное произведение векторов N1 и N2 , т. е.
Тогда искомое уравнение в каноническом виде будет:
http://matworld.ru/analytic-geometry/obshchee-uravnenie-ploskosti.php
http://matica.org.ua/metodichki-i-knigi-po-matematike/a-s-shapkin-zadachi-po-vysshei-matematike-teorii-veroiatnostei-matematicheskoi-statistike-matematicheskomu-programmirovaniiu-s-resheniiami/1-3-2-analiticheskaia-geometriia-v-prostranstve