Здесь приведены формулы и примеры расчета первой и второй космической скорости для небесных тел произвольной массы и радиуса.
Для быстрого расчета можно воспользоваться онлайн-калькулятором.
Первая космическая скорость
Первая космическая скорость — это скорость, которую нужно придать телу, масса которого пренебрежительно мала по сравнению с массой планеты,
чтобы это тело стало спутником планеты и вращалось вокруг нее по круговой траектории. Примечание: если скорость будет выше заданной (но меньше второй космической), то траектория орбиты будет
не круговой, а эллипсоидной.
Формула первой космической скорости:
где
G — гравитационная постоянная (постоянная Ньютона), равная 6,6743015·10-11 м3/(кг*с2), или Н*м2/кг2
R — радиус небесного тела
M — масса небесного тела
Вторая космическая скорость
Вторая космическая скорость — это минимальная скорость, которой должно обладать тело, чтобы преодолеть гравитационное притяжение планеты и покинуть замкнутую орбиту вокруг нее.
Формула второй космической скорости:
где
G — гравитационная постоянная
R — радиус небесного тела
M — масса небесного тела
Пример:
Масса планеты Земля составляет 5,9726*1024 кг, средний радиус — 6371 км (или 6371000 м). Подставив эти значения в формулы первой и второй
космических скоростей, мы получим значение соответственно 7 910 м/с и 11 187 м/с.
Теперь рассчитаем значение космических скоростей для планеты Нептун. Масса Нептуна — 1,0243*1026 кг. средний радиус — 24 622 км (24 622 000 м).
В итоге получим значения — 16 663 м/с и 23 565 м/с.
Значения для Марса (6,4171*1023 кг и 3389,5 км) будет 3 555 м/с и 5 027 м/с.
Для Венеры (4,8675*1024 кг и 6051,8 км) — 7 327 м/с и 10 362 м/с соответственно.
Калькулятор космических скоростей
Другие формулы
Содержание
- Первая космическая скорость
- Вторая космическая скорость
- Третья космическая скорость
- Четвёртая и пятая космическая скорости
Любой предмет, будучи подброшенным вверх, рано или поздно оказывается на земной поверхности, будь то камень, лист бумаги или простое перышко. В то же время, спутник, запущенный в космос полвека назад, космическая станция или Луна продолжают вращаться по своим орбитам, словно на них вовсе не действует сила притяжения нашей планеты. Почему так происходит?
На нашей Земле всемирное тяготение воздействует на любое материальное тело. Тогда логично будет предположить, что есть некая сила, нейтрализующая действие гравитации. Эту силу принято называть центробежной.
Центробежную силу легко ощутить привязав на один конец нитки небольшой груз и раскрутив его по окружности. При этом чем больше скорость вращения тем сильнее натяжение нити, а чем медленнее вращаем мы груз тем больше вероятность, что он упадет вниз.
Траектория полета космических кораблей
Таким образом мы вплотную приблизились к понятию «космическая скорость». Простыми словами — это скорость, позволяющая любому объекту преодолеть тяготение небесного тела и их системы. Космические скорости используются для характеристики типа движения космического аппарата в сфере действия небесных тел: Солнца, Земли и Луны, других планет и их естественных спутников, а также астероидов и комет.
Это также значит, что космическая скорость есть у каждого объекта, который движется по орбите. Размер и форма орбиты космического объекта зависят от величины и направления скорости, которую данный объект получил на момент выключения двигателей, и высоты, на которой произошло данное событие.
Космическая скорость (первая v1, вторая v2, третья v3 и четвёртая v4) — это минимальная скорость, при которой какое-либо тело в свободном движении сможет:
- v1 — стать спутником небесного тела (то есть способность вращаться по орбите вокруг небесного тела и не падать на его поверхность);
- v2 — преодолеть гравитационное притяжение небесного тела и начать двигаться по параболической орбите;
- v3 — покинуть при запуске планету, преодолев притяжение Звезды;
- v4 — при запуске из планетной системы объект покинул Галактику.
Космические скорости могут быть рассчитаны для любого удаления от центра Земли. Однако в космонавтике часто используются величины, рассчитанные конкретно для поверхности шаровой однородной модели Земли радиусом 6371 км.
Первая космическая скорость
Первая космическая скорость или Круговая скорость V1 — скорость, которую необходимо придать объекту без двигателя, пренебрегая сопротивлением атмосферы и вращением планеты, чтобы вывести его на круговую орбиту с радиусом, равным радиусу планеты.
Иными словами, первая космическая скорость — это минимальная скорость, при которой тело, движущееся горизонтально над поверхностью планеты, не упадёт на неё, а будет двигаться по круговой орбите.
Формула
где G — гравитационная постоянная (6,67259·10−11 м³·кг−1·с−2), — первая космическая скорость. Подставляя численные значения (для Земли M = 5,97·1024 кг, R = 6 378 км), найдем
7,9 км/с
Первую космическую скорость можно определить через ускорение свободного падения —
Вторая космическая скорость
Вторая космическая скорость (параболическая скорость, скорость убегания) — наименьшая скорость, которую необходимо придать объекту (например, космическому аппарату), масса которого пренебрежимо мала относительно массы небесного тела (например, планеты), для преодоления гравитационного притяжения этого небесного тела.
Предполагается, что после приобретения телом этой скорости оно не получает негравитационного ускорения (двигатель выключен, атмосфера отсутствует).
Вторая космическая скорость определяется радиусом и массой небесного тела, поэтому она своя для каждого небесного тела (для каждой планеты) и является его характеристикой:
- для Земли вторая космическая скорость равна 11,2 км/с. Тело, имеющее около Земли такую скорость, покидает окрестности Земли и становится спутником Солнца.
- для Солнца вторая космическая скорость составляет 617,7 км/с.
- для Луны скорость убегания равна 2,4 км/с, несмотря на то, что в действительности для удаления тела на бесконечность с поверхности Луны необходимо преодолеть притяжение Земли, Солнца и Галактики.
Параболической вторая космическая скорость называется потому, что тела, имеющие вторую космическую скорость, движутся по параболе.
Формула
Для получения формулы второй космической скорости удобно обратить задачу — спросить, какую скорость получит тело на поверхности планеты, если будет падать на неё из бесконечности. Очевидно, что это именно та скорость, которую надо придать телу на поверхности планеты, чтобы вывести его за пределы её гравитационного влияния .
Третья космическая скорость
Третья космическая скорость — минимально необходимая скорость тела без двигателя, позволяющая преодолеть притяжение Солнца и в результате уйти за пределы Солнечной системы.
Только на космических кораблях, которым доступны такие скорости, принципиально могут быть осуществлены пилотируемые межзвёздные перелёты к планетным системам других звёзд.
Взлетая с поверхности Земли и наилучшим образом используя орбитальное движение планеты космический аппарат может достичь третей космической скорости уже при 16,6 км/с относительно Земли, а при старте с Земли в самом неблагоприятном направлении его необходимо разогнать до 72,8 км/с.
Здесь для расчёта предполагается, что космический аппарат приобретает эту скорость сразу на поверхности Земли и после этого не получает негравитационного ускорения (двигатели выключены и сопротивление атмосферы отсутствует). Если к тому же учесть притяжение других планет, которое может как ускорить, так и притормозить аппарат, то диапазон возможных значений 3-й космической скорости станет еще больше.
При наиболее энергетически выгодном старте скорость объекта должна быть сонаправлена скорости орбитального движения Земли вокруг Солнца. Орбита такого аппарата в Солнечной системе представляет собой параболу.
Четвёртая и пятая космическая скорости
Четвёртая космическая скорость — минимально необходимая скорость тела без двигателя, позволяющая преодолеть притяжение галактики Млечный Путь. Она используется довольно редко.
Четвёртая космическая скорость не постоянна для всех точек Галактики, а зависит от расстояния до центральной массы.
Для нашей галактики таковой является объект Стрелец A*, сверхмассивная чёрная дыра.
По грубым предварительным расчётам в районе нашего Солнца четвёртая космическая скорость составляет около 550 км/с. Значение сильно зависит не только (и не столько) от расстояния до центра галактики, а от распределения масс вещества по Галактике, о которых пока нет точных данных, ввиду того что видимая материя составляет лишь малую часть общей гравитирующей массы, а все остальное — скрытая масса.
Ещё реже в некоторых источниках встречается понятие «пятая космическая скорость». Это скорость, позволяющая добраться до иной планеты звездной системы вне зависимости от разности плоскостей эклиптики планет. Например, для Солнечной системы и, конкретно, для Земли, чтобы орбита межпланетного перелета была перпендикулярной к земной орбите, нужна скорость запуска 43,6 километра в секунду.
Видео
Источники
- https://ru.wikipedia.org/wiki/Космическая_скорость
https://mirznanii.com/a/9233/kosmicheskie-skorosti
http://www.astronet.ru/db/msg/1162252
https://fb.ru/article/54389/kosmicheskaya-skorost
Если мы подбросим камень в воздух – он упадет на Землю. Если у самолета на высоте 10 километром отключаться двигатели – он тоже упадет на Землю. Но спутники и космические корабли, что мы запускаем в космос, не падают. Почему?
Все дело в том, с какой скоростью тот или иной объект удаляется от планеты. Хватит ли этому объекту энергии преодолеть притяжение планеты.
Оглавление
- 1 Первая космическая скорость
- 1.1 Расчет
- 2 Вторая космическая скорость
- 2.1 Расчет
- 3
- 4 Третья космическая скорость
- 4.1 Расчет
- 5 Четвертая космическая скорость
- 6 Пятая космическая скорость
- 7 Почему спутники не падают на Землю
Первая космическая скорость
Это та самая минимальная скорость для выхода корабля или спутника на круговую орбиту, равную радиуса планеты, без учета вращения планеты и сопротивления ее атмосферы.
Если скорость будет превышать первую, но не достигнет второй космической скорости, то траектория тела из круговой начнет переходить в эллиптическую.
Впервые такую скорость смог достичь первый искусственный спутник Земли «Спутник-1» СССР 4 октября 1957 года.
Расчет
Вторая космическая скорость
Это минимальная скорость, которую следует придать телу для того, чтобы оно покинуло замкнутую орбиту и смогло улететь от небесного тела за пределы его гравитационного поля.
Иными словами, для Земли, это та скорость, с которой должны двигаться космические аппараты (КА) для полетов к другим объектам Солнечной системы: Луны, Марса и т.д.
Движение тела на второй космической скорости происходит по параболической траектории.
Впервые такую скорость развил Советский космический аппарат Луна-1 2 января 1959 года, чтобы преодолеть расстояние от Земли до Луны и изучить наш естественный спутник.
Расчет
Третья космическая скорость
Такую скорость необходимо придать телу, чтобы оно смогло покинуть Солнечную систему. Так как 99,8% массы Солнечной системы приходится на Солнце, то можно сказать, что КА надо преодолеть гравитационное притяжение Солнца.
Расчет
Для Солнечной системы это величина равна 16,650 км/с.
Самое выгодное расположение космодрома для подобного запуска – максимально близко к экватору, так как на экваторе самая большая скорость собственного вращения Земли вокруг своей оси и направление движения в сторону вращения Земли и в сторону орбитального движения Земли по орбите.
КА «Новые горизонты» покинул атмосферу Земли со скоростью близкой к третьей космической – 16,26 км /с. Относительно Солнца он имел скорость 45 км/с. Такой скорости недостаточно, чтобы покинуть Солнечную систему. Но благодаря гравитационному маневру у Юпитера, «Новые горизонты» добавил еще 4 км/с, что позволило ему покинуть Солнечную системы, предварительно показав нам карликовую планету Плутон.
Четвертая космическая скорость
Эта та скорость, которая позволит покинуть галактику в данной точке.
Четвертая космическая в основном не зависит от месторасположения Земли в Млечном пути. Она зависит от расположения и плотности звездного вещества в окрестностях Солнечной системы. А эти данные пока мало изучены.
Для нашей части галактики четвертая космическая скорость примерно равна 550 км/с.
Пятая космическая скорость
Эта скорость редко применима и является больше «фантазией», так как такую скорость необходимо развить для путешествия на другую планету в другую звездную систему, независимо от их взаимного расположения, с траекторией перпендикулярно плоскости эклиптики.
Для Земли эта скорость будет равна 43,6 км/с.
Почему спутники не падают на Землю
Этот вопрос поднимался в самом начале статьи. Теперь давайте на него ответим.
На спутник на орбите действует сила тяжести со стороны Земли. И под действием этой силы спутнику логичнее упасть.
Но, он летит вокруг Земли с первой космической скоростью – 7,9 км/с. Вспомните, чем больше скорость – тем сложнее затормозить. Вот и здесь, спутник и хотел бы упасть, но он не может затормозить и просто пролетает мимо Земли по инерции, тем самым продолжая бесконечное падение.
То есть, спутники падают, но промахиваются и не попадают в Землю.
Еще больше космоса и интересных фактов в телеграмм-канале.
С древних времен людей интересовала проблема устройства мира. Еще в III-м веке до нашей эры греческий философ Аристарх Самосский высказал идею о том, что Земля вращается вокруг Солнца, и попытался вычислить расстояния и размеры Солнца и Земли по положению Луны. Так как доказательный аппарат Аристарха Самосского был несовершенен, большинство осталось сторонниками пифагорейской геоцентрической системы мира.
Прошло почти два тысячелетия, и идеей гелиоцентрического устройства мира увлекся польский астроном Николай Коперник. Он умер в 1543 году, и вскоре труд всей его жизни опубликовали ученики. Модель и таблицы положения небесных тел Коперника, основанные на гелиоцентрической системе, гораздо точнее отражали положение вещей.
Спустя полвека немецкий математик Иоганн Кеплер, используя скурупулезные записи датского астронома Тихо Браге о наблюдениях небесных тел, вывел законы движения планет, которые сняли неточности модели Коперника.
Завершение XVII века ознаменовалось трудами великого английского ученого Исаака Ньютона. Законы механики и всемирного тяготения Ньютона расширили и дали теоретическое обоснование формулам, выведенным из наблюдений Кеплером.
Наконец, в 1921 году Альберт Эйнштейн предложил общую теорию относительности, наиболее точно описывающую механику небесных тел в настоящее время. Ньютоновские формулы классической механики и теории гравитации до сих пор могут применяться для некоторых вычислений, не требующих большой точности, и там, где релятивистскими эффектами можно пренебречь.
Благодаря Ньютону и его предшественникам мы можем вычислить:
- какую скорость должно иметь тело для сохранения заданной орбиты (первая космическая скорость)
- с какой скоростью должно двигаться тело, чтобы оно преодолело притяжение планеты и стало спутником звезды (вторая космическая скорость)
- минимальную необходимую скорость выхода за пределы планетной системы (третья космическая скорость)
Космические скорости планеты
Орбитальная скорость, км/с
Гравитационная постоянная
Точность вычисления
Знаков после запятой: 2
I космическая скорость, км/с
II космическая скорость, км/с
III космическая скорость, км/с
Первая космическая скорость тела —
это скорость, которую следует придать телу для сохранения телом заданной круговой орбиты. Первая космическая скорость определяется по формуле: ,где
R=r+h — радиус орбиты, складывающийся из r — радиуса планеты и h — высоты над планетой
M — масса планеты
G — гравитационная постоянная, равная 6.67408(31)10-11 м³/(с²·кг)
Формула легко выводится из формул силы притяжения и центробежной силы, равенство которых тело испытывает, вращаясь на заданной орбите R вокруг тела превосходящей массы M
m — масса тела (исключается при выводе v1)
Больше чем через 250 лет после открытий Ньютона Советский Союз запустил в 1957 году первый искусственный спутник Земли. Ракета носитель Р-7 вывела Спутник-1 на орбиту высотой 577 километров.
Вторая космическая скорость,
или скорость освобождения тела, это минимальная скорость, которую следует придать телу для того, чтобы оно вышло за пределы влияния планеты.
Скорость освобождения определяется по формуле:
Соотносится с первой космической скоростью следующим образом:
Формула выводится исходя из соображения, что кинетическая энергия должна быть равна работе по преодолению силы тяжести в диапазоне расстояний от поверхности планеты до бесконечности:
В 1959 году Советский Союз запустил автоматическую межпланетную станцию Луна-1, которая стала искусственным спутником Солнца — так была достигнута вторая космическая скорость.
Третья космическая скорость
Минимальная скорость, которую необходимо придать находящемуся вблизи поверхности планеты телу, чтобы оно могло покинуть пределы планетарной системы.
,
где v — орбитальная скорость планеты
v2 — вторая космическая скорость планеты
Согласно расчетам, аппарат, запущенный с Земли, должен обладать скоростью 16.6 км/с, чтобы покинуть пределы Солнечной системы.
Близкую к третьей космической (16.26 км/с) развил при старте в 2006 году аппарат «Новые Горизонты», запущенный в США для исследования Плутона и его спутника Харона. Сейчас аппарат завершил съемку Плутона и направляется к поясу Койпера.
Первым в истории искусственным аппаратом, достигшим третьей космической скорости стал «Вояджер-1». Его запустили Соединенные Штаты в 1977 году. Начальная скорость Вояджера-1 была ниже, чем у «Новых горизонтов», но благодаря серии гравитационных маневров около планет солнечной системы аппарат достиг скорости 17 км/с. В августе 2012-го аппарат вышел за границы Солнечной системы, на данный момент собираемые им данные продолжают поступать.
Аппарат несет 12-дюймовый позолоченный диск с посланием к внеземным цивилизациям.
Источники:
В.Захаров Тяготение: от Аристотеля до Эйнштейна
Фото NASA, проект Вояджер.
Задачи на искусственные спутники Земли с решениями
Формулы, используемые на уроках «Задачи на искусственные спутники Земли и других планет».
Название величины |
Обозначение |
Единица измерения |
Формула |
Радиус планеты |
R |
м |
|
Масса планеты |
M |
кг |
|
Высота |
h |
м |
|
Постоянная всемирного тяготения |
G |
Н•м2/кг2 |
G = 6,67•10-11 |
Первая космическая скорость |
v |
м/с |
|
Ускорение свободного падения |
g |
м/с2 |
ПРИМЕРЫ РЕШЕНИЯ ЗАДАЧ
Задача № 1.
Первый искусственный спутник Земли, запущенный в СССР 4 октября 1957 года, двигался на высоте 950 км над поверхностью Земли. Вычислите скорость этого спутника.
Задача № 2.
Скорость обращения Земли вокруг Солнца 30 км/с, радиус земной орбиты 1,5•1011 м. По этим данным определите массу Солнца.
Задача № 3.
Вычислить первую космическую скорость для Луны, принимая радиус Луны 1700 км, а ускорение свободного падения тел на Луне — 1,6 м/с2.
Задача № 4.
Какую скорость должен иметь искусственный спутник, чтобы обращаться по круговой орбите на высоте 900 км над поверхностью Земли? Каков период его обращения?
Задача № 5.
На какой высоте над поверхностью Земли был запущен искусственный спутник, если он движется со скоростью 7,1 км/с?
Задача № 6.
Высота спутника над поверхностью Земли h = 2000 км. Определите его скорость и период обращения.
Ответ: 6,7 км/с; 7,9 • 103 с.
Краткая теория для решения Задачи на искусственные спутники Земли.
Чтобы тело стало искусственным спутником Земли (ИСЗ), его нужно поднять на такую высоту, на которой атмосфера очень разрежена и практически не оказывает сопротивления движению. Затем телу нужно сообщить определенную скорость, направленную горизонтально. Эта скорость называется первой космической скоростью.
Это конспект по теме «ЗАДАЧИ на искусственные спутники Земли». Выберите дальнейшие действия:
- Перейти к теме: ЗАДАЧИ на Закон сохранения импульса
- Посмотреть конспект по теме ДИНАМИКА: вся теория для ОГЭ (шпаргалка)
- Вернуться к списку конспектов по Физике.
- Проверить свои знания по Физике.