Как найти площадь арифметической прогрессии

Содержание

  1. Определение числовой последовательности
  2. Арифметическая прогрессия .
  3. Определение арифметической прогрессии
  4. Свойства арифметической прогрессии.
  5. Формула n-го члена арифметической прогрессии
  6. Доказательство формулы n-го члена арифметической прогрессии
  7. Примеры арифметических прогрессий.
  8. Арифметическая прогрессия, формулы.
  9. Геометрическая прогрессия.
  10. Свойства геометрической прогрессии.
  11. Примеры геометрических прогрессий.
  12. Геометрическая прогрессия, формулы.
  13. Бесконечно убывающая геометрическая прогрессия
  14. Связь арифметической и геометрической прогрессий

Определение числовой последовательности

Числовая последовательность — это множество чисел, каждому из которых можно присвоить уникальный номер.

Последовательности можно задавать разными способами:

  • Словесно — когда правило последовательности объясняется словами: «Последовательность простых чисел: 4, 6, 10, 19, 21, 33…»
  • Аналитически — когда указана формула ее n-го члена: yn = f(n). Последовательность yn = C называют постоянной или стационарной.
  • Рекуррентно — когда указывается правило, которое помогает вычислить n-й член последовательности, если известны её предыдущие члены.

Арифметическая прогрессия — (an), задана таким соотношением:
a1 = a, an+1= an + d.

Последовательность Фибоначчи — когда каждое следующее число равно сумме двух предыдущих чисел: an+1 = an + an-1.

Пример: 1, 1, 2, 3, 5, 8, 13, 21, 34, 55…

  • Графически — когда график последовательности состоит из точек с абсциссами
    1, 2, 3, 4…
    прогрессия

Так как алгебраическая числовая последовательность — это частный случай числовой функции, то ряд свойств функций рассматриваются и для последовательностей.

Свойства числовых последовательностей:

  • Последовательность {yn} называют возрастающей, если каждый ее член кроме первого больше предыдущего:y1 < y2 < y3 < … < yn < yn+1 < …
  • Последовательность {yn} называют убывающей, если каждый ее член кроме первого меньше предыдущего: y1 > y2 > y3 > … > yn > yn+1 > …

Возрастающие и убывающие последовательности называют монотонными последовательностями.

  • Последовательность можно назвать периодической, если существует такое натуральное число T, что начиная с некоторого N, выполняется равенство: yn = yn+T. Число T — длина периода.

Запишем числа, которые первые пришли в голову: 7, 19, 0, -1, 2, -11, 0… Сколько бы чисел не написали, всегда можно сказать, какое из них первое, какое — второе и так до последнего. То есть мы можем их пронумеровать.

Пример числовой последовательности выглядит так:

таблица прогрессии

В такой математической последовательности каждый номер соответствует одному числу. Это значит, что в последовательности не может быть двух первых чисел и т.д. Первое число (как и любое другое) — всегда одно.

N-ный член алгебраической последовательности — это число с порядковым номером n.

Всю последовательность можно обозначить любой буквой латинского алфавита, например, a. Каждый член этой последовательности — той же буквой с индексом, который равен номеру этого члена: a1, a2,…, a10…, an.

таблица прогрессии

N-ый член последовательности можно задать формулой. Например:

  • Формула an = 3n — 5 задает последовательность: −2, 1, 4, 7, 10…
  • Формула an = 1 : (n + 2) задает последовательность: 13, 14, 15, 16…

Арифметическая прогрессия .

Арифметическая прогрессия — это ряд чисел, в котором все член получаются из предыдущего методом добавления к нему 1-го и того же числа d, которое называется разностью арифметической прогрессии.

Или другими словами: арифметическая прогрессия — численная последовательность, которая имеет вид:

Прогрессии арифметическая геометрическая формулы,т.е. последовательность чисел (членов прогрессии), в которой числа, начиная со 2-го, получаются из предыдущего путем добавления к нему постоянного числа Прогрессии арифметическая геометрическая формулы
(шаг либо разность прогрессии):

Прогрессии арифметическая геометрическая формулы

Всякий (n-й) член прогрессии можно вычислить с помощью формулы общего члена:

Прогрессии арифметическая геометрическая формулы

Арифметическая прогрессия — это монотонная последовательность . При Прогрессии (арифметическая, геометрическая), формулы. она возрастает, а при Прогрессии (арифметическая, геометрическая), формулы. — убывает. Если Прогрессии (арифметическая, геометрическая), формулы., то последовательность — стационарная. Это следуют из соотношения Прогрессии (арифметическая, геометрическая), формулы. для членов арифметической прогрессии.

Определение арифметической прогрессии

Так как числовая последовательность — это частный случай функции, которая определена на множестве натуральных чисел, арифметическую прогрессию можно назвать частным случаем числовой последовательности.

Рассмотрим основные определения и как найти арифметическую прогрессию.

Арифметическая прогрессия — это числовая последовательность a1, a2,…, an,… для которой для каждого натурального n выполняется равенство:

an+1= an + d, где d — это разность арифметической прогрессии.

Описать словами эту формулу можно так: каждый член арифметической прогрессии равен предыдущему, сложенному с одним и тем же числом d.

Разность между последующим и предыдущим членами, то есть разность арифметической прогрессии можно найти по формуле:

формула разности арифметической прогрессии

Если известны первый член a1 и n-ый член прогрессии, разность можно найти так:

формула если известные члены прогрессии

Арифметическая прогрессия бывает трех видов:

  • Возрастающая — арифметическая прогрессия, у которой положительная разность, то есть d > 0.

Пример: последовательность чисел 11, 14, 17, 20, 23… — это возрастающая арифметическая прогрессия, так как ее разность d = 3 > 0.

  • Убывающая — арифметическая прогрессия, у которой отрицательная разность, то есть d < 0.

Пример: последовательность чисел 50, 48, 46, 44, 43… — это убывающая арифметическая прогрессия, так как ее разность d = –2 < 0.

  • Стационарная — арифметическая прогрессия, у которой разность равна нулю, то есть d = 0.Пример: последовательность чисел 23, 23, 23, 23, 23… — это стационарная арифметическая прогрессия, так как ее разность d = 0.

Свойства арифметической прогрессии.

  • Общий член арифметической прогрессии.

Член арифметической прогрессии с номером Описание: n
можно найти с помощью формулы:

Прогрессии арифметическая геометрическая формулы,

где Прогрессии (арифметическая, геометрическая), формулы. — 1-й член прогрессии, Прогрессии (арифметическая, геометрическая), формулы. — разность прогрессии.

  • Характеристическое свойство арифметической прогрессии.

Последовательность  Прогрессии (арифметическая, геометрическая), формулы.  — это арифметическая прогрессия Прогрессии (арифметическая, геометрическая), формулы. для элементов этой прогрессии выполняется условие:Прогрессии (арифметическая, геометрическая), формулы..

  • Сумма 1-х Прогрессии (арифметическая, геометрическая), формулы. членов арифметической прогрессии.

Сумму 1-х  Прогрессии (арифметическая, геометрическая), формулы. членов арифметической прогрессии Прогрессии (арифметическая, геометрическая), формулы. можно найти с помощью формул:Прогрессии (арифметическая, геометрическая), формулы.,где Прогрессии (арифметическая, геометрическая), формулы. — 1-й член прогрессии, Прогрессии (арифметическая, геометрическая), формулы. — член с номером Прогрессии (арифметическая, геометрическая), формулы.Прогрессии (арифметическая, геометрическая), формулы. — число суммируемых членов.

Прогрессии (арифметическая, геометрическая), формулы.,где Прогрессии (арифметическая, геометрическая), формулы. — 1-й член прогрессии, Прогрессии (арифметическая, геометрическая), формулы. — разность прогрессии, Прогрессии (арифметическая, геометрическая), формулы. — число суммируемых членов.

  • Сходимость арифметической прогрессии.

Арифметическая прогрессия Прогрессии (арифметическая, геометрическая), формулы. является расходящейся при Прогрессии (арифметическая, геометрическая), формулы. и сходящейся при Прогрессии (арифметическая, геометрическая), формулы.. При этом:

Прогрессии (арифметическая, геометрическая), формулы.

  • Связь между арифметической и геометрической прогрессиями.

Есть Прогрессии (арифметическая, геометрическая), формулы. — арифметическая прогрессия с разностью Прогрессии (арифметическая, геометрическая), формулы., где число Прогрессии (арифметическая, геометрическая), формулы.. Тогда последовательность, которая имеет вид Прогрессии (арифметическая, геометрическая), формулы. является геометрической прогрессией, имеющей знаменатель Прогрессии (арифметическая, геометрическая), формулы..

Формула n-го члена арифметической прогрессии

Из определения арифметической прогрессии следует, что равенство истинно:

формула

Поэтому:

формула
формула
формула

и т.д.

Значит, формула

Переведем с языка формул на русский: если мы знаем первый член и разность арифметической прогрессии, то можем найти любой ее член.

Арифметическую прогрессию можно назвать заданной, если известен ее первый член и разность.

Формулу an = a1 + d * (n — 1) называют формулой n-го члена арифметической прогрессии.

Доказательство формулы n-го члена арифметической прогрессии

Формулу n-го члена арифметической прогрессии можно доказать при помощи метода математической индукции.

Пусть дано: формула
формула

Нужно доказать: формула

Как доказываем:

  • Формула формула №1
    верна при n = 1.

Действительно, формула №2

Согласно принципу математической индукции формула формула №9
верна для любого натурального числа.

Примеры арифметических прогрессий.

1, -1, -3, -5, -7 — первые пять членов арифметической прогрессии, в которой Прогрессии (арифметическая, геометрическая), формулы.
и Прогрессии (арифметическая, геометрическая), формулы..

Прогрессии (арифметическая, геометрическая), формулы..

Арифметическая прогрессия, формулы.

Формула n-го члена:

Прогрессии (арифметическая, геометрическая), формулы.

Формулы суммы n первых членов:

Прогрессии (арифметическая, геометрическая), формулы.

Геометрическая прогрессия.

Геометрическая прогрессия — это последовательность чисел Прогрессии (арифметическая, геометрическая), формулы. (членов прогрессии), в которой каждое число, начиная со 2-го, получают из предыдущего путем умножения его на определённое число Прогрессии (арифметическая, геометрическая), формулы.
(знаменатель прогрессии), где Прогрессии (арифметическая, геометрическая), формулы.Прогрессии (арифметическая, геометрическая), формулы.Прогрессии (арифметическая, геометрическая), формулы..

Или другими словами: геометрическая прогрессия — это численная последовательность, каждое из чисел равняется предыдущему, умноженному на определенное постоянное число q для данной прогрессии, которое называется знаменателем геометрической прогрессии.

Каждый член геометрической прогрессии можно вычислить при помощи формулы:

Прогрессии (арифметическая, геометрическая), формулы.

Когда Прогрессии (арифметическая, геометрическая), формулы. и Прогрессии (арифметическая, геометрическая), формулы., значит, прогрессия возрастает , когда Прогрессии (арифметическая, геометрическая), формулы., значит, прогрессия убывает, а при Прогрессии (арифметическая, геометрическая), формулы. — знакочередуется.

Название геометрическая прогрессия взяла из своего характеристического свойства:

Прогрессии (арифметическая, геометрическая), формулы.

т.е. все члены равны среднему геометрическому их соседей.

Свойства геометрической прогрессии.

  • Логарифмы членов геометрической прогрессии (если они определены) образуют арифметическую прогрессию:

Прогрессии (арифметическая, геометрическая), формулы.

  • Произведение 1-х n членов геометрической прогрессии рассчитывают при помощи формулы:

Прогрессии (арифметическая, геометрическая), формулы.,

  • Произведение элементов геометрической прогрессии, начиная с k-ого члена, и заканчивая n-ым членом, рассчитывают при помощи формулы:

Прогрессии (арифметическая, геометрическая), формулы.

  • Сумма n 1-х членов геометрической прогрессии:

Прогрессии (арифметическая, геометрическая), формулы.

Примеры геометрических прогрессий.

  1. Последовательность площадей квадратов, в которой каждый последующий квадрат получают соединением середин сторон предыдущего — геометрическая прогрессия со знаменателем ½, не имеющая предела. Площади образующихся на каждом этапе треугольников тоже образуют нескончаемую геометрическую прогрессию со знаменателем ½, сумма которой равняется площади начального квадрата.
  2. Последовательность числа зёрен на клетках в задаче о зёрнах на шахматной доске.
  3. 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192 — прогрессия со знаменателем 2 из 13 членов.
  4. 50; −25; 12,5; −6,25; 3,125; … — нескончаемо убывающая прогрессия со знаменателем -½.
  5. Прогрессии (арифметическая, геометрическая), формулы. — геометрическая прогрессия со знаменателем равным единице (и арифметическая прогрессия с шагом 0).

Геометрическая прогрессия, формулы.

  • Формула n-го члена:

Прогрессии (арифметическая, геометрическая), формулы.

  • Формулы суммы n первых членов:

Прогрессии (арифметическая, геометрическая), формулы.

  • Сумма бесконечной прогрессии:

Прогрессии (арифметическая, геометрическая), формулы.

Бесконечно убывающая геометрическая прогрессия

Бесконечно убывающей геометрической прогрессией называют бесконечную геометрическую прогрессию, модуль знаменателя которой меньше 1, то есть

|q| < 1.

Заметим, что бесконечно убывающая геометрическая прогрессия может не быть убывающей последовательностью. Это соответствует случаю

–1 < q < 0.

При таком знаменателе последовательность знакопеременная. Например,

1, –1/2, 1/4, –1/8, . . .  .

Суммой бесконечно убывающей геометрической прогрессии называют число, к которому неограниченно приближается сумма первых n членов прогрессии при неограниченном возрастании числа n. Это число всегда конечно и выражается формулой

  S  =  b1 + b2 + b3 + . . . = b1  .
1 – q

Например,

10 + 1 + 0,1 + 0,01 + . . . = 10 / (1 – 0,1) = 11 1/9 ,

10 – 1 + 0,1 – 0,01 + . . . = 10 / (1 + 0,1) = 9 1/11 . ◄

Связь арифметической и геометрической прогрессий

Арифметическая и геометрическая прогрессии тесно связаны между собой. Рассмотрим лишь два примера.

Если

a1, a2, a3, . . .— арифметическая прогрессия с разностью d, то

ba1, ba2, ba3, . . . — геометрическая прогрессия с знаменателем bd.

Например,

1, 3, 5, . . . — арифметическая прогрессия с разностью 2 и

71, 73, 75, . . . — геометрическая прогрессия с знаменателем 72. ◄

Если

b1, b2, b3, . . .— геометрическая прогрессия с знаменателем q, то

loga b1,  loga b2,  loga b3, . . . — арифметическая прогрессия с разностью  loga q.

Например,

2, 12, 72, . . . — геометрическая прогрессия с знаменателем 6 и

lg 2,  lg 12,  lg 72, . . . — арифметическая прогрессия с разностью  lg 6.

Числовые последовательности (основные понятия)

Арифметическая прогрессия

Геометрическая прогрессия

Бесконечно убывающая геометрическая прогрессия

Связь арифметической и геометрической прогрессий

Числовые последовательности (основные понятия)

Если каждому натуральному числу n поставить в соответствие действительное число an, то говорят, что задано числовую последовательность:

a1a2a3, . . . , an, . . .  .

Итак, числовая последовательность — функция натурального аргумента.

Число a1 называют первым членом последовательности, число a2вторым членом последовательности, число a3третьим и так далее. Число an называют n-м членом последовательности, а натуральное число nего номером.

Из двух соседних членов an и an+1 последовательности член an+1 называют последующим (по отношению к an), а aпредыдущим (по отношению к an+1).

Чтобы задать последовательность, нужно указать способ, позволяющий найти член последовательности с любым номером.

Часто последовательность задают с помощью формулы n-го члена, то есть формулы, которая позволяет определить член последовательности  по его номеру.

 Например,

последовательность положительных нечётных чисел можно задать формулой

a2n –1,

а последовательность чередующихся 1 и –1 — формулой

b(–1)n+1        

Последовательность можно определить рекуррентной формулой, то есть формулой, которая выражает любой член последовательности, начиная с некоторого, через предыдущие (один или несколько) члены.

 Например,

если  a1 = 1,  а  an+1 = an + 5, то первые пять членов последовательности находим следующим образом:

a1 = 1,

a2 = a1 + 5 = 1 + 5 = 6,

a3 = a2 + 5 = 6 + 5 = 11,

a4 = a3 + 5 = 11 + 5 = 16,

a5 = a4 + 5 = 16 + 5 = 21.

Если  а= 1,  а2 = 1,  an+2 = an + an+1,  то первые семь членов числовой последовательности устанавливаем следующим образом:

a1 = 1,

a2 = 1,

a3 = a1 + a2 = 1 + 1 = 2,

a4 = a2 + a3 = 1 + 2 = 3,

a5 = a3 + a4 = 2 + 3 = 5,

a6 = a4 + a5 = 3 + 5 = 8,

a7 = a5 + a6 = 5 + 8 = 13.

Последовательности могут быть конечными и бесконечными.

Последовательность называется конечной, если она имеет конечное число членов. Последовательность называется бесконечной, если она имеет бесконечно много членов.

 Например,

последовательность двузначных натуральных чисел:

10, 11, 12, 13, . . . , 98, 99

конечная.

Последовательность простых чисел:

2, 3, 5, 7, 11, 13, . . .

бесконечная.

Последовательность называют возрастающей, если каждый её член, начиная со второго, больше чем предыдущий.

Последовательность называют убывающей, если каждый её член, начиная со второго, меньше чем предыдущий.

 Например,

2, 4, 6, 8, . . . , 2n, . . . — возрастающая последовательность;

1, 1/2, 1/3, 1/4, . . . , 1/n, . . . — убывающая последовательность.

Последовательность, элементы которой с увеличением номера не убывают, или, наоборот, не возрастают, называется монотонной последовательностью

Монотонными последовательностями, в частности, являются возрастающие последовательности и убывающие последовательности.

Арифметическая прогрессия

Арифметической прогрессией называется последовательность, каждый член которой, начиная со второго, равен предыдущему, к которому прибавляется одно и то же число.

Иначе,

a1a2a3,  . . .  , an, . . .

является арифметической прогрессией, если для любого натурального числа n выполняется условие:

an+1 = an + d,

где  d — некоторое число.

Таким образом, разность между последующим и предыдущим членами данной арифметической прогрессии всегда постоянна:

а2a1 = а3a2 = . . . = an+1an = d.

Число d называют разностью арифметической прогрессии.

Чтобы задать арифметическую прогрессию, достаточно указать её первый член и разность.

 Например,

если  a1 = 3,  d = 4, то первые пять членов последовательности находим следующим образом:

a1 =3,

a2 = a1 + d = 3 + 4 = 7,

a3 = a2 + = 7 + 4 = 11,

a4 = a3 + = 11 + 4 = 15,

a5 = a4 + = 15 + 4 = 19.

Для арифметической прогрессии с первым членом a1 и разностью d её n-й член может быть найден по формуле:

an = a1 + (– 1)d.

 Например,

найдём тридцатый член арифметической прогрессии

1, 4, 7, 10, . . .

Имеем,

a1 =1,  d = 3,

a30 = a1 + (30 – 1)d =1 + 29·3 = 88.

Так как

an–1 = a1 + (– 2)d,

a= a1 + (– 1)d,

an+1 = a1 + nd,

то, очевидно,

то есть,

каждый член арифметической прогрессии, начиная со второго, равен среднему арифметическому предшествующего и последующего членов.

Так как верно и обратное утверждение, то имеет место следующее утверждение:

числа a, b и c  являются последовательными членами некоторой арифметической прогрессии тогда и только тогда, когда одно из них равно среднему арифметическому двух других.

 Например,

докажем, что последовательность, которая задаётся формулой  an = 2– 7, является арифметической прогрессией.

Воспользуемся приведённым выше утверждением. Имеем:

an = 2– 7,

an–1 = 2(n – 1) – 7 = 2– 9,

an+1 = 2(n + 1) – 7 = 2– 5.

Следовательно,

an+1 + an–1
 = 
2– 5 + 2– 9
= 2– 7 = an,
2
2

что и доказывает нужное утверждение.

Отметим, что n-й член арифметической прогрессии можно найти не толь через a1, но и любой предыдущий ak, для чего достаточно воспользоваться формулой

an = ak + (k)d.

 Например,

для  a5  можно записать

a5 = a1 + 4d,

a5 = a2 + 3d,

a5 = a3 + 2d,

a5 = a4 + d.

Так как

an = an–k + kd,

an = an+kkd,

то, очевидно,

то есть,

любой член арифметической прогрессии, начиная со второго равен полусумме равноотстоящих от него членов этой арифметической прогрессии.

Кроме того, для любой арифметической прогрессии справедливо равенство:

am + an = ak + al,

если

m + n = k + l.

 Например,

в арифметической прогрессии  1, 4, 7, 10, 13, 16, 19, 22, 25, 28, 31, 34, 37, . . .

1) a10 = 28 = (25 + 31)/2 = (aa11)/2;

2) 28 = a10 = a3 + 7= 7 + 7·3 = 7 + 21 = 28;

3) a10 = 28 = (19 + 37)/2 = (a+ a13)/2;

4) a2 + a12 = a5 + a9так как

    a2 + a12 = 4 + 34 = 38,

    a5 + a9 = 13 + 25 = 38.  

Сумма

S= a1 + a2+ a3 + . . .+an,

первых n членов арифметической прогрессии равна произведению полусуммы крайних слагаемых на число слагаемых:

Отсюда, в частности, следует, что если нужно просуммировать члены

ak, ak+1,  . . . , an,

то предыдущая формула сохраняет свою структуру:

 Sn – Sk–1 = ak + ak+1 + . . . + an ak + an
 · (+ 1) .
2

 Например,

в арифметической прогрессии  1, 4, 7, 10, 13, 16, 19, 22, 25, 28, 31, 34, 37, . . .

S10 = 1 + 4 + . . . + 28 = (1 28) · 10/2 = 145;

10 + 13 + 16 + 19 + 22 + 25 + 28 = S10 – S= (10 + 28) · (10 – 4 + 1)/2 = 133.

Если дана арифметическая прогрессия, то величины  a1,  an,  d,  n  и  S связаны двумя формулами:

 an = a1 + (– 1)d    и    Sn  =  a1 + an
 · n .
2

Поэтому, если значения трёх из этих величин даны, то соответствующие им значения двух остальных величин определяются из этих формул, объединённых в систему двух уравнений с двумя неизвестными.

Арифметическая прогрессия является монотонной последовательностью. При этом:

  • если d > 0, то она является возрастающей;
  • если d < 0, то она является убывающей;
  • если d = 0, то последовательность будет стационарной.

Геометрическая прогрессия

Геометрической прогрессией называется последовательность, каждый член которой, начиная со второго, равен предыдущему, умноженному на одно и то же число.

Иначе,

b1b2b3, . . .  , bn, . . .

является геометрической прогрессией, если для любого натурального числа n выполняется условие:

bn+1 = bn · q,

где q ≠ 0 — некоторое число.

Таким образом, отношение последующего члена данной геометрической прогрессии к предыдущему есть число постоянное:

b2/b1 = b3/b2 = . . . = bn+1/bn = q.

Число q называют знаменателем геометрической прогрессии.

Чтобы задать геометрическую прогрессию, достаточно указать её первый член и знаменатель.

 Например,

если  b1 = 1,  q = –3, то первые пять членов последовательности находим следующим образом:

b1 = 1,

b2 = b1 ·
q = 1 · (–3) = –3,

b3 = b2 ·
= –3 · (–3) = 9,

b4 = b3 ·
= 9 · (–3) = –27,

b5 = b4 ·
= –27 · (–3) = 81.

Для геометрической прогрессии с первым членом  b1 и знаменателем q её n-й член может быть найден по формуле:

bn = b1 ·
qn–1
.

 Например,

найдём седьмой член геометрической прогрессии 1, 2, 4, . . .

Имеем,

b1 = 1,  q = 2,

b7 = b1 · q6
1 · 26 = 64
.

Так как

bn–1 = b1 ·
qn–2,

bn = b1 ·
qn–1,

bn+1 = b1 ·
qn,

то, очевидно,

bn= bn–1 · bn+1,

то есть,

каждый член геометрической прогрессии, начиная со второго, равен среднему геометрическому (пропорциональному) предшествующего и последующего членов.

Так как верно и обратное утверждение, то имеет место следующее утверждение:

числа  a, b и c  являются последовательными членами некоторой геометрической прогрессии тогда и только тогда, когда квадрат одного из них равен произведению двух других, то есть одно из чисел является средним геометрическим двух других.

 Например,

докажем, что последовательность, которая задаётся формулой  bn = –3 · 2n, является геометрической прогрессией. Воспользуемся приведённым выше утверждением. Имеем:

bn = –3 · 2n,

bn–1 = –3 · 2n–1,

bn+1 = –3 · 2n+1.

Следовательно,

bn= (–3 · 2n)2 = (–3 · 2n–1) · (–3 · 2n+1) = bn–1 · bn+1,

что и доказывает нужное утверждение.

Отметим, что n-й член геометрической прогрессии можно найти не только через b1, но и любой предыдущий член bk, для чего достаточно воспользоваться формулой

bn = bk ·
qnk.

 Например,

для  b5  можно записать

b5 = b1 ·
q4,

b5 = b2 ·
q3,

b5 = b3 ·
q2,

b5 = b4 ·
q.

Так как

bn = bk ·
qnk,

bn = bnk ·
qk,

то, очевидно,

bn= bn· bn+k

то есть,

квадрат любого члена геометрической прогрессии, начиная со второго равен произведению равноотстоящих от него членов этой прогрессии.

Кроме того, для любой геометрической прогрессии справедливо равенство:

b· bb· bl,

если

l.

 Например,

в геометрической прогрессии  1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, . . .

1) b6= 322 = 1024 = 16 · 64 = b· b7;

2) 1024 = b11 = b6 ·
q5 = 32 · 25 = 1024;

3) b6= 322 = 1024 = 8 · 128 = b4 · b8;

4) b2 · bb4 · b5,  так как

    b2 · b2 · 64 = 128,

    b4 · b5 = 8 · 16 = 128.  

Сумма

S= bbb+ . . . + bn

первых n членов геометрической прогрессии со знаменателем q  0  вычисляется по формуле:

А при q = 1 — по формуле

S= nb1

Заметим, что если нужно просуммировать члены

bk, bk+1,  . . . ,bn,

то используется формула:

  S– Sk–1  =  bk + bk+1 + . . . + bn  =  bk ·  1 – qnk+1
 .
1 – q  

 Например,

в геометрической прогрессии 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, . . .

S10 = 1 + 2 + . . . + 512 = 1 · (1 – 210) / (1 – 2) = 1023;

64 + 128 + 256 + 512 = S10 – S= 64 · (1 – 210–7+1) / (1 – 2) = 960.

Если дана геометрическая прогрессия, то величины  b1,  bn,  q,  n  и  Sn  связаны двумя формулами:

 bn = b1 · qn–1  и  S= b1 ·  1 – qn
 .
1 – q  

Поэтому, если значения каких-либо трёх из этих величин даны, то соответствующие им значения двух остальных величин определяются из этих формул, объединённых в систему двух уравнений с двумя неизвестными.

Для геометрической прогрессии с первым членом b1 и знаменателем q имеют место следующие свойства монотонности:

  • прогрессия является возрастающей, если выполнено одно из следующих условий:

b1 > 0  и  > 1;

b1 < 0  и  0 < < 1;

  • прогрессия является убывающей, если выполнено одно из следующих условий:

b1 > 0  и  0 < q < 1;

b1 < 0  и  > 1.

Если  q < 0, то геометрическая прогрессия является знакопеременной: её члены с нечётными номерами имеют тот же знак, что и её первый член, а члены с чётными номерами — противоположный ему знак. Ясно, что знакопеременная геометрическая прогрессия не является монотонной.

Произведение первых n членов геометрической прогрессии можно рассчитать по формуле:

P= b1 · b· b3 · . . . · bn = (b1 · bn) n/2.

 Например,

1 · 2 · 4 · 8 · 16 · 32 · 64 · 128 = (1 · 128)8/2 = 1284 = 268 435 456;

3 · 6 · 12 · 24 · 48 = (3 · 48)5/2 = (1441/2)5 = 125 = 248 832.

Бесконечно убывающая геометрическая прогрессия

Бесконечно убывающей геометрической прогрессией называют бесконечную геометрическую прогрессию, модуль знаменателя которой меньше 1, то есть 

|q| < 1.

Заметим, что бесконечно убывающая геометрическая прогрессия может не быть убывающей последовательностью. Это соответствует случаю

–1 < q < 0.

При таком знаменателе последовательность знакопеременная. Например,

1, –1/2, 1/4, –1/8, . . .  .

Суммой бесконечно убывающей геометрической прогрессии называют число, к которому неограниченно приближается сумма первых n членов прогрессии при неограниченном возрастании числа n. Это число всегда конечно и выражается формулой

  S  =  bbb+ . . . =  b  .
1 – q

 Например,

10 + 1 + 0,1 + 0,01 + . . . = 10 / (1 – 0,1) = 11 1/9 ,

10 – 1 + 0,1 – 0,01 + . . . = 10 / (1 + 0,1) = 9 1/11 .

Связь арифметической и геометрической прогрессий

Арифметическая и геометрическая прогрессии тесно связаны между собой. Рассмотрим лишь два примера.

Если

a1a2a3, . . .— арифметическая прогрессия с разностью d, то

ba1, ba2, ba3, . . . — геометрическая прогрессия с знаменателем bd.

 Например,

1, 3, 5, . . . — арифметическая прогрессия с разностью 2 и

71, 73, 75, . . . — геометрическая прогрессия с знаменателем 72.

Если

b1b2b3, . . .— геометрическая прогрессия с знаменателем q, то

loga b1,  loga b2,  loga b3, . . . — арифметическая прогрессия с разностью  logq.

 Например,

2, 12, 72, . . . — геометрическая прогрессия с знаменателем 6 и

lg 2,  lg 12,  lg 72, . . . — арифметическая прогрессия с разностью  lg 6.

      Смотрите также:

Обозначения и сокращения

Таблицы чисел

Алгебраические тождества

Степени

Арифметический корень n-й степени

Логарифмы

Графики элементарных функций

Построение графиков функций геометрическими методами

Тригонометрия

Таблицы значений тригонометрических функций

Предел и непрерывность функции

Треугольники

Четырёхугольники

Многоугольники

Окружность

Площади геометрических фигур

Прямые и плоскости

Многогранники

Тела вращения

Арифметическая прогрессия — одно из фундаментальных понятий алгебры и математического анализа. Она имеет много применений в различных областях, включая финансы, физику, экономику и другие науки.

Арифметическая прогрессия — последовательность из чисел, в которой каждый следующий член отличается от предыдущего на определенное значение. Это значение называют разностью  или шагом арифметической прогрессии и обозначают буквой d. Разность может быть и отрицательным числом и даже равняться нулю.

Например, 2,7,12,17,22… — это арифметическая прогрессия, так как второй ее член (7) отличается от первого (2) на 5, третий член (12) отличается от второго (7) тоже на 5, четвертый член (17) отличается от третьего (12) снова на 5 и т. д. Получается у этой числовой последовательности каждый следующий элемент больше предыдущего на 5 и эта последовательность является арифметической прогрессией.

А вот последовательность 3, 5, 7, 10, 15… не является арифметической прогрессией. Подумайте почему.

Таким образом, чтобы найти следующий член прогрессии, необходимо добавить к нему разность (шаг).

{a_n=a_{n-1}+d}

Для того, чтобы найти член арифметической прогрессии, необходимо знать первый член и разность. Формула для этого выглядит так:

{a_n=a_1+(n-1)d}

Характеристическое свойство арифметической прогрессии

Если для последовательности чисел выполняется следующее равенство, то такую последовательность можно назвать арифметической прогрессией:

{a_n=frac {a_{n-1}+a_{n+1}}{2}, nge 2}

Сумма членов арифметической прогрессии

Для того, чтобы найти сумму первых n членов арифметической прогрессии, необходимо воспользоваться одной из формул:

{S_n=frac {a_1+a_n}{2} cdot n},

{S_n=frac {2a_1+d(n-1)}{2} cdot n}

В этих формулах a1 — первый член арифметической прогрессии, n — количество элементов для суммирования, an — член с номером n, d — разность прогрессии. На сайте вы можете найти сумму членов арифметической прогрессии онлайн.

Примеры арифметической прогрессии

2, 5, 8, 11, 14, 17…

Это арифметическая прогрессия, у которой первый член a1 равен 2, а разность d равна 3.

75, 70, 65, 60, 55…

В данном примере мы имеем дело с отрицательной разностью прогрессии. a1=75, d=-5.

Формулы арифметической прогрессии

Определение арифметической прогрессии {a_n=a_{n-1}+d}
Разность арифметической прогрессии {d = a_{n+1}-a_n}
Формула n-го члена арифметической прогрессии a_n=a_1+(n-1)d
Сумма первых n членов арифметической прогрессии

{S_n=dfrac {a_1+a_n}{2} cdot n}

{S_n=dfrac {2a_1+d(n-1)}{2} cdot n}

Характеристическое свойство арифметической прогрессии a_n=dfrac {a_{n-1}+a_{n+1}}{2}, nge 2

Арифметические прогрессии широко применяются в финансовых расчетах, например, при расчете аннуитетов и амортизации. Они также используются в физике при описании равномерно ускоренного движения тела.

Понимание арифметических прогрессий может быть полезно не только в научных и технических областях, но и в повседневной жизни. Например, при планировании бюджета или распределении времени между задачами можно использовать концепцию арифметической прогрессии для более эффективного использования ресурсов.

Арифметическая прогрессия — это важное математическое понятие, которое широко используется в различных областях. Понимание ее смысла может быть полезно для решения различных задач и повышения эффективности в различных сферах деятельности.

Прогрессия — это последовательность величин, каждая последующая из них находится в некоторой, общей для всей прогрессии, зависимости от предыдущей.

Содержание:

Числовая последовательность

В жизни мы часто встречаемся с функциями, областью определения которых является множество натуральных чисел. Например, стоимость проезда в пригородном транспорте зависит от дальности поездки и задается функцией Прогрессии в математике - с примерами решения

Прогрессии в математике - с примерами решения

Функция стоимости проезда задана таблично, областью определения функции является множество натуральных чисел Прогрессии в математике - с примерами решения В таком случае говорят, что рассматривается функция натурального аргумента, или числовая последовательность.

Примером числовой последовательности является последовательность положительных четных чисел: 2; 4; 6; 8; … . Число 2 — первый член последовательности, число 4 — второй и т. д. Ясно, что на 5-м месте будет число 10 (пятый член последовательности), а на 100-м — число 200 (сотый член последовательности).

Еще один пример — последовательность чисел, обратных натуральным числам: Прогрессии в математике - с примерами решения На Прогрессии в математике - с примерами решения месте запишется число Прогрессии в математике - с примерами решения которое является Прогрессии в математике - с примерами решения членом данной последовательности.

Последовательности могут быть конечными и бесконечными. Например, последовательность двузначных чисел 10; 11; …; 99 является конечной, так как содержит конечное число членов. А последовательность нечетных натуральных чисел — бесконечная.

Определение числовой последовательности

Определение:

Числовой последовательностью называется функция, определенная на множестве Прогрессии в математике - с примерами решения натуральных чисел, т. е. зависимость, при которой каждому натуральному числу ставится в соответствие единственное действительное число.

Числа, образующие последовательность (значения функции), называются членами последовательности. Они записываются буквами с индексами, обозначающими номер члена последовательности: Прогрессии в математике - с примерами решения — первый член последовательности, Прогрессии в математике - с примерами решения — второй член последовательности, Прогрессии в математике - с примерами решения член последовательности. Последовательность с Прогрессии в математике - с примерами решения членом Прогрессии в математике - с примерами решения обозначается Прогрессии в математике - с примерами решения Для обозначения последовательности можно использовать любую букву латинского алфавита. Например, последовательность Прогрессии в математике - с примерами решения имеет вид Прогрессии в математике - с примерами решения

Если Прогрессии в математике - с примерами решения — последовательность нечетных натуральных чисел Прогрессии в математике - с примерами решенияПрогрессии в математике - с примерами решения

Последовательности, так же как и функции, могут быть заданы различными способами.

Аналитический способ — это задание последовательности с помощью формулы ее Прогрессии в математике - с примерами решения члена. Например, последовательность четных натуральных чисел можно задать с помощью формулы Прогрессии в математике - с примерами решения а последовательность чисел, обратных натуральным числам, задается формулой Прогрессии в математике - с примерами решения

С помощью формулы Прогрессии в математике - с примерами решения члена можно найти любой член последовательности.

Например, пусть последовательность Прогрессии в математике - с примерами решения задана формулой Прогрессии в математике - с примерами решения тогда

Прогрессии в математике - с примерами решения

Чтобы найти некоторый член последовательности с помощью формулы Прогрессии в математике - с примерами решения члена, нужно вместо п подставить в формулу натуральное число, равное номеру искомого члена (индексу в его обозначении).

Для задания последовательностей часто используется рекуррентный способ (от лат. recurrentis — возвращающийся). Он заключается в вычислении следующих членов последовательности по предыдущим.

Например, условия Прогрессии в математике - с примерами решения и Прогрессии в математике - с примерами решения определяют бесконечную последовательность: Прогрессии в математике - с примерами решения т. е. Прогрессии в математике - с примерами решения

Пример №1

Найдите несколько членов последовательности Прогрессии в математике - с примерами решения где Прогрессии в математике - с примерами решения

Решение:

Прогрессии в математике - с примерами решения

Прогрессии в математике - с примерами решения

Запишем несколько членов этой последовательности в ряд: 1; 1; 2; 3; 5; … .

Полученную последовательность чисел называют последовательностью Фибоначчи по имени итальянского математика Леонардо Фибоначчи (1180—1240).

Формула n-го члена последовательности

Пример №2

Последовательность Прогрессии в математике - с примерами решения задана формулой Прогрессии в математике - с примерами решения члена Прогрессии в математике - с примерами решения Найдите: Прогрессии в математике - с примерами решенияПрогрессии в математике - с примерами решения

Решение:

Прогрессии в математике - с примерами решения

Пример №3

Последовательность задана формулой Прогрессии в математике - с примерами решения члена Прогрессии в математике - с примерами решения Является ли членом этой последовательности число:

а) -2; б) -7?

Решение:

Для того чтобы определить, является ли число членом последовательности, нужно определить, имеет ли натуральные корни уравнение:

а) Прогрессии в математике - с примерами решения значит, число -2 не является членом последовательности;

б) Прогрессии в математике - с примерами решения значит, число -7 является членом последовательности с номером 5.

Пример №4

Для каких членов последовательности Прогрессии в математике - с примерами решения заданной формулой Прогрессии в математике - с примерами решения члена Прогрессии в математике - с примерами решения выполняется неравенство Прогрессии в математике - с примерами решения?

Решение:

Подставим в неравенство Прогрессии в математике - с примерами решения выражение для Прогрессии в математике - с примерами решения члена, получим Прогрессии в математике - с примерами решения Решение полученного квадратного неравенства есть отрезок [-4; 1], выберем из этого отрезка только натуральные числа, получим Прогрессии в математике - с примерами решения. Значит, данное неравенство выполняется только для первого члена последовательности.

Рекуррентный способ задания последовательности

Пример №5

Запишите 5 первых членов последовательности Прогрессии в математике - с примерами решения, если Прогрессии в математике - с примерами решения

Решение:

Прогрессии в математике - с примерами решения

Пример №6

Запишите несколько первых членов последовательности Прогрессии в математике - с примерами решения, если Прогрессии в математике - с примерами решения

Задайте эту последовательность формулой Прогрессии в математике - с примерами решения члена.

Решение:

Прогрессии в математике - с примерами решения

Получим следующую последовательность: 8; -8; 8; -8; …. На нечетных местах этой последовательности стоят члены, равные числу 8, а на четных — числу -8, значит, формула Прогрессии в математике - с примерами решения члена имеет вид Прогрессии в математике - с примерами решения

Арифметическая прогрессия

Рассмотрим задачу. В горной местности температура воздуха летом при подъеме на каждые 100 м в среднем понижается на 0,7 °С. У подножия горы температура равна 26 °С. Найдите температуру воздуха на высоте 100 м; 200 м; 300 м.

Решение:

Температура воздуха на высоте 100 м равна 26 °С — 0,7 °С = 25,3 °С. На высоте 200 м температура будет равна 25,3 °С — 0,7 °С = 24,6 °С, а на высоте 300 м — 24,6 °С — 0,7 °С = 23,9 °С.

Ответ: 25,3 °С; 24,6 °С; 23,9 °С.

Решая задачу, мы получили последовательность 26; 25,3; 24,6; … . Каждый член этой последовательности равен предыдущему, сложенному с числом -0,7. Многие практические задачи приводят к последовательностям такого вида. Они называются арифметическими прогрессиями (от лат. progression — движение вперед).

Определение арифметической прогрессией

Определение:

Арифметической прогрессией называется числовая последовательность, каждый член которой, начиная со второго, равен предыдущему члену, сложенному с одним и тем же для данной последовательности числом, т. е.

Прогрессии в математике - с примерами решения

Число Прогрессии в математике - с примерами решения называется разностью арифметической прогрессии.

Из равенства Прогрессии в математике - с примерами решения следует, что Прогрессии в математике - с примерами решения

Чтобы задать арифметическую прогрессию Прогрессии в математике - с примерами решения, достаточно задать ее первый член Прогрессии в математике - с примерами решения и разность Прогрессии в математике - с примерами решения

Прогрессии в математике - с примерами решения

Например, если Прогрессии в математике - с примерами решения то получится арифметическая прогрессия 3; 7; 11; 15; … .

Если Прогрессии в математике - с примерами решения то арифметическая прогрессия имеет вид 2; -1; -4; -7; -10; … .

Если Прогрессии в математике - с примерами решения то все члены арифметической прогрессии равны между собой: -7; -7; -7; -7; … .

Чтобы вычислить любой член арифметической прогрессии, не вычисляя все предыдущие члены, используют формулу Прогрессии в математике - с примерами решения члена арифметической прогрессии

Прогрессии в математике - с примерами решения

Выведем эту формулу. Если Прогрессии в математике - с примерами решения — арифметическая прогрессия с разностью Прогрессии в математике - с примерами решения то, используя определение, получим верные равенства:

Прогрессии в математике - с примерами решения

Сложим эти равенства:

Прогрессии в математике - с примерами решения

После упрощения получим:

Прогрессии в математике - с примерами решения

Так как число слагаемых Прогрессии в математике - с примерами решения равно Прогрессии в математике - с примерами решения, то равенство примет вид

Прогрессии в математике - с примерами решения

Получили формулуПрогрессии в математике - с примерами решенияПрогрессии в математике - с примерами решения члена арифметической прогрессии Прогрессии в математике - с примерами решения

Формула Прогрессии в математике - с примерами решения члена арифметической прогрессии Прогрессии в математике - с примерами решения позволяет вычислить любой член прогрессии, зная ее первый член Прогрессии в математике - с примерами решения, номер члена Прогрессии в математике - с примерами решения и разность прогрессии Прогрессии в математике - с примерами решения

Прогрессии в математике - с примерами решения

Пример №7

Последовательность Прогрессии в математике - с примерами решения — арифметическая прогрессия, Прогрессии в математике - с примерами решения Найдите 100-й член прогрессии.

Решение:

По формуле Прогрессии в математике - с примерами решения члена получим:

Прогрессии в математике - с примерами решения

Ответ: 249,5.

Пример №8

Последовательность Прогрессии в математике - с примерами решения — арифметическая прогрессия, Прогрессии в математике - с примерами решения Является ли членом этой прогрессии число: а) 168; б) 201?

Решение:

а) По условию Прогрессии в математике - с примерами решения Подставим эти значения в формулу Прогрессии в математике - с примерами решения члена Прогрессии в математике - с примерами решения и получим уравнение Прогрессии в математике - с примерами решения Решив его, получим, что Прогрессии в математике - с примерами решения — корень уравнения. Так как 67 — натуральное число, то число 168 является членом этой прогрессии с номером 67.

б) Подставим значения Прогрессии в математике - с примерами решения в формулу Прогрессии в математике - с примерами решения члена Прогрессии в математике - с примерами решения и получим уравнение Прогрессии в математике - с примерами решения Решим его: Прогрессии в математике - с примерами решения Прогрессии в математике - с примерами решения Так как корень уравнения 80,2 — не натуральное число, то число 201 не является членом этой прогрессии.

Ответ: а) число 168 является членом этой прогрессии; б) число 201 не является членом этой прогрессии.

Характеристическое свойство арифметической прогрессии

В арифметической прогрессии каждый ее член, начиная со второго, равен среднему арифметическому предыдущего и последующего (соседних с ним)

членов, т. е. Прогрессии в математике - с примерами решения при Прогрессии в математике - с примерами решения

Прогрессии в математике - с примерами решенияпри Прогрессии в математике - с примерами решения

Доказательство. В арифметической прогрессии Прогрессии в математике - с примерами решения для члена Прогрессии в математике - с примерами решения запишем по формуле Прогрессии в математике - с примерами решения члена предыдущий и последующий члены, т. е. Прогрессии в математике - с примерами решения и Прогрессии в математике - с примерами решения:

Прогрессии в математике - с примерами решения

Найдем их среднее арифметическое:

Прогрессии в математике - с примерами решения

Справедливо и обратное утверждение:

если в последовательности каждый ее член, начиная со второго, равен среднему арифметическому предыдущего и последующего (соседних с ним) членов, то последовательность является арифметической прогрессией.

Доказательство:

Пусть в некоторой числовой последовательности Прогрессии в математике - с примерами решения каждый ее член, начиная со второго, равен среднему арифметическому предыдущего и последующего членов, т. е. Прогрессии в математике - с примерами решения. Тогда Прогрессии в математике - с примерами решения,

Прогрессии в математике - с примерами решения значит, разность каждого ее члена с предыдущим членом есть одно и то же число. Обозначим его Прогрессии в математике - с примерами решения получим Прогрессии в математике - с примерами решения при любом натуральном Прогрессии в математике - с примерами решения, следовательно, Прогрессии в математике - с примерами решения Значит, по определению последовательность Прогрессии в математике - с примерами решения — арифметическая прогрессия.

Оба утверждения можно объединить в одно, которое называется характеристическим свойством арифметической прогрессии:

числовая последовательность является арифметической прогрессией тогда и только тогда, когда каждый ее член, начиная со второго, равен среднему арифметическому предыдущего и последующего членов: Прогрессии в математике - с примерами решения

Пример №9

Проверьте, является ли арифметической прогрессией последовательность, заданная формулой

Прогрессии в математике - с примерами решения

Решение:

Запишем для Прогрессии в математике - с примерами решения предыдущий и последующий члены последовательности:

Прогрессии в математике - с примерами решения

Найдем среднее арифметическое этих членов: Прогрессии в математике - с примерами решения

По характеристическому свойству арифметической прогрессии последовательность Прогрессии в математике - с примерами решения является арифметической прогрессией.

Решение арифметической прогрессии

Пример №10

Последовательность 2; 12; 22; … является арифметической прогрессией. Продолжите последовательность.

Решение:

Так как последовательность является арифметической прогрессией, то найдем ее разность Прогрессии в математике - с примерами решения Тогда каждый следующий член последовательности равен предыдущему, сложенному с числом 10: 2; 12; 22; 32; 42;….

Пример №11

Известны члены арифметической прогрессии: Прогрессии в математике - с примерами решения Найдите разность этой прогрессии.

Решение:

Найдем разность арифметической прогрессии:

Прогрессии в математике - с примерами решения

Формула n-го члена арифметической прогрессии

Пример №12

Последовательность Прогрессии в математике - с примерами решения — арифметическая прогрессия. Найдите двадцатый член прогрессии, если Прогрессии в математике - с примерами решения

Решение:

По формуле Прогрессии в математике - с примерами решения члена арифметической прогрессии Прогрессии в математике - с примерами решения получим: Прогрессии в математике - с примерами решения

Пример №13

Запишите формулу Прогрессии в математике - с примерами решения члена для арифметической прогрессии -15,5; -14,9; -14,3; … и найдите ее двадцатый член.

Решение:

По условию Прогрессии в математике - с примерами решения тогда Прогрессии в математике - с примерами решения Запишем формулу Прогрессии в математике - с примерами решения члена данной арифметической прогрессии, подставив в формулу Прогрессии в математике - с примерами решения значения для Прогрессии в математике - с примерами решения и Прогрессии в математике - с примерами решения:

Прогрессии в математике - с примерами решения

Подставим Прогрессии в математике - с примерами решения в формулу Прогрессии в математике - с примерами решения члена данной арифметической прогрессии и найдем ее двадцатый член: Прогрессии в математике - с примерами решения

Пример №14

В арифметической прогрессии Прогрессии в математике - с примерами решения известно, что Прогрессии в математике - с примерами решения Число 16 является членом этой прогрессии. Найдите его номер.

Решение:

Так как Прогрессии в математике - с примерами решения то Прогрессии в математике - с примерами решения По условию Прогрессии в математике - с примерами решения Воспользуемся формулой Прогрессии в математике - с примерами решения тогда

Прогрессии в математике - с примерами решения

Пример №15

В арифметической прогрессии Прогрессии в математике - с примерами решения Найдите разность прогрессии и ее первый член.

Решение:

По условию Прогрессии в математике - с примерами решения

Решим систему уравнений

Прогрессии в математике - с примерами решения

Вычтем из второго уравнения первое, получим Прогрессии в математике - с примерами решения откуда Прогрессии в математике - с примерами решения Подставим Прогрессии в математике - с примерами решения в первое уравнение системы, получим Прогрессии в математике - с примерами решения

Характеристическое свойство арифметической прогрессии

Пример №16

Найдите восьмой член арифметической прогрессии Прогрессии в математике - с примерами решения если Прогрессии в математике - с примерами решения

Решение:

По характеристическому свойству арифметической прогрессии Прогрессии в математике - с примерами решения т. е. Прогрессии в математике - с примерами решения

Пример №17

При каком значении Прогрессии в математике - с примерами решения последовательность Прогрессии в математике - с примерами решенияПрогрессии в математике - с примерами решения является арифметической прогрессией?

Решение:

По характеристическому свойству прогрессии последовательность является арифметической прогрессией, если каждый ее член, начиная со второго, равен среднему арифметическому предыдущего и последующего членов:

Прогрессии в математике - с примерами решения

Решим полученное уравнение:

Прогрессии в математике - с примерами решения

Формула суммы n первых членов арифметической прогрессии

Рассмотрим задачу. Двое друзей решили улучшить знание английского языка и каждый день учить на 3 новых слова больше, чем в предыдущий. Сколько слов выучит каждый из друзей за 10 дней, если они начнут с одного слова?

Для решения этой задачи нужно найти сумму десяти первых членов арифметической прогрессии Прогрессии в математике - с примерами решения у которой Прогрессии в математике - с примерами решения

Возникает вопрос: как найти эту сумму, не вычисляя всех десяти членов прогрессии?

В общем виде эта задача приводит к необходимости вывода формулы суммы Прогрессии в математике - с примерами решения первых членов арифметической прогрессии: Прогрессии в математике - с примерами решения

Прогрессии в математике - с примерами решения

Для того чтобы вывести эту формулу, докажем свойство: суммы двух членов конечной арифметической прогрессии, равноудаленных от ее концов, равны между собой и равны сумме первого и последнего ее членов, т. е. Прогрессии в математике - с примерами решения

В общем виде: Прогрессии в математике - с примерами решения

Доказательство:

Преобразуем слагаемые в левой части равенства, воспользовавшись формулой Прогрессии в математике - с примерами решения члена: Прогрессии в математике - с примерами решения

Тогда получим:

Прогрессии в математике - с примерами решения

С помощью доказанного свойства найдем, например, сумму всех натуральных чисел от 1 до 50.

Натуральные числа от 1 до 50 составляют арифметическую прогрессию 1; 2; 3; …; 50. Первый член этой прогрессии равен 1, последний равен 50. Всего в этой прогрессии 50 членов.

Поскольку Прогрессии в математике - с примерами решения то и Прогрессии в математике - с примерами решения и Прогрессии в математике - с примерами решения и Прогрессии в математике - с примерами решения (рис. 94), то искомая сумма равна Прогрессии в математике - с примерами решения

Прогрессии в математике - с примерами решения

Выведем формулу суммы Прогрессии в математике - с примерами решения первых членов арифметической прогрессии.

Обозначим Прогрессии в математике - с примерами решения через Прогрессии в математике - с примерами решения и запишем эту сумму дважды: с первого члена до Прогрессии в математике - с примерами решения и с Прогрессии в математике - с примерами решения члена до первого:

Прогрессии в математике - с примерами решения

Сложим эти два равенства и получим:

Прогрессии в математике - с примерами решения

По свойству Прогрессии в математике - с примерами решения заменим каждую сумму в скобках на Прогрессии в математике - с примерами решения

Число всех таких пар сумм равно Прогрессии в математике - с примерами решения значит, удвоенная искомая сумма равна:

Прогрессии в математике - с примерами решения т. е. Прогрессии в математике - с примерами решенияформула суммы Прогрессии в математике - с примерами решения первых членов арифметической прогрессии.

Идея такого доказательства принадлежит выдающемуся немецкому математику К. Гауссу (1777—1855).

Формулу суммы Прогрессии в математике - с примерами решения первых членов арифметической прогрессии можно записать и в другом виде. Для этого по формуле Прогрессии в математике - с примерами решения члена арифметической прогрессии выразим Прогрессии в математике - с примерами решения через Прогрессии в математике - с примерами решения и Прогрессии в математике - с примерами решения и получим:

Прогрессии в математике - с примерами решения

Если известен первый член прогрессии и разность, то удобно использовать формулу Прогрессии в математике - с примерами решения

Применим эту формулу к задаче о количестве выученных иностранных слов и получим: Прогрессии в математике - с примерами решенияПрогрессии в математике - с примерами решения Каждый из друзей выучил по 145 новых слов.

Прогрессии в математике - с примерами решения

Пример №18

Найдите сумму пятидесяти первых членов арифметической прогрессии 3; 7; 11; 15; … .

Решение:

В этой прогрессии первый член равен 3, а разность Прогрессии в математике - с примерами решения Применим формулу суммы

Прогрессии в математике - с примерами решения

для и получим:

Прогрессии в математике - с примерами решения

Ответ: 5050.

Пример №19

В арифметической прогрессии Прогрессии в математике - с примерами решения Найдите сумму 85 первых членов арифметической прогрессии.

Решение:

Применим формулу суммы Прогрессии в математике - с примерами решения и получим: Прогрессии в математике - с примерами решения

Ответ: 1785.

Пример №20

Найдите сумму шести первых членов арифметической прогрессии, если ее первый член равен -2, а разность прогрессии равна 0,4.

Решение:

Воспользуемся формулой

Прогрессии в математике - с примерами решения

так как Прогрессии в математике - с примерами решения то Прогрессии в математике - с примерами решения

Пример №21

Найдите сумму 4 + 7 + 10+ … + 100, если ее слагаемые — последовательные члены арифметической прогрессии.

Решение:

Последовательность 4, 7, 10, …, 100 является арифметической прогрессией, в которой Прогрессии в математике - с примерами решения По формуле Прогрессии в математике - с примерами решения члена арифметической прогрессии Прогрессии в математике - с примерами решения найдем количество членов этой прогрессии: Прогрессии в математике - с примерами решения

Воспользуемся формулой суммы Прогрессии в математике - с примерами решения первых членов арифметической прогрессии Прогрессии в математике - с примерами решения п и найдем искомую сумму: Прогрессии в математике - с примерами решения

Пример №22

Найдите количество членов арифметической прогрессии, зная, что их сумма равна 430, первый член прогрессии равен -7, а разность прогрессии равна 3.

Решение:

Воспользуемся формулой суммы Прогрессии в математике - с примерами решения первых членов арифметической прогрессии Прогрессии в математике - с примерами решения Так как Прогрессии в математике - с примерами решения Прогрессии в математике - с примерами решения,то составим и решим уравнение:

Прогрессии в математике - с примерами решения

Так как Прогрессии в математике - с примерами решения — натуральное число, то Прогрессии в математике - с примерами решения

Пример №23

В арифметической прогрессии Прогрессии в математике - с примерами решения Найдите сумму членов этой прогрессии с четвертого по семнадцатый включительно.

Решение:

Найдем Прогрессии в математике - с примерами решения и Прогрессии в математике - с примерами решения Поскольку Прогрессии в математике - с примерами решения Прогрессии в математике - с примерами решениято составим систему уравнений

Прогрессии в математике - с примерами решения

Решим полученную систему способом сложения:

Прогрессии в математике - с примерами решения

Тогда Прогрессии в математике - с примерами решенияПрогрессии в математике - с примерами решения

Примем четвертый член данной прогрессии за первый член некоторой другой прогрессии, тогда семнадцатый член данной прогрессии станет четырнадцатым (17 — 4 + 1 = 14) членом новой прогрессии. Искомая сумма равна: Прогрессии в математике - с примерами решения

Пример №24

Найдите сумму всех четных натуральных чисел, не превосходящих 300, которые при делении на 13 дают в остатке 5.

Решение:

Первое число в последовательности всех четных натуральных чисел, не превосходящих 300, которые при делении на 13 дают в остатке 5, — это число 18. Каждое следующее число равно предыдущему, сложенному с числом 26. Последнее четное число, которое при делении на 13 дает в остатке 5, — это число 278. Поскольку рассматриваются только четные числа, то разность прогрессии равна 26. Найдем номер числа прогрессии, равного 278: Прогрессии в математике - с примерами решения Прогрессии в математике - с примерами решения откуда Прогрессии в математике - с примерами решения

Прогрессии в математике - с примерами решения

Геометрическая прогрессия

Рассмотрим задачу. Вкладчик положил в банк 1000 р. на

депозит, по которому сумма вклада увеличивается ежегодно на 5 %. Какая сумма будет у него через 1 год, 2 года, 6 лет?

Решение:

Начальная сумма в 1000 р. через год увеличится на 5 % и составит 105 % от 1000 р. Найдем 105 % = 1,05 от 1000 р.: 1000 • 1,05 = 1050 (р.).

Через два года сумма вклада станет равной Прогрессии в математике - с примерами решенияПрогрессии в математике - с примерами решения (р.), через три года — Прогрессии в математике - с примерами решения (р.) и т. д. Получим числовую последовательность: Прогрессии в математике - с примерами решенияПрогрессии в математике - с примерами решения

Через шесть лет сумма будет равна Прогрессии в математике - с примерами решения

Многие практические задачи приводят к последовательностям такого вида. Они называются геометрическими прогрессиями.

Определение геометрической прогрессии

Определение:

Геометрической прогрессией называется числовая последовательность, первый член которой отличен от нуля, а каждый следующий, начиная со второго, равен предыдущему, умноженному на одно и то же для данной последовательности число, не равное нулю, т. е.

Прогрессии в математике - с примерами решения

Число Прогрессии в математике - с примерами решения называется знаменателем геометрической прогрессии.

Из равенства Прогрессии в математике - с примерами решения следует, что Прогрессии в математике - с примерами решения

Чтобы задать геометрическую прогрессию Прогрессии в математике - с примерами решения достаточно задать ее первый член Прогрессии в математике - с примерами решения, и знаменатель Прогрессии в математике - с примерами решения

Прогрессии в математике - с примерами решения

Например, если Прогрессии в математике - с примерами решения то получится геометрическая прогрессия 3; 6; 12; 24; … .

Если Прогрессии в математике - с примерами решения то получится геометрическая прогрессия, знаки членов у которой чередуются, так как знаменатель прогрессии является отрицательным числом: 3; -6; 12; -24; … .

Если Прогрессии в математике - с примерами решения то геометрическая прогрессия имеет

вид Прогрессии в математике - с примерами решения

ЕслиПрогрессии в математике - с примерами решения то все члены геометрической прогрессии равны между собой: 3; 3; 3; 3; … .

Чтобы вычислить любой член геометрической прогрессии, не вычисляя все предыдущие члены, используют формулу Прогрессии в математике - с примерами решения члена геометрической прогрессии

Прогрессии в математике - с примерами решения

Выведем эту формулу. Если Прогрессии в математике - с примерами решения — геометрическая прогрессия и Прогрессии в математике - с примерами решения — ее знаменатель, то по определению верны равенства:

Прогрессии в математике - с примерами решения

Перемножим эти равенства между собой:

Прогрессии в математике - с примерами решения

Разделим обе части равенства на произведение Прогрессии в математике - с примерами решения и получим Прогрессии в математике - с примерами решения

Так как число множителей Прогрессии в математике - с примерами решения равно Прогрессии в математике - с примерами решения то равенство примет вид

Прогрессии в математике - с примерами решения

Получили формулу Прогрессии в математике - с примерами решениячлена геометрической прогрессии.

Формула Прогрессии в математике - с примерами решения члена геометрической прогрессии Прогрессии в математике - с примерами решения позволяет вычислить любой член прогрессии, зная ее первый член, номер члена и знаменатель прогрессии.

Прогрессии в математике - с примерами решения

Пример №25

Последовательность Прогрессии в математике - с примерами решения — геометрическая прогрессия, Прогрессии в математике - с примерами решения Найдите 8-й член прогрессии.

Решение:

По формулеПрогрессии в математике - с примерами решения члена получим:

Прогрессии в математике - с примерами решения

Ответ: 4374.

Пример №26

Последовательность Прогрессии в математике - с примерами решения — геометрическая прогрессия, Прогрессии в математике - с примерами решения Является ли число 320 членом этой прогрессии?

Решение:

По условию Прогрессии в математике - с примерами решения Подставим эти значения в формулу Прогрессии в математике - с примерами решения члена Прогрессии в математике - с примерами решения и получим уравнение Прогрессии в математике - с примерами решения

Решим это уравнение: Прогрессии в математике - с примерами решения

Так как 8 — натуральное число, то число 320 является членом этой прогрессии с номером 8.

Ответ: число 320 является членом этой прогрессии.

  • Заказать решение задач по высшей математике

Характеристическое свойство геометрической прогрессии

В геометрической прогрессии модуль каждого ее члена, начиная со второго, равен среднему пропорциональному предыдущего и последующего (соседних с ним) ее членов, т. е. Прогрессии в математике - с примерами решения при Прогрессии в математике - с примерами решения

Прогрессии в математике - с примерами решения

или Прогрессии в математике - с примерами решения при Прогрессии в математике - с примерами решения

Доказательство:

В геометрической прогрессии Прогрессии в математике - с примерами решения для члена Прогрессии в математике - с примерами решения запишем по формуле Прогрессии в математике - с примерами решения члена предыдущий и последующий (соседние) члены, т. е. Прогрессии в математике - с примерами решения и Прогрессии в математике - с примерами решения:

Прогрессии в математике - с примерами решения

Найдем среднее пропорциональное (среднее геометрическое) соседних с Прогрессии в математике - с примерами решениячленов геометрической прогрессии. Для этого перемножим равенства Прогрессии в математике - с примерами решения и получим:

Прогрессии в математике - с примерами решения

Выполним преобразования в правой части равенства:

Прогрессии в математике - с примерами решения

откуда получим, что

Прогрессии в математике - с примерами решения или Прогрессии в математике - с примерами решения

Справедливо и обратное утверждение:

  • если в последовательности чисел, отличных от нуля, модуль каждого ее члена, начиная со второго, равен среднему пропорциональному предыдущего и последующего (соседних с ним) ее членов, то последовательность является геометрической прогрессией.

Доказательство:

Пусть в некоторой числовой последовательности Прогрессии в математике - с примерами решения модуль каждого ее члена, начиная со второго, равен среднему пропорциональному предыдущего и последующего ее членов, т. е. Прогрессии в математике - с примерами решения.

Тогда Прогрессии в математике - с примерами решения значит, Прогрессии в математике - с примерами решения т. е. частное от деления каждого члена последовательности на предшествующий ему член есть одно и то же число, отличное от нуля. Обозначим его Прогрессии в математике - с примерами решения получим Прогрессии в математике - с примерами решения при любом натуральном Прогрессии в математике - с примерами решения следовательно, Прогрессии в математике - с примерами решения Значит, по определению последовательность Прогрессии в математике - с примерами решения — геометрическая прогрессия.

Оба утверждения можно объединить в одно, которое называется характеристическим свойством геометрической прогрессии:

  • числовая последовательность, все члены которой отличны от нуля, является геометрической прогрессией тогда и только тогда, когда модуль каждого ее члена, начиная со второго, равен среднему пропорциональному предыдущего и последующего ее членов:

Прогрессии в математике - с примерами решения

Пример №27

Проверьте, является ли геометрической прогрессией последовательность, заданная формулой Прогрессии в математике - с примерами решения

Решение:

Запишем для Прогрессии в математике - с примерами решения предыдущий и последующий члены последовательности:

Прогрессии в математике - с примерами решения

Найдем среднее пропорциональное этих членов:

Прогрессии в математике - с примерами решения

По характеристическому свойству геометрической прогрессии последовательность Прогрессии в математике - с примерами решения является геометрической прогрессией.

Решение геометрической прогрессии

Пример №28

Последовательность 2; 10; 50; … является геометрической прогрессией. Продолжите последовательность.

Решение:

Так как последовательность является геометрической прогрессией, то найдем ее знаменатель Прогрессии в математике - с примерами решения Тогда каждый следующий член равен предыдущему, умноженному на число 5: 2; 10; 50; 250; 1250; 6250; ….

Пример №29

Известны члены геометрической прогрессии: Прогрессии в математике - с примерами решенияПрогрессии в математике - с примерами решения

Найдите знаменатель этой прогрессии.

Решение:

Так как знаменатель геометрической прогрессии равен отношению любого ее члена к предыдущему, то Прогрессии в математике - с примерами решения

Формула n-го члена геометрической прогрессии:

Пример №30

Последовательность Прогрессии в математике - с примерами решения — геометрическая прогрессия. Найдите пятый член этой прогрессии, если Прогрессии в математике - с примерами решения

Решение:

По формуле Прогрессии в математике - с примерами решения члена геометрической прогрессии Прогрессии в математике - с примерами решения получим:

Прогрессии в математике - с примерами решения

Пример №31

Запишите формулу Прогрессии в математике - с примерами решения члена для геометрической прогрессии -216; 36; -6; … и найдите ее седьмой член.

Решение:

По условию Прогрессии в математике - с примерами решения тогда Прогрессии в математике - с примерами решения Запишем формулу Прогрессии в математике - с примерами решения члена данной геометрической прогрессии, подставив в формулу Прогрессии в математике - с примерами решениязначения для Прогрессии в математике - с примерами решения и Прогрессии в математике - с примерами решения Прогрессии в математике - с примерами решения

Подставим Прогрессии в математике - с примерами решения в формулу Прогрессии в математике - с примерами решения члена данной геометрической прогрессии и найдем ее седьмой член:

Прогрессии в математике - с примерами решения

Пример №32

Найдите номер члена геометрической прогрессии 0,1; 0,3; …, равного 218,7.

Решение:

Найдем знаменатель прогрессии:

Прогрессии в математике - с примерами решения

Известно, что Прогрессии в математике - с примерами решения По формуле Прогрессии в математике - с примерами решения члена геометрической прогрессии Прогрессии в математике - с примерами решения получим:

Прогрессии в математике - с примерами решения

Пример №33

Найдите знаменатель и первый член геометрической прогрессии Прогрессии в математике - с примерами решения если Прогрессии в математике - с примерами решенияПрогрессии в математике - с примерами решения

Решение:

По условию Прогрессии в математике - с примерами решения

Составим систему уравнений

Прогрессии в математике - с примерами решения

Разделим второе уравнение на первое и получим: Прогрессии в математике - с примерами решения

Подставим это значение Прогрессии в математике - с примерами решения в первое уравнение системы и получим Прогрессии в математике - с примерами решения

Характеристическое свойство геометрической прогрессии

Пример №34

Найдите сорок девятый член геометрической прогрессии, если сорок восьмой ее член равен 4, а пятидесятый ее член равен 9.

Решение:

Воспользуемся характеристическим свойством геометрической прогрессии Прогрессии в математике - с примерами решения и получим Прогрессии в математике - с примерами решения Тогда Прогрессии в математике - с примерами решения или Прогрессии в математике - с примерами решения

Пример №35

При каком значении Прогрессии в математике - с примерами решения последовательность Прогрессии в математике - с примерами решения Прогрессии в математике - с примерами решения является геометрической прогрессией?

Решение:

По характеристическому свойству прогрессии последовательность является геометрической прогрессией, если каждый ее член, начиная со второго, равен среднему пропорциональному предыдущего и последующего членов:

Прогрессии в математике - с примерами решения

Решим полученное уравнение: Прогрессии в математике - с примерами решенияПрогрессии в математике - с примерами решения

Формула суммы n первых членов геометрической прогрессии

Немало легенд связано с геометрической прогрессией.

Наиболее известная из них рассказывает об изобретателе шахмат.

По легенде, когда создатель шахмат показал свое изобретение правителю страны, тому так понравилась игра, что он дал изобретателю право самому выбрать награду. Мудрец попросил у правителя за первую клетку шахматной доски заплатить ему одно зерно пшеницы, за вторую — два, за третью — четыре и т. д., удваивая количество зерен на каждой следующей клетке (рис. 96).

Прогрессии в математике - с примерами решения

Правитель быстро согласился и приказал казначею выдать мудрецу нужное количество зерна. Однако когда казначей показал расчеты, то оказалось, что расплатиться невозможно, разве только осушить моря и океаны и засеять все пшеницей.

Число зерен, которое попросил мудрец, равно сумме членов геометрической прогрессии Прогрессии в математике - с примерами решения т. е. Прогрессии в математике - с примерами решения

Выведем формулу, по которой можно находить сумму Прогрессии в математике - с примерами решения первых членов геометрической прогрессии.

Обозначим сумму Прогрессии в математике - с примерами решения первых членов геометрической прогрессии Прогрессии в математике - с примерами решения через Прогрессии в математике - с примерами решения тогда:

Прогрессии в математике - с примерами решения

Умножим обе части этого равенства на знаменатель прогрессии Прогрессии в математике - с примерами решения и получим:

Прогрессии в математике - с примерами решения

Вычтем из второго равенства первое и получим:

Прогрессии в математике - с примерами решения

т. e. Прогрессии в математике - с примерами решения Выразим из этого равенства Прогрессии в математике - с примерами решения при Прогрессии в математике - с примерами решения и получим формулу суммы Прогрессии в математике - с примерами решения первых членов геометрической прогрессии Прогрессии в математике - с примерами решения

Если Прогрессии в математике - с примерами решения то все члены прогрессии равны первому члену, и сумму Прогрессии в математике - с примерами решения первых прогрессии членов такой геометрической прогрессии можно найти по формуле Прогрессии в математике - с примерами решения

Формула суммы n первых членов геометрической прогрессии:

Прогрессии в математике - с примерами решения

Вычислим по формуле суммы Прогрессии в математике - с примерами решения первых членов геометрической прогрессии число зерен, которое запросил в награду мудрец, т. е. сумму

Прогрессии в математике - с примерами решения

Первый член геометрической прогрессии Прогрессии в математике - с примерами решения знаменатель Прогрессии в математике - с примерами решения количество членов прогрессии равно 64.

Тогда Прогрессии в математике - с примерами решения

Такого количества пшеницы человечество не собрало за всю свою историю.

Пример №36

Найдите сумму десяти первых членов геометрической прогрессии Прогрессии в математике - с примерами решения в которой Прогрессии в математике - с примерами решения

Решение:

Применим формулу суммы Прогрессии в математике - с примерами решения для

Прогрессии в математике - с примерами решения получим Прогрессии в математике - с примерами решения

Прогрессии в математике - с примерами решения

Ответ: 511,5.

Пример №37

Найдите сумму двенадцати первых членов геометрической прогрессии 3; -6; 12; -24; … .

Решение:

Подставим в формулу Прогрессии в математике - с примерами решения значения Прогрессии в математике - с примерами решения

Прогрессии в математике - с примерами решения

Ответ. -4095.

Пример №38

Найдите сумму пяти первых членов геометрической прогрессии Прогрессии в математике - с примерами решения если

Прогрессии в математике - с примерами решения

Решение:

Найдем знаменатель и первый член геометрической прогрессии:

Прогрессии в математике - с примерами решения тогда Прогрессии в математике - с примерами решения

По формуле Прогрессии в математике - с примерами решения найдем

Прогрессии в математике - с примерами решения

Пример №39

Сумма членов геометрической прогрессии равна 605. Найдите количество членов прогрессии, если Прогрессии в математике - с примерами решения

Решение:

Подставим в формулу Прогрессии в математике - с примерами решения значения Прогрессии в математике - с примерами решения и найдем Прогрессии в математике - с примерами решения

Прогрессии в математике - с примерами решения

Пример №40

В геометрической прогрессии Прогрессии в математике - с примерами решения известно, что Прогрессии в математике - с примерами решения Найдите Прогрессии в математике - с примерами решения

Решение:

Найдем знаменатель прогрессии:

Прогрессии в математике - с примерами решения

Подставим в формулу Прогрессии в математике - с примерами решения члена геометрической прогрессии Прогрессии в математике - с примерами решения и найдем первый член прогрессии:

Прогрессии в математике - с примерами решения

По формуле Прогрессии в математике - с примерами решения найдем сумму трех первых членов геометрической прогрессии: Прогрессии в математике - с примерами решения

Пример №41

В геометрической прогрессии Прогрессии в математике - с примерами решения известно, что Прогрессии в математике - с примерами решения Найдите сумму п первых членов этой прогрессии.

Решение:

Зная, что третий член геометрической прогрессии равен 16, а ее знаменатель равен 2, по формуле Прогрессии в математике - с примерами решения найдем первый член прогрессии: Прогрессии в математике - с примерами решения Воспользуемся формулой Прогрессии в математике - с примерами решения члена геометрической прогрессии Прогрессии в математике - с примерами решения и найдем Прогрессии в математике - с примерами решения Прогрессии в математике - с примерами решения

Прогрессии в математике - с примерами решения

По формуле суммы Прогрессии в математике - с примерами решения первых членов геометрической прогрессии найдем Прогрессии в математике - с примерами решения

Прогрессии в математике - с примерами решения

Сумма бесконечно убывающей геометрической прогрессии

Любую обыкновенную дробь можно записать в виде десятичной дроби — конечной или бесконечной периодической дроби. Например, Прогрессии в математике - с примерами решения — конечная десятичная дробь. Бесконечная периодическая десятичная дробь получается в случае, когда деление «не заканчивается», например Прогрессии в математике - с примерами решения

Вы рассматривали правило записи конечной десятичной дроби в виде обыкновенной дроби (например, Прогрессии в математике - с примерами решенияПрогрессии в математике - с примерами решения ит. п.).

Выясним, как бесконечную периодическую десятичную дробь записать в виде обыкновенной дроби.

Рассмотрим, например, бесконечную периодическую десятичную дробь 0,(7) = 0,7777… . Определим, какой обыкновенной дроби равно это число.

Запишем дробь 0,(7) в виде суммы разрядных слагаемых:

Прогрессии в математике - с примерами решения

В данном случае необходимо найти сумму бесконечного числа слагаемых.

Слагаемые этой суммы являются членами бесконечной

геометрической прогрессии со знаменателем Прогрессии в математике - с примерами решения Такие геометрические прогрессии называются бесконечно убывающими геометрическими прогрессиями.

Определение. Бесконечно убывающей геометрической прогрессией называется такая бесконечная геометрическая прогрессия, у которой знаменатель Прогрессии в математике - с примерами решения

Например, геометрическая прогрессия Прогрессии в математике - с примерами решения является бесконечно убывающей геометрической прогрессий, так как Прогрессии в математике - с примерами решения

Геометрическая прогрессия Прогрессии в математике - с примерами решения также является бесконечно убывающей геометрической прогрессией, поскольку Прогрессии в математике - с примерами решения

Для того чтобы представить бесконечную периодическую десятичную дробь в виде обыкновенной, нужно найти сумму бесконечно убывающей геометрической прогрессии. Ее обозначают буквой Прогрессии в математике - с примерами решения и находят по формуле

Прогрессии в математике - с примерами решения

Покажем идею вывода формулы суммы бесконечно убывающей геометрической прогрессии.

Рассмотрим бесконечную геометрическую прогрессию Прогрессии в математике - с примерами решения у которой Прогрессии в математике - с примерами решения Сумма Прогрессии в математике - с примерами решения первых членов данной прогрессии Прогрессии в математике - с примерами решения вычисляется по формуле Прогрессии в математике - с примерами решения Запишем эту формулу в виде

Прогрессии в математике - с примерами решения

Представим, что п неограниченно возрастает (говорят, что стремится к бесконечности, и записывают Прогрессии в математике - с примерами решения). Поскольку Прогрессии в математике - с примерами решения то при неограниченном увеличении числа Прогрессии в математике - с примерами решения степень Прогрессии в математике - с примерами решения стремится к нулю, а значение разности Прогрессии в математике - с примерами решения стремится к единице. Значит, при неограниченном увеличении числа Прогрессии в математике - с примерами решения сумма Прогрессии в математике - с примерами решения стремится к числу Прогрессии в математике - с примерами решения что можно записать в виде Прогрессии в математике - с примерами решения при Прогрессии в математике - с примерами решения

Число Прогрессии в математике - с примерами решения называют суммой бесконечно убывающей геометрической прогрессии Прогрессии в математике - с примерами решения у которой Прогрессии в математике - с примерами решения Таким образом,

Прогрессии в математике - с примерами решения

Обозначим сумму бесконечно убывающей геометрической прогрессии буквой Прогрессии в математике - с примерами решенияи получим формулу: Прогрессии в математике - с примерами решения

Вычислим по этой формуле сумму разрядных слагаемых:

Прогрессии в математике - с примерами решения

Слагаемые этой суммы образуют бесконечно убывающую геометрическую прогрессию Прогрессии в математике - с примерами решения первый член которой равен Прогрессии в математике - с примерами решения

а знаменатель равен Прогрессии в математике - с примерами решения

Сумма бесконечно убывающей геометрической прогрессии:

Прогрессии в математике - с примерами решения

Так как Прогрессии в математике - с примерами решения то можем найти сумму этой бесконечной прогрессии. Подставим Прогрессии в математике - с примерами решения в формулу Прогрессии в математике - с примерами решения и получим: Прогрессии в математике - с примерами решения

Значит, Прогрессии в математике - с примерами решения

Таким образом, бесконечную периодическую десятичную дробь 0,(7) можно записать в виде обыкновенной дроби Прогрессии в математике - с примерами решения, т. е. Прогрессии в математике - с примерами решения

Таким же способом можно любую бесконечную периодическую десятичную дробь представить в виде обыкновенной дроби.

Чтобы записать бесконечную периодическую десятичную дробь в виде обыкновенной дроби, нужно:

  1. Представить число в виде суммы разрядных слагаемых.
  2. Выделить сумму бесконечно убывающей геометрической прогрессии.
  3. Указать первый член Прогрессии в математике - с примерами решения, и найти знаменатель этой прогрессии Прогрессии в математике - с примерами решения
  4. Найти сумму бесконечно убывающей геометрической прогрессии по формулеПрогрессии в математике - с примерами решения
  5. Вычислить сумму первых слагаемых и найденного значения суммы бесконечно убывающей геометрической прогрессии.

Запишите в виде обыкновенной дроби число Прогрессии в математике - с примерами решения

(1) Прогрессии в математике - с примерами решения

Прогрессии в математике - с примерами решения

(2) Прогрессии в математике - с примерами решения

(3) Прогрессии в математике - с примерами решения

(4) Прогрессии в математике - с примерами решения

(5) Прогрессии в математике - с примерами решения

Прогрессии в математике - с примерами решения

Бесконечно убывающая геометрическая прогрессия

Пример №42

В бесконечной геометрической прогрессии Прогрессии в математике - с примерами решения Является ли эта прогрессия бесконечно убывающей геометрической прогрессией?

Решение:

Найдем знаменатель прогрессии: Прогрессии в математике - с примерами решения Так как Прогрессии в математике - с примерами решения то данная прогрессия является бесконечно убывающей геометрической прогрессией.

Пример №43

Является ли бесконечно убывающей геометрическая прогрессия:

а) Прогрессии в математике - с примерами решения

б) Прогрессии в математике - с примерами решения

в) Прогрессии в математике - с примерами решения

Решение:

а) Каждый член этой геометрической прогрессии, начиная со второго, равен предыдущему, умноженному на число Прогрессии в математике - с примерами решения Так как Прогрессии в математике - с примерами решения то прогрессия является бесконечно убывающей геометрической прогрессией.

б) ПосколькуПрогрессии в математике - с примерами решения, то прогрессия является бесконечно убывающей геометрической прогрессией.

в) Знаменатель прогрессии Прогрессии в математике - с примерами решения Так-как Прогрессии в математике - с примерами решения то прогрессия не является бесконечно убывающей геометрической прогрессией.

Пример №44

Найдите сумму бесконечно убывающей геометрической прогрессии, в которой Прогрессии в математике - с примерами решения Прогрессии в математике - с примерами решения

Решение:

По формуле Прогрессии в математике - с примерами решения получим: Прогрессии в математике - с примерами решения

Пример №45

В бесконечно убывающей геометрической прогрессии Прогрессии в математике - с примерами решения Найдите первый член этой прогрессии.

Решение:

В формулу суммы бесконечно убывающей геометрической прогрессии Прогрессии в математике - с примерами решенияподставим Прогрессии в математике - с примерами решения и получим Прогрессии в математике - с примерами решения Решим полученное уравнение:

Прогрессии в математике - с примерами решения

Пример №46

Запишите бесконечную периодическую десятичную дробь 15,2(3) в виде обыкновенной дроби.

Решение:

(1) Прогрессии в математике - с примерами решения

Прогрессии в математике - с примерами решения

(2) Прогрессии в математике - с примерами решения

(3) Прогрессии в математике - с примерами решения

(4) Прогрессии в математике - с примерами решения

(5) Прогрессии в математике - с примерами решения

Прогрессии в математике - с примерами решения

  • Единичная окружность — в тригонометрии
  • Определение синуса и косинуса произвольного угла
  • Определение тангенса и котангенса произвольного угла
  • Соотношения между синусом, косинусом, тангенсом и котангенсом одного и того же угла (тригонометрические тождества)
  • Наибольшее и наименьшее значения функции
  • Раскрытие неопределенностей
  • Дробно-рациональные уравнения
  • Дробно-рациональные неравенства

Арифметическая прогрессия — это последовательность чисел, в которой разница между двумя соседними числами — постоянна.

Пример:

Последовательность 1, 2, 3, 4,… является арифметической прогрессией с шагом(разностью) прогрессии 1.

Пример:

Последовательность 3, 5, 7, 9, 11,… является арифметической прогрессией с разностью 2.

Пример:

Последовательность 20, 10, 0, -10, -20, -30,… является арифметической прогрессией с разностью -10.

Последовательности

Будем выписывать в порядке возрастания положительные четные числа. Первое такое число равно 2, второе 4, третье 6, четвертое 8 и т. д. Получим последовательность

2; 4; 6; 8; … .

Очевидно, что на пятом месте в этой последовательности будет число 10, на десятом — число 20, на сотом — число 200. Вообще для любого натурального числа п можно указать соответствующее ему положительное четное число; оно равно 2n.

Рассмотрим еще одну последовательность. Будем выписывать в порядке убывания правильные дроби с числителем, равным 1:

Арифметическая прогрессия

Для любого натурального числа n мы можем указать соответствующую ему дробь; она равна Арифметическая прогрессия Так, на шестом месте должна стоять дробь Арифметическая прогрессия на тридцатом Арифметическая прогрессия дробь , на тысячном — дробь Арифметическая прогрессия

Числа, образующие последовательность, называют соответственно первым, вторым, третьим, четвертым и т. д. членами последовательности. Члены последовательности обычно обозначают буквами с индексами, указывающими порядковый номер члена. Например, Арифметическая прогрессия (читают: «а первое, а второе, а третье, а четвертое» и т. д.). Вообще член последовательности с номером n, или, как говорят, n-й член последовательности, обозначают Арифметическая прогрессия Саму последовательность будем обозначать так: Арифметическая прогрессия

Заметим, что последовательность может содержать конечное число членов. В таком случае ее называют конечной. Например, конечной является последовательность двузначных чисел:

Арифметическая прогрессия

Чтобы задать последовательность, нужно указать способ, позволяющий найти член последовательности с любым номером.

Часто последовательность задают с помощью формулы n-го члена последовательности. Например, последовательность положительных четных чисел можно задать формулой Арифметическая прогрессия последовательность правильных дробей с числителем, равным 1, — формулой Арифметическая прогрессия Приведем другие примеры.

Пример:

Пусть последовательность задана формулой Арифметическая прогрессия Подставляя вместо n натуральные числа 1, 2, 3, 4, 5 и т. д., получаем:

Арифметическая прогрессия

Рассматриваемая последовательность начинается так:

Арифметическая прогрессия

Пример:

Пусть последовательность задана формулой Арифметическая прогрессия Все члены этой последовательности с нечетными номерами равны —10, а с четными номерами равны 10:

Арифметическая прогрессия

Получаем последовательность

Арифметическая прогрессия

Пример:

Формулой Арифметическая прогрессиязадается последовательность, все члены которой равны 5:

Арифметическая прогрессия

Рассмотрим еще один способ задания последовательности.

Пример:

Пусть первый член последовательности Арифметическая прогрессияравен 3, а каждый следующий член равен квадрату предыдущего, т. е.

Арифметическая прогрессия

С помощью формулы Арифметическая прогрессия можно по известному первому члену последовательности вычислить второй, затем по известному второму найти третий, по известному третьему — четвертый и т. д. Получим последовательность

Арифметическая прогрессия

Формулу, выражающую любой член последовательности, начиная с некоторого, через предыдущие (один или несколько), называют рекуррентной (от латинского слова recurro — возвращаться).

Определение арифметической прогрессии

Формула n-го члена арифметической прогрессии:

Рассмотрим последовательность натуральных чисел, которые при делении на 4 дают в остатке 1:

Арифметическая прогрессия

Каждый ее член, начиная со второго, получается прибавлением к предыдущему члену числа 4. Эта последовательность является примером арифметической, прогрессии.

Определение:

Арифметической прогрессией называется последовательность, каждый член которой, начиная со второго, равен предыдущему члену, сложенному с одним и тем же числом.

Иначе говоря, последовательностьАрифметическая прогрессия — арифметическая прогрессия, если для любого натурального п выполняется условие

Арифметическая прогрессия

где d — некоторое число.

Из определения арифметической прогрессии следует, что разность между любым ее членом, начиная со второго, и предыдущим членом равна d, т. е. при любом натуральном n верно равенство

Арифметическая прогрессия

Число d называют разностью арифметической прогрессии.

Чтобы задать арифметическую прогрессию, достаточно указать ее первый член и разность. Приведем примеры.

Если Арифметическая прогрессия то получим арифметическую прогрессию

Арифметическая прогрессия

члены которой — последовательные натуральные числа.

Если Арифметическая прогрессия то получим арифметическую прогрессию

Арифметическая прогрессия

которая является последовательностью положительных нечетных чисел.

Если Арифметическая прогрессия то получим арифметическую прогрессию

Арифметическая прогрессия

которая является последовательностью отрицательных четных чисел.

Если Арифметическая прогрессия то имеем арифметическую прогрессию

Арифметическая прогрессия

все члены которой равны между собой.

Зная первый член и разность арифметической прогрессии, можно найти любой ее член, вычисляя последовательно второй, третий, четвертый и т. д. члены. Однако для нахождения члена прогрессии с большим номером такой способ неудобен. Постараемся отыскать способ, требующий меньшей вычислительной работы.

По определению арифметической прогрессии

Арифметическая прогрессия

Точно так же находим, что Арифметическая прогрессияи вообще, чтобы найти Арифметическая прогрессия нужно к Арифметическая прогрессия прибавить (n — 1) d, т. е.

Арифметическая прогрессия

Мы получили формулу n-го члена арифметической прогрессии.

Приведем примеры решения задач с использованием этой формулы.

Пример:

Последовательность Арифметическая прогрессия — арифметическая прогрессия, в которой с1 = 0,62 и d = 0,24. Найдем пятидесятый член этой прогрессии.

Имеем:

Арифметическая прогрессия

Пример:

Выясним, является ли число —122 членом арифметической прогрессии Арифметическая прогрессия

Арифметическая прогрессия

В данной арифметической прогрессии Арифметическая прогрессия и Арифметическая прогрессияАрифметическая прогрессия Запишем формулу n-го члена прогрессии:

Арифметическая прогрессия

Число —122 является членом арифметической прогрессии Арифметическая прогрессия, если существует такое натуральное число n, при котором значение выражения 28,8 — 5,8n равно —122. Решим уравнение 28,8 — 5,8n = 122:

Арифметическая прогрессия

Значит, число —122 является 26-м членом данной арифметической прогрессии.

Формулу n-го члена арифметической прогрессии Арифметическая прогрессияАрифметическая прогрессия можно записать иначе:

Арифметическая прогрессия

Отсюда ясно, что любая арифметическая прогрессия может быть задана формулой вида

Арифметическая прогрессия

где k и b — некоторые числа.

Верно и обратное: последовательность Арифметическая прогрессия, заданная формулой вида

Арифметическая прогрессия

где k и b — некоторые числа, является арифметической прогрессией.

Действительно, найдем разность (n + 1)-го и n-го членов последовательности Арифметическая прогрессия:

Арифметическая прогрессия

Значит, при любом n справедливо равенство Арифметическая прогрессия и по определению последовательность Арифметическая прогрессия является арифметической прогрессией, причем разность этой прогрессии равна k.

Формула суммы n первых членов арифметической прогрессии

Пусть требуется найти сумму первых ста натуральных чисел. Покажем, как можно решить эту задачу, не выполняя непосредственного сложения чисел.

Обозначим искомую сумму через S и запишем ее дважды, расположив в первом случае слагаемые в порядке возрастания, а во втором — в порядке убывания:

Арифметическая прогрессия

Каждая пара чисел, расположенных друг под другом, дает в сумме 101. Число таких пар равно 100. Поэтому, сложив равенства почленно, получим:

Арифметическая прогрессия

Итак,

Арифметическая прогрессия

С помощью аналогичных рассуждений можно найти сумму первых членов любой арифметической прогрессии.

Обозначим сумму n первых членов арифметической прогрессии Арифметическая прогрессия через Арифметическая прогрессия и запишем эту сумму дважды, расположив в первом случае слагаемые в порядке возрастания их номеров, а во втором случае в порядке убывания:

Арифметическая прогрессия

Сумма каждой пары членов прогрессии, расположенных друг под другом, равна Арифметическая прогрессия Действительно,

Арифметическая прогрессия

и т. д.

Число таких пар равно n. Поэтому, сложиd почленно равенства (1) и (2), получим:

Арифметическая прогрессия

Разделив обе части последнего равенства на 2, получим формулу суммы п первых членов арифметической прогрессии:

Арифметическая прогрессия

Приведем примеры на вычисление суммы членов арифметической прогрессии.

Пример:

Найдем сумму первых тридцати членов арифметической прогрессии 4; 5,5; … .

В данной арифметической прогрессии Арифметическая прогрессия Тридцатый член прогрессии найдем по формуле n-го члена:

Арифметическая прогрессия

Теперь вычислим сумму первых тридцати членов:

Арифметическая прогрессия

Заметим, что если заданы первый член и разность арифметической прогрессии, то удобно пользоваться формулой суммы, представленной в другом виде. Подставим в формулу (I) вместо Арифметическая прогрессиявыражение Арифметическая прогрессия получим:

Арифметическая прогрессия

Арифметическая прогрессия

Если для решения рассмотренной задачи воспользоваться формулой (II), то вычисления будут выглядеть так:

Арифметическая прогрессия

Пример:

Найдем сумму первых сорока членов последовательности Арифметическая прогрессия, заданной формулой Арифметическая прогрессия

Последовательность Арифметическая прогрессия является арифметической прогрессией, так как она задана формулой вида Арифметическая прогрессия и b = — 4.

Найдем первый и сороковой члены этой арифметической прогрессии:Арифметическая прогрессия Теперь по формуле (I) вычислим S40:

Арифметическая прогрессия

Пример:

Найдем сумму 1 + 2 + 3 + … + n, слагаемыми в которой являются все натуральные числа от 1 до n.

Применив формулу Арифметическая прогрессия к арифметической прогрессии 1; 2; 3; … получим, что

Арифметическая прогрессия

Пример:

Найдем сумму всех натуральных чисел, кратных шести и не превосходящих 250.

Натуральные числа, кратные шести, образуют арифметическую прогрессию, которую можно задать формулой Арифметическая прогрессия Чтобы выяснить, сколько членов этой прогрессии не превосходит 250, решим неравенство Арифметическая прогрессия

Значит, число членов прогрессии, сумму которых надо найти, равно 41. Имеем:

Арифметическая прогрессия

Решение заданий и задач по предметам:

  • Математика
  • Высшая математика
  • Математический анализ
  • Линейная алгебра

Дополнительные лекции по высшей математике:

  1. Тождественные преобразования алгебраических выражений
  2. Функции и графики
  3. Преобразования графиков функций
  4. Квадратная функция и её графики
  5. Алгебраические неравенства
  6. Неравенства
  7. Неравенства с переменными
  8. Прогрессии в математике
  9. Геометрическая прогрессия
  10. Показатели в математике
  11. Логарифмы в математике
  12. Исследование уравнений
  13. Уравнения высших степеней
  14. Уравнения высших степеней с одним неизвестным
  15. Комплексные числа
  16. Непрерывная дробь (цепная дробь)
  17. Алгебраические уравнения
  18. Неопределенные уравнения
  19. Соединения
  20. Бином Ньютона
  21. Число е
  22. Непрерывные дроби
  23. Функция
  24. Исследование функций
  25. Предел
  26. Интеграл
  27. Двойной интеграл
  28. Тройной интеграл
  29. Интегрирование
  30. Неопределённый интеграл
  31. Определенный интеграл
  32. Криволинейные интегралы
  33. Поверхностные интегралы
  34. Несобственные интегралы
  35. Кратные интегралы
  36. Интегралы, зависящие от параметра
  37. Квадратный трехчлен
  38. Производная
  39. Применение производной к исследованию функций
  40. Приложения производной
  41. Дифференциал функции
  42. Дифференцирование в математике
  43. Формулы и правила дифференцирования
  44. Дифференциальное исчисление
  45. Дифференциальные уравнения
  46. Дифференциальные уравнения первого порядка
  47. Дифференциальные уравнения высших порядков
  48. Дифференциальные уравнения в частных производных
  49. Тригонометрические функции
  50. Тригонометрические уравнения и неравенства
  51. Показательная функция
  52. Показательные уравнения
  53. Обобщенная степень
  54. Взаимно обратные функции
  55. Логарифмическая функция
  56. Уравнения и неравенства
  57. Положительные и отрицательные числа
  58. Алгебраические выражения
  59. Иррациональные алгебраические выражения
  60. Преобразование алгебраических выражений
  61. Преобразование дробных алгебраических выражений
  62. Разложение многочленов на множители
  63. Многочлены от одного переменного
  64. Алгебраические дроби
  65. Пропорции
  66. Уравнения
  67. Системы уравнений
  68. Системы уравнений высших степеней
  69. Системы алгебраических уравнений
  70. Системы линейных уравнений
  71. Системы дифференциальных уравнений
  72. Арифметический квадратный корень
  73. Квадратные и кубические корни
  74. Извлечение квадратного корня
  75. Рациональные числа
  76. Иррациональные числа
  77. Арифметический корень
  78. Квадратные уравнения
  79. Иррациональные уравнения
  80. Последовательность
  81. Ряды сходящиеся и расходящиеся
  82. Тригонометрические функции произвольного угла
  83. Тригонометрические формулы
  84. Обратные тригонометрические функции
  85. Теорема Безу
  86. Математическая индукция
  87. Показатель степени
  88. Показательные функции и логарифмы
  89. Множество
  90. Множество действительных чисел
  91. Числовые множества
  92. Преобразование рациональных выражений
  93. Преобразование иррациональных выражений
  94. Геометрия
  95. Действительные числа
  96. Степени и корни
  97. Степень с рациональным показателем
  98. Тригонометрические функции угла
  99. Тригонометрические функции числового аргумента
  100. Тригонометрические выражения и их преобразования
  101. Преобразование тригонометрических выражений
  102. Комбинаторика
  103. Вычислительная математика
  104. Прямая линия на плоскости и ее уравнения
  105. Прямая и плоскость
  106. Линии и уравнения
  107. Прямая линия
  108. Уравнения прямой и плоскости в пространстве
  109. Кривые второго порядка
  110. Кривые и поверхности второго порядка
  111. Числовые ряды
  112. Степенные ряды
  113. Ряды Фурье
  114. Преобразование Фурье
  115. Функциональные ряды
  116. Функции многих переменных
  117. Метод координат
  118. Гармонический анализ
  119. Вещественные числа
  120. Предел последовательности
  121. Аналитическая геометрия
  122. Аналитическая геометрия на плоскости
  123. Аналитическая геометрия в пространстве
  124. Функции одной переменной
  125. Высшая алгебра
  126. Векторная алгебра
  127. Векторный анализ
  128. Векторы
  129. Скалярное произведение векторов
  130. Векторное произведение векторов
  131. Смешанное произведение векторов
  132. Операции над векторами
  133. Непрерывность функций
  134. Предел и непрерывность функций нескольких переменных
  135. Предел и непрерывность функции одной переменной
  136. Производные и дифференциалы функции одной переменной
  137. Частные производные и дифференцируемость функций нескольких переменных
  138. Дифференциальное исчисление функции одной переменной
  139. Матрицы
  140. Линейные и евклидовы пространства
  141. Линейные отображения
  142. Дифференциальные теоремы о среднем
  143. Теория устойчивости дифференциальных уравнений
  144. Функции комплексного переменного
  145. Преобразование Лапласа
  146. Теории поля
  147. Операционное исчисление
  148. Системы координат
  149. Рациональная функция
  150. Интегральное исчисление
  151. Интегральное исчисление функций одной переменной
  152. Дифференциальное исчисление функций нескольких переменных
  153. Отношение в математике
  154. Математическая логика
  155. Графы в математике
  156. Линейные пространства
  157. Первообразная и неопределенный интеграл
  158. Линейная функция
  159. Выпуклые множества точек
  160. Система координат

Понравилась статья? Поделить с друзьями:
  • Как найти мой почтовый сервер
  • Если smart status bad как исправить
  • Террария как найти клинок земли
  • Медкарта на мос ру как найти
  • Как найти свой размер трусов