Как найти площадь 8ми угольника

Geometry is a field of study of shapes and structures. It gives a brief explanation of the different shapes and their properties. Geometry gives defined formulas for the calculation of parameters of these flat or solid shapes. These formulas are different for each shape and are derived according to their dimensions. 

In the given article we have studied an eight-sided polygon viz. octagon along with its properties. The content of the article also gives the formula for the determination of the area of an octagon. Some sample numerical problems are included along with their solutions for reference.

Octagon

Octagon is a geometrical figure with 8 sides and 8 angles. The word octagon itself means “eight-sided”. An octagon is one of the plane figures or a polygon having eight sides. The interior angle of regular polygon measures to be 135 degrees each. And the exterior angles measure 45 degrees. All the midpoints of the sides of an octagon meet at its center and all the diagonals have the same length.

Octagon is a two-dimensional flat shape with eight sides and eight angles. It is a polygon made up of the joining of line segments. It has 8 sides and the sides are denoted by the letter ‘a’.

Octagon

Properties of an Octagon

  • A regular polygon has eight sides.
  • A polygon has eight equal angles.
  • A regular polygon consists of 20 diagonals that meet at the center.
  • Each interior angle measures to be 135°. And, the sum of all the interior angles equals 1080°.
  • Each exterior angle measures to be 45°. And, the sum of all the exterior angles equals 360°.

Area of An Octagon

In geometry, there are set formulas for calculating the parameters of the shapes. The area of an octagon with its side length ‘a’ is given by the formula

 Area of an Octagon = 2a2(1 + √2)

Where,

a is the length of the side or edge

For Example:

If an octagon with a length of 8cm is given, its area can be calculated by

Area of an Octagon = 2a2(1 + √2)

A = 2(8)2(1 + √2)

A = 309.01cm2

The formula from the calculation of the area of an octagon can be derived by four different methods. These methods are briefly derived along with their diagrams.

  • Method I

A regular octagon can be seen as a collection of eight small isosceles triangles sharing a common apex point. Hence, the area of a regular octagon can be calculated by determining the area of one of the triangles and multiplying it by 8.

Mathematically the area of the octagon is given by,

Area of octagon =  8 × Area of the triangle

We have been given an octagon with eight isosceles triangles. Consider one of the triangles from the octagon and draw a line perpendicular from its base to apex to form right angles.

Here, a is the length of the side of the octagon and OZ is the height of the triangle.

Now,

tan2θ = 1 – cos2θ/1 + cos2θ [SINCE, 2sin2θ = 1 – cos2θ and 2cos2θ = 1 + cos2θ]

tan2(45/2) = 1 – cos45°/1 + cos45°

tan2(45/2) = 1 – 1/√2/1 + 1/√2

tan(45/2) = √2 – 1

ZY/OZ = √2 – 1

OZ = a/2/√2 – 1

OZ = a/2 (1 + √2)

Area of triangle XOY =1 × XY × Oz

1/2 a × a/2 (1 + √2)

a2/4 (1 + √2)

Now, Area of octagon = 8 × area of triangle

Area of octagon = 8 × a2/4 (1 + √2)

Area of octagon = 2a2(1 + √2)

  • Method II

When a regular octagon is divided into non-overlapping parts then, an octagon can be subdivided into a square, four rectangles, and four isosceles right-angled triangles.

Here, a is the length of the side of the octagon.

Now, the area of the square, Asq = a2

Then, the area of the triangle = Atr = 1/2 × x

Where,

x = √(a2/2)

Since, in a right-angled triangle, b2 + h2 = square of hypotenuse = side of octagon

Area of the rectangle, Arec = x × a

Then the combined area of the given octagon will be,

Area of octagon = Asq + 4 × Arec + 4 × Atr

  • Method III

An octagon can be taken as a square with four triangles attached from each corner of the square.

hence, the side of the octagon ‘a’ with be the hypotenuse of the given triangle.

A2 = 2x2

Let the length of the side of square will be 1 = a + 2x = a + 2√(a2/2)             

[Since, x = √(a2/2)]

The combined area of the octagon will be,

Area = (1 × 1) – 4 (1/2 x. x)

  • Method IV

A regular octagon can also be conceptualized as a composition of 4 kites.

Let the diagonals of the kites be d and w and the area will be, 

Area of kite = d × w/2

Let us take the kite AHOB from the above diagram

∠HOB = 2π and HO = BO = r

And, HB = √2r

Since AO = r

Area of AHOB = AO × HB × 2

√(2r)2/2

Area of octagon = 4 × Area of kites

Area of octagon = 2 × √(2r)2

Irregular octagon

On contrary to a regular octagon an irregular octagon does not have sides and angles congruent to each other. Hence, an irregular octagon also has eight sides but is unequal with respect to each other.

The interior angles in an irregular octagon are always unequal but their sum always equals 1080° 

Area formula of an irregular octagon,

Like regular octagons, irregular octagons do not have the specific derived formula for the calculation of their area. So, to calculate the area of an irregular octagon it is divided into smaller figures like triangles, squares, and rectangles. and, later these all areas are added together.  

Sample Problems

Question 1: Find the area of a regular polygon with a side of 3cm.

Solution:

Given:

The side of the octagon is 3cm

Area of an Octagon = 2a2(1 + √2)

A = 2(3)2(1 + √2)

= 43.45cm2

Question 2: Find the area of a regular polygon with a side of 2.5cm. 

Solution:

Given:

The side of the octagon is 2.5cm 

Area of an Octagon = 2a2(1 + √2) 

A = 2(2.5)2(1 + √2) 

A = 30.17cm2

Question 3: Find the area of a regular polygon with a side of 7cm.

 Solution:

Given:

The side of the octagon is 7cm 

Area of an Octagon = 2a2(1 + √2)

 A = 2(7)2(1 + √2)

 A = 236.59cm2

Question 4: Find the area of a regular polygon with a side of 3.5cm. 

Solution:

Given, 

The side of the octagon is 3.5cm 

Area of an Octagon = 2a2(1 + √2) 

A = 2(3.5)2(1 + √2) 

A = 59.14cm2

Question 5: Find the area of a regular polygon with a side of 6cm.

Solution:

Given,

The side of the octagon is 6cm.

Area of an Octagon = 2a2 (1 + √2)

A = 2(6)2 (1 + √2) 

A = 173.82cm2 

Question 6: Find the area of a regular polygon with a side of 5cm.

Solution:

Given,

The side of the octagon is 6cm.

Area of an Octagon = 2a2 (1 + √2)

A = 2(5)2(1 + √2)

A = 120.71cm2 

Question 7: Find the area of a regular polygon with a side of 10cm.

Solution:

Given,

The side of the octagon is 10cm.

Area of an Octagon = 2a2 (1 + √2)

A = 2(10)2 (1 + √2)

A = 482.84cm2

Восьмиугольник – это геометрическая фигура из мира многоугольников; восьмиугольник имеет 8 сторон и 8
углов или вершин. Правильный многоугольник представляет собой выпуклый многоугольник с равенством
всех сторон и всех углов при вершинах. Следовательно, правильный восьмиугольник – это выпуклый
восьмиугольник, с равенством 8 сторон и 8 углов при вершинах. Другое название фигуры – октагон, от
латинского octo», что означает «восемь». Иногда требуется узнать площадь геометрической фигуры по
некоторым ее известным размерам, например, с целью узнать расход материала на изготовление, заливку,
окраску; или же массу в отсутствие весов при известной толщине многоугольной плитки и плотности
материала.

Для вычисления площади октагона необходимо знать его периметр, который в данном случае равен сумме
длин его 8 сторон (восьмикратной длине одной стороны), и апофему. В планиметрии апофемой называется
длина перпендикуляра, опущенного из центра правильного многоугольника на любую из его сторон.

При известной апофеме площадь правильного многоугольника равна произведению периметра на апофему,
деленному на 2 (в пределе эта формула справедлива даже для круга, где «апофема» равна радиусу).
Поскольку периметр в рассматриваемом случае равен длине стороны, умноженной на 8, искомый параметр
найдется как произведение длины стороны на апофему, умноженный на 4.

  • Площадь правильного восьмиугольника через длину стороны
  • Площадь правильного восьмиугольника через радиус описаной
    окружности
  • Площадь правильного восьмиугольника через радиус вписаной
    окружности

Через длину стороны

Рис 1

Если апофема неизвестна, ее можно узнать по длине стороны a, исходя из тригонометрических
соотношений, и тогда искомая площадь определится как

S = 2 * a² * (1 + √2)

Цифр после
запятой:

Результат в:

Пример вычисления: при длине стороны a=8 м площадь равна 4,828 * 8² = 309 кв.м.

Через радиус вписанной окружности

Рис 3

Поскольку апофема является радиусом вписанной окружности r, появляется возможность вычислить площадь
через радиус вписанной окружности:

S = 8 * r² * (√2 — 1)

Цифр после
запятой:

Результат в:

Пример: при радиусе вписанной окружности 15 м площадь равна 3,314 * 15² = 746 кв.м.

Через радиус описанной окружности

Рис 2

При знании лишь радиуса описанной окружности R возможно вычисление площади по формуле:

S = 2 * √2 * R²

Цифр после
запятой:

Результат в:

Пример: при радиусе описанной окружности 9 м площадь равна 2,828  92 = 229 кв.м.

Свойства правильного восьмиугольника

Сумма внутренних углов любого выпуклого восьмиугольника равна 1080°, отсюда угол при его вершине
равен 1080°/8=135°. В правильном восьмиугольнике всего 20 диагоналей; длина четырех самых длинных из
них равна двум радиусам описанной окружности.

В природе восьмиугольники встречаются не так часто, как шестиугольники (поскольку восьмиугольники, в
отличие от шестиугольников, не могут заполнить плоскость), но примеры можно найти.

Распространение правильного восьмиугольника в быту и окружающей жизни

Восьмиугольная форма – распространенный архитектурный элемент дизайна. Купол мусульманского святилища
Скала в Иерусалиме в плане октагон. Подобная форма также распространена в архитектуре, например, в
соборе Святого Георгия (Аддис-Абеба), базилике Сан-Витале (Равенна, Италия), Кастель дель Монте
(Апулия, Италия), баптистерии во Флоренции, церкви Цум Фридефюрстен (Германия) и ряде норвежских
церквей. Центральное помещение Ахенского собора, Каролингская Палатинская капелла, также имеет форму
октагона.

Мистики считали, что октагон объединяет «ограниченность земного и бесконечность небесного круга»,
объединяет Бога и человека, жизнь и смерть.

Восьмиугольная планировка пола использовалась в зданиях для разделения офисов и служб здания;
например, в штаб-квартире Intelsat в Вашингтоне, офисах Callam в Канберре и офисах Octagon в
Парраматте, Австралия.

Запрещающий дорожный знак «Движение без остановки запрещено» имеет форму красного правильного
восьмиугольника с надписью STOP в России и ряде многих других стран.

Вычисление правильного восьмиугольника (многоугольник с восемью вершинами). Эта форма хорошо нам знакома, так как используется на некоторых дорожных знаках.

.

Поделиться расчетом:

Калькулятор восьмиугольника, введите одно известное значение

Длина стороны(a)

Меньшая диагональ(d1)

Средняя диагональ(e)

Большая диагональ(d3)

Периметр(p)

Площадь(S)

Радиус описанной окружности(R)

Радиус вписанной окружности(r)

Вычислить

Очистить

Формулы:

d = a * √4 + 2 * √2
e = a * ( 1 + √2 )
f = a * √2 + √2
Высота = e = 2 * r
Р = 8 * а
S = 2 * a2 * ( 1 + √2 )
R = a / 2 * √4 + 2 * √2
r = a / 2 * ( 1 + √2 )
Угол: 135°, 20 диагоналей.

Площадь правильного восьмиугольника

В пра­виль­ном восьми­уголь­нике сто­рона видна из цен­тра под углом $45^circ$. Угол $22{,}5^circ$ при под­счёте площади
раз­би­е­нием на тре­уголь­ники не сулит ничего хорошего, но в итоге ока­зы­ва­ется, что всё не так плохо: площадь пра­виль­ного
восьми­уголь­ника равна $2(1+sqrt{2})a^2$, где $a$ – длина сто­роны.

И совсем легко посчи­тать площадь пра­виль­ного восьми­уголь­ника, выражая её через длины большой и малой диаго­на­лей:
надо лишь пере­ложить детальки.

Другие модели раздела «Площади фигур и равносоставленность»

многоугольник с восемью сторонами

Правильный восьмиугольник
Правильный многоугольник 8 annotated.svg Правильный восьмиугольник
Тип Правильный многоугольник
Ребра и вершины 8
символ Шлефли {8}, t {4}
диаграмма Кокстера Узел CDel 1.png CDel 8.png CDel node.png . Узел CDel 1.png CDel 4.png Узел CDel 1.png
группа симметрии двугранный (D8), порядок 2 × 8
Внутренний угол (градусов ) 135 °
Двойной многоугольник Собственный
Свойства Выпуклый, циклический, равносторонний, изогональный, изотоксальный

В геометрии, восьмиугольник (от греческого ὀκτάγωνον oktágōnon, «восемь angles ») представляет собой восьмиугольник многоугольник или 8-угольник.

A правильный восьмиугольник имеет символ Шлефли {8}, а также может быть построен как квазирегулярный усеченный квадрат, t {4}, в котором чередуются два типа ребер. Усеченный восьмиугольник, t {8} — это шестиугольник, {16}. 3D-аналог восьмиугольника может быть ромбокубооктаэдром с треугольными гранями на нем, как замененные ребра, если считать восьмиугольник усеченным квадратом (а это так).

Содержание

  • 1 Свойства общего восьмиугольника
  • 2 Правильный восьмиугольник
    • 2.1 Площадь
    • 2.2 Окружной радиус и внутренний радиус
    • 2.3 Диагонали
    • 2.4 Конструкция и элементарные свойства
    • 2.5 Стандартные координаты
    • 2.6 Рассечение
  • 3 Наклон восьмиугольника
    • 3.1 Многоугольники Петри
  • 4 Симметрия
  • 5 Использование восьмиугольников
    • 5.1 Другое использование
  • 6 Производные фигуры
    • 6.1 Связанные многогранники
  • 7 См. Также
  • 8 Ссылки
  • 9 Внешние ссылки

Свойства общего восьмиугольника

Диагонали зеленого четырехугольника равны по длине и расположены под прямым углом друг к другу

Сумма всех внутренние углы любого восьмиугольника — 1080 °. Как и у всех многоугольников, внешние углы составляют 360 °.

Если квадраты построены полностью внутри или снаружи на сторонах восьмиугольника, то середины сегментов, соединяющих центры противоположных квадратов, образуют четырехугольник, который одновременно равнодиагонален и ортодиагональный (то есть диагонали которого равны по длине и расположены под прямым углом друг к другу).

восьмиугольник средней точки эталонного восьмиугольника имеет восемь вершин в средних точках сторон эталонного восьмиугольника. Если все квадраты построены внутри или снаружи на сторонах среднего восьмиугольника, то средние точки сегментов, соединяющих центры противоположных квадратов, сами образуют вершины квадрата.

Правильный восьмиугольник

A Правильный восьмиугольник представляет собой замкнутую фигуру со сторонами одинаковой длины и одинаковыми внутренними углами. Он имеет восемь линий отражательной симметрии и вращательной симметрии порядка 8. Правильный восьмиугольник представлен символом Шлефли {8}. Внутренний угол в каждой вершине правильного восьмиугольника равен 135 ° (3 π 4 { displaystyle scriptstyle { frac {3 pi} {4}}}{ displaystyle  scriptstyle { frac {3  pi} {4}}} радиан ). Центральный угол равен 45 ° (π 4 { displaystyle scriptstyle { frac { pi} {4}}}{ displaystyle  sc riptstyle { frac { pi} {4}}} радиан).

Площадь

Площадь правильного восьмиугольника с длиной стороны a определяется как

A = 2 кроватки ⁡ π 8 a 2 = 2 (1 + 2) a 2 ≃ 4.828 a 2. { displaystyle A = 2 cot { frac { pi} {8}} a ^ {2} = 2 (1 + { sqrt {2}}) a ^ {2} simeq 4.828 , a ^ { 2}.}A = 2  cot  frac { pi} {8} a ^ 2 = 2 (1+  sqrt {2}) a ^ 2  simeq 4.828 , a ^ 2.

С точки зрения радиуса описанной окружности R, площадь равна

A = 4 sin ⁡ π 4 R 2 = 2 2 R 2 ≃ 2,828 R 2. { displaystyle A = 4 sin { frac { pi} {4}} R ^ {2} = 2 { sqrt {2}} R ^ {2} simeq 2.828 , R ^ {2}.}A = 4  sin  frac { pi} {4} R ^ 2 = 2  sqrt {2} R ^ 2  simeq 2.828 , R ^ 2.

В терминах апофемы r (см. Также вписанный рисунок ) площадь

A = 8 tan ⁡ π 8 r 2 = 8 (2 — 1) г 2 ≃ 3,314 г 2. { displaystyle A = 8 tan { frac { pi} {8}} r ^ {2} = 8 ({ sqrt {2}} — 1) r ^ {2} simeq 3.314 , r ^ { 2}.}A = 8  tan  frac { pi} {8} r ^ 2 = 8 ( sqrt {2} -1) r ^ 2  simeq 3.314 , r ^ 2.

Последние два коэффициента заключают в скобки значение pi, площадь единичной окружности .

область правильный восьмиугольник можно вычислить как усеченный квадрат.

Площадь также можно выразить как

A = S 2 — a 2, { displaystyle , ! A = S ^ {2} -a ^ {2},}, ! A = S ^ {2} -a ^ {2},

где S — длина восьмиугольника или вторая по длине диагональ; а — длина одной из сторон или оснований. Это легко доказать, если взять восьмиугольник, нарисовать квадрат снаружи (убедившись, что четыре из восьми сторон перекрываются с четырьмя сторонами квадрата), а затем взять угловые треугольники (это 45–45– 90 треугольников ) и размещает их прямыми углами внутрь, образуя квадрат. Края этого квадрата равны длине основания.

Учитывая длину стороны a, пролет S равен

S = a 2 + a + a 2 = (1 + 2) a ≈ 2,414 a. { displaystyle S = { frac {a} { sqrt {2}}} + a + { frac {a} { sqrt {2}}} = (1 + { sqrt {2}}) a приблизительно 2.414a.}S =  frac {a} { sqrt {2}} + a +  frac {a} { sqrt {2}} = (1+  sqrt {2}) a  приблизительно 2.414a.

Тогда размах равен соотношению серебра, умноженному на сторону, a.

Тогда площадь будет такой, как указано выше:

A = ((1 + 2) a) 2 — a 2 = 2 (1 + 2) a 2 ≈ 4.828 a 2. { displaystyle A = ((1 + { sqrt {2}}) a) ^ {2} -a ^ {2} = 2 (1 + { sqrt {2}}) a ^ {2} приблизительно 4,828 a ^ {2}.}A = ((1+  sqrt {2}) a) ^ 2-a ^ 2 = 2 (1+  sqrt {2}) a ^ 2  приблизительно 4.828a ^ 2.

Выраженная в размахе, площадь равна

A = 2 (2 — 1) S 2 ≈ 0,828 S 2. { displaystyle A = 2 ({ sqrt {2}} — 1) S ^ {2} приблизительно 0,828S ^ {2}.}A = 2 ( sqrt {2} -1) S ^ 2  приблизительно 0,828S ^ 2.

Другая простая формула для вычисления площади:

A = 2 a S. { displaystyle A = 2aS.} A = 2aS.

Чаще известен промежуток S, и необходимо определять длину сторон a, как при разрезании квадратного куска материала на правильный восьмиугольник. Исходя из вышеизложенного,

a ≈ S / 2,414. { displaystyle a приблизительно S / 2.414.}a  приблизительно S / 2,414.

Две конечные длины e с каждой стороны (длины сторон треугольников (зеленые на изображении), усеченные из квадрата), а также e = a / 2, { displaystyle e = a / { sqrt {2}},}e = a / {  sqrt {2}}, можно вычислить как

e = (S — a) / 2. { displaystyle , ! e = (Sa) / 2.}, ! E = (Sa) / 2.

Окружной радиус и внутренний радиус

Окружной радиус правильного восьмиугольника с точки зрения длины стороны a равен

R = (4 + 2 2 2) a, { displaystyle R = left ({ frac { sqrt {4 + 2 { sqrt {2}}}} {2}} right) a,}{ displaystyle R =  left ({ frac { sqrt {4 + 2 { sqrt {2}}}} {2}}  right) a,}

и inradius равен

r = (1 + 2 2) a. { displaystyle r = left ({ frac {1 + { sqrt {2}}} {2}} right) a.}{ displaystyle r =  left ({ frac {1 + { sqrt {2}}} {2}}  right) a.}

(это половина отношения серебра умноженное на сторону, a, или половину размаха, S)

Диагонали

Правильный восьмиугольник с точки зрения длины стороны a имеет три различных типа диагоналей :

  • Короткая диагональ;
  • Средняя диагональ (также называемая размахом или высотой), которая в два раза больше внутреннего радиуса;
  • Длинная диагональ, которая в два раза превышает длину окружного радиуса.

Формула для каждого из них следует из основных принципов геометрии. Вот формулы для их длины:

Конструкция и элементарные свойства

построение правильного восьмиугольника путем складывания листа бумаги

Правильный восьмиугольник по заданной описанной окружности может быть построен следующим образом:

  1. Нарисуйте круг и диаметр AOE, где O — центр и A, E — точки на описанной окружности.
  2. Нарисуйте еще один диаметр GOC, перпендикулярный AOE.
  3. (Попутно обратите внимание, что A, C, E, G — вершины квадрата
  4. Нарисуйте биссектрисы прямых углов GOA и EOG, образуя еще два диаметра HOD и FOB.
  5. A, B, C, D, E, F, G, H — это диаметры вершины восьмиугольника.

восьмиугольник в заданной описанной окружности восьмиугольник с заданной длиной стороны, анимация. (конструкция очень похожа на конструкцию шестиугольника с заданной длиной стороны.)

регулярный восьмиугольник можно построить с помощью линейки и компаса, так как 8 = 2, степень двойки :

правильный восьмиугольник, вписанный в круг. gif Конструкция восьмиугольника Meccano uction.

Правильный восьмиугольник может быть построен из механических стержней. Нам нужно двенадцать стержней размера 4, три стержня размера 5 и два стержня размера 6.

Каждая сторона правильного восьмиугольника образует половину прямого угла в центре круга, соединяющего его вершины. Таким образом, его площадь можно вычислить как сумму 8 равнобедренных треугольников, что дает результат:

Площадь = 2 a 2 (2 + 1) { displaystyle { text {Area}} = 2a ^ {2} ({ sqrt {2}} + 1)}{ text {Area}} = 2a ^ {2} ({ sqrt {2}} + 1)

для восьмиугольника со стороной a.

Стандартные координаты

Координаты вершин правильного восьмиугольника с центром в начале координат и длиной стороны 2:

  • (± 1, ± (1 + √2))
  • (± (1 + √2), ± 1).

Рассечение

8-кубовое проекция Рассечение 24 ромба
8-куб t0 A7.svg 8-угольное ромбическое рассечение-size2.svg . Обычное Изотоксальное 8-угольное ромбическое рассечение-size2.svg . Изотоксальное
8-угольное ромбическое рассечение2-size2.svg 8-угольник ромбическое рассечение3-size2.svg

Коксетер утверждает, что каждый зоногон (двухметровый угольник, противоположные стороны которого параллельны и равной длины) может быть разрезан на m (m-1) / 2 параллелограмма. В частности, это верно для правильных многоугольников с равным числом сторон, и в этом случае все параллелограммы являются ромбическими. Для правильного восьмиугольника m = 4, и его можно разделить на 6 ромбов, с одним примером, показанным ниже. Это разложение можно увидеть как 6 из 24 граней в плоскости проекции многоугольника Петри тессеракта . Список (последовательность A006245 в OEIS ) определяет количество решений как 8 по 8 ориентациям этого одного разреза. Эти квадраты и ромбы используются в мозаиках Амманна – Бенкера.

Рассеченный правильный восьмиугольник

4-куб t0. svg . Тессеракт Dissected octagon.svg . 4 ромба и 2 квадрата

Наклонный восьмиугольник

Правильный косой восьмиугольник, видимый как края квадратная антипризма, симметрия D 4d, [2,8], (2 * 4), порядок 16.

A наклонный восьмиугольник — это наклонный многоугольник с 8 вершинами и ребрами, но не находящихся в одной плоскости. Внутреннее пространство такого восьмиугольника в целом не определено. У косого зигзагообразного восьмиугольника вершины чередуются между двумя параллельными плоскостями.

A правильный скошенный восьмиугольник — это вершинно-транзитивный с равной длиной ребер. В 3-х измерениях это будет зигзагообразный восьмиугольник, который будет виден в вершинах и боковых гранях квадратной антипризмы с тем же D 4d, [2,8] симметрия, порядок 16.

многоугольники Петри

Правильный косой восьмиугольник — это многоугольник Петри для этих многомерных правильных и однородных многогранников, показанных в этих наклонных ортогональных проекциях из плоскостей A 7, B 4 и D 5Кокстера.

A7 D5 B4
7-симплекс t0.svg . 7-симплекс 5-demicube t0 D5.svg . 5-полукуб 4-куб t3.svg . 16-элементный 4-куб t0. svg . Тессеракт

Симметрия

Симметрия

Обычное окта gon simries.png 11 симметрий правильного восьмиугольника. Линии отражений синие по вершинам, пурпурные по краям, а порядок вращения указан в центре. Вершины окрашены в соответствии с их положением симметрии.

Правильный восьмиугольник имеет симметрию Dih 8, порядок 16. Существует 3 двугранных подгруппы: Dih 4, Dih 2 и Dih 1. и 4 циклические подгруппы : Z 8, Z 4, Z 2 и Z 1, последнее подразумевает отсутствие симметрии.

Пример восьмиугольника по симметрии

Octagon r16 Simry.png . r16
Octagon d8 simry.png . d8 Октагон g8 simry.png . g8 Восьмиугольник p8 symry.png . p8
Octagon d4 simry.png . d4 Восьмиугольник g4 simry.png . g4 Octagon p4 symry.png . p4
восьмиугольник d2 simry.png . d2 Octagon g2 simry.png . g2 восьмиугольник p2 simry.png . p2
Восьмиугольник a1 simry.png . a1

На правильном восьмиугольнике существует 11 различных симметрий. Джон Конвей обозначает полную симметрию как r16 . Двугранные симметрии разделяются в зависимости от того, проходят ли они через вершины (d для диагонали) или ребра (p для перпендикуляров). Циклические симметрии в среднем столбце помечены как g за их приказы центрального вращения. Полная симметрия правильной формы — r16, симметрия не обозначена a1.

. Наиболее распространенными восьмиугольниками высокой симметрии являются p8, изогональный восьмиугольник, построенный из четырех зеркал. может чередовать длинные и короткие края, и d8, изотоксальный восьмиугольник, построенный с равными длинами ребер, но вершинами с чередованием двух разных внутренних углов. Эти две формы являются двойными друг другу и имеют половину порядка симметрии правильного восьмиугольника.

Симметрия каждой подгруппы допускает одну или несколько степеней свободы для неправильных форм. Только подгруппа g8 не имеет степеней свободы, но может рассматриваться как направленные ребра.

Использование восьмиугольников

Восьмиугольный план этажа, Купол Скалы.

Восьмиугольная форма — это используется как элемент дизайна в архитектуре. Купол Скалы имеет характерный восьмиугольный план. Башня Ветров в Афинах — еще один пример восьмиугольной конструкции. Восьмиугольный план также использовался в церковной архитектуре, такой как Св. Георгия, Аддис-Абеба, Базилика Сан-Витале (в Равенне, Италия), Кастель-дель-Монте (Апулия, Италия), Флорентийский баптистерий, Церковь Zum Friedefürsten (Германия) и ряд восьмиугольных церквей в Норвегии. Центральное пространство в Ахенском соборе, Каролингской Палатинской капелле, имеет правильную восьмиугольную планировку. Использование восьмиугольников в церквях также включает меньшие элементы дизайна, такие как восьмиугольная апсида Собора Нидарос.

Такие архитекторы, как Джон Эндрюс использовали восьмиугольную планировку этажей в зданиях для функциональное отделение офисных площадей от строительных служб, в частности, штаб-квартиры Intelsat в Вашингтоне, округ Колумбия, в Канберре, и офисов Octagon в Парраматта, Австралия.

Другое применение

  • Зонты часто имеют восьмиугольный контур.

  • Знаменитый ковер «Бухара» включает восьмиугольный мотив «слоновьей ноги».

  • План улиц и кварталов Барселоны в районе Эшампле основан на неправильных восьмиугольниках

  • Джангги использует восьмиугольные части.

  • Японские лотерейные автоматы часто имеют восьмиугольную форму.

  • Знак остановки, используемый в англоязычных странах, а также в большинстве европейских стран

  • Значок знака остановки с рукой посередине.

  • Триграммы Таоиста багуа часто расположены восьмиугольником

  • Знаменитая восьмиугольная золотая чаша с кораблекрушения Белитунг

  • Классы в Колледже Шимер традиционно хранятся вокруг восьмиугольных столов

  • Лабиринт Реймского собора квази-восьмиугольной формы.

  • Перемещение аналогового джойстика (ов) контроллера Nintendo 64, контроллера GameCube, Wii Nunchuk и Classic Controller ограничен вращающейся восьмиугольной областью, что позволяет ручке перемещаться только в восьми различных направлениях.

Производные числа

Родственные многогранники

восьмиугольник, как усеченный квадрат, является первым в последовательности усеченных гиперкубов :

Усеченных гиперкубов

Изображение Правильный многоугольник 8 annotated.svg 3-куб t01.svg Усеченный шестигранник.png 4-куб t01.svg полутвердое тело Шлегеля усеченный tesseract.png 5-куб t01.svg 5-кубик t01 A3.svg 6-куб t01.svg 6-куб t01 A5. svg 7-куб t01.svg 7-cube t01 A5.svg 8-куб t01.svg 8-кубический t01 A7.svg
Имя Восьмиугольник Усеченный куб Усеченный тессеракт Усеченный 5-куб Усеченный 6-кубик Усеченный 7-кубический Усеченный 8-кубический
Диаграмма Кокстера Узел CDel 1.png CDel 4.png Узел CDel 1.png Узел CDel 1.png CDel 4.png Узел CDel 1.png CDel 3.png CDel node.png Узел CDel 1.png CDel 4.png Узел CDel 1.png CDel 3.png CDel node.png CDel 3.png CDel node.png Узел CDel 1.png CDel 4.png Узел CDel 1.png CDel 3.png CDel node.png CDel 3.png CDel node.png CDel 3.png CDel node.png Узел CDel 1.png CDel 4.png Узел CDel 1.png CDel 3.png CDel node.png CDel 3.png CDel node.png CDel 3.png CDel node.png CDel 3.png CDel node.png Узел CDel 1.png CDel 4.png Узел CDel 1.png CDel 3.png CDel node.png CDel 3.png CDel node.png CDel 3.png CDel node.png CDel 3.png CDel node.png CDel 3.png CDel node.png Узел CDel 1.png CDel 4.png Узел CDel 1.png CDel 3.png CDel node.png CDel 3.png CDel node.png CDel 3.png CDel node.png CDel 3.png CDel node.png CDel 3.png CDel node.png CDel 3.png CDel node.png
Вершинная фигура () v () Усеченный куб vertfig.png . () v {} Усеченный 8-элементный verf.png . () v {3} Усеченный 5-кубовый verf.png . () v {3,3} () v {3,3,3} () v {3,3,3,3} () v {3,3,3,3,3}

Как развернутый квадрат, он также является первым в последовательность расширенных гиперкубов:

Расширенные гиперкубы

Правильный многоугольник 8 annotated.svg 3-куб t02.svg Маленький ромбикубооктаэдр.png 4-куб t03.svg полу- solid runcinated 8-cell.png 5-куб t04.svg 5-куб t04 A3.svg 6-куб t05.svg 6-куб t05 A5.svg 7-куб t06.svg 7-cube t06 A5.svg 8-куб t07.svg 8-куб t07 A7.svg
восьмиугольник Ромбокубооктаэдр Бугристая тессера ct Стерифицированный 5-куб Пятиугольный 6-куб Hexicated 7-кубический
Узел CDel 1.png CDel 4.png Узел CDel 1.png Узел CDel 1.png CDel 4.png CDel node.png CDel 3.png Узел CDel 1.png Узел CDel 1.png CDel 4.png CDel node.png CDel 3.png CDel node.png CDel 3.png Узел CDel 1.png Узел CDel 1.png CDel 4.png CDel node.png CDel 3.png CDel node.png CDel 3.png CDel node.png CDel 3.png Узел CDel 1.png Узел CDel 1.png CDel 4.png CDel node.png CDel 3.png CDel node.png CDel 3.png CDel node.png CDel 3.png CDel node.png CDel 3.png Узел CDel 1.png Узел CDel 1.png CDel 4.png CDel node.png CDel 3.png CDel node.png CDel 3.png CDel node.png CDel 3.png CDel node.png CDel 3.png CDel node.png CDel 3.png Узел CDel 1.png Узел CDel 1.png CDel 4.png CDel node.png CDel 3.png CDel node.png CDel 3.png CDel node.png CDel 3.png CDel node.png CDel 3.png CDel node.png CDel 3.png CDel node.png CDel 3.png Узел CDel 1.png

См. также

Ссылки

Внешние ссылки

Найдите octagon в Викисловаре, бесплатном словаре.

Понравилась статья? Поделить с друзьями:
  • Как найти процентное содержание числа от числа
  • Как найти сертификат материнского капитала на госуслугах
  • Как составить причастие 2 в немецком
  • Как составить схему подтягиваний
  • Как найти координату вершины в ромбе