Как найти площадь азота

Рассчитать объем азота.

Рассчитать объем азота (газа) при нормальных условиях, если известна его масса, можно по формуле: V = m · Vm / M = ν · Vm. Рассчитать объем азота (газа), если известна его масса, температура и давление, можно по формуле: V = m · R · T / (p · M) = ν · R · T / p.

Химическая формула азота N₂.

Расчет объема азота (газа)

Теория расчета объема газа

Пример: Рассчитайте объем для 140 кг азота

Рассчитать объем газа: азота, водорода, воздуха, гелия, озона, кислорода, углекислого газа, хлора

Рассчитать объем азота (газа) при нормальных условиях:

Рассчитать объем азота (газа):

Теория:

Рассчитать объем азота (газа) при нормальных условиях, если известна его масса, можно по формуле:

V = m · Vm / M = ν · Vm,

где

V – объем газа, л,

ν – количество вещества, моль,

Vm – молярный объем газа, л/моль, Vm = 22,4 л/моль,

ν = m / M,

m – масса газа, г,

М – молярная масса газа, г/моль,

M(N₂) = 2·14 = 28 г/моль.

Нормальные условия: 0 оС (или 273,15 К), 101,325 кПа или 1 атм.

Рассчитать объем азота (газа), если известна его масса, температура и давление, можно по формуле:

V = m · R · T / (p · M) = ν · R · T / p,

где

V – объем газа, л,

ν – количество вещества, моль,

ν = m / M,

m – масса газа, г,

М – молярная масса газа, г/моль,

M(N2) = 2·14 = 28 г/моль,

R – универсальная газовая постоянная, R ≈ 8,314 Дж/(моль⋅К),

T – термодинамическая температура, К.

P – давление, кПа.

Пример: Рассчитайте объем для 140 кг азота:

Рассчитайте объем для 140 кг азота (газа) при нормальных условиях.

V = m · Vm / M = 140 000 грамм · 22,4 л/моль / 28 г/моль = 112 000 литров или 112 м3.

Рассчитайте объем для 140 кг азота (газа) при 30 градусах Цельсия (303,15 К), давлении 30 кПа.

V = m · R · T / p · M = 140 000 грамм · 8,314 Дж/(моль⋅К) · 303,15 К / (30 кПа · 28 г/моль) = 420 064,85 литров или 420,06485 м3.

Рассчитать объем газа: азота, водорода, воздуха, гелия, озона, кислорода, углекислого газа, хлора

Коэффициент востребованности
2 214

В сосуде под поршнем находится 1 г азота площадь поршня

МОЛЕКУЛЯРНАЯ ФИЗИКА И ТЕРМОДИНАМИКА

В сосуде под поршнем находится масса m = 1 г азота. Какое количество теплоты Q надо затратить, чтобы нагреть азот на ΔТ = 10 К? На сколько при этом поднимется поршень? Масса поршня М = 1 кг, площадь его поперечного сечения S = 10 см 2 . Давление над поршнем р = 100 кПа.

Количество теплоты, сообщенное газу при изобарическом процессе

Азот совершает работу против силы тяжести и работу против внешних сил, обусловленных давлением над поршнем

Работа при изобарическом расширении

Из уравнения Менделеева-Клапейрона

(1)

Работа против внешних сил

(2)

находим высоту поднятия поршня

Ответ:

Источник статьи: http://www.bog5.in.ua/problems/volkenshtejin/mol/volkenshtejin%20z5%20168.html

В сосуде под поршнем находится масса m 1 г азота.

🎓 Заказ №: 21912
Тип работы: Задача
📕 Предмет: Физика
Статус: Выполнен (Проверен преподавателем)
🔥 Цена: 149 руб.

👉 Как получить работу? Ответ: Напишите мне в whatsapp и я вышлю вам форму оплаты, после оплаты вышлю решение.

Как снизить цену? Ответ: Соберите как можно больше задач, чем больше тем дешевле, например от 10 задач цена снижается до 50 руб.

Вы можете помочь с разными работами? Ответ: Да! Если вы не нашли готовую работу, я смогу вам помочь в срок 1-3 дня, присылайте работы в whatsapp и я их изучу и помогу вам.

Условие + 37% решения:

В сосуде под поршнем находится масса m 1 г азота. Какое количество теплоты Q надо затратить, чтобы нагреть азот на ΔT=10 К? На сколько при этом поднимется поршень? Масса поршня M=1 кг, площадь его поперечного сечения S=10 см2 . Давление над поршнем p=100 кПа.

Решение В нашем случае имеет место изобарный процесс ( p  const ). Работа газа при изобарном процессе равна:   A  p V2 V1 (1) Где p – давление газа; V1 – начальный объем газа; V2 – конечный объем газа. Запишем уравнение Менделеева – Клапейрона для двух состояний газа: 1 RT1 M m pV  (2) 2 RT2 M m pV  (3) Где моль кг M 3 28 10   – молярная масса азота; m – масса газа; p – давление газа;

Научись сам решать задачи изучив физику на этой странице:

  • Решение задач по физике
Услуги:

  • Заказать физику
  • Помощь по физике

Готовые задачи по физике которые сегодня купили:

Образовательный сайт для студентов и школьников

Копирование материалов сайта возможно только с указанием активной ссылки «www.lfirmal.com» в качестве источника.

© Фирмаль Людмила Анатольевна — официальный сайт преподавателя математического факультета Дальневосточного государственного физико-технического института

Источник статьи: http://lfirmal.com/%D0%92-%D1%81%D0%BE%D1%81%D1%83%D0%B4%D0%B5-%D0%BF%D0%BE%D0%B4-%D0%BF%D0%BE%D1%80%D1%88%D0%BD%D0%B5%D0%BC-%D0%BD%D0%B0%D1%85%D0%BE%D0%B4%D0%B8%D1%82%D1%81%D1%8F-%D0%BC%D0%B0%D1%81%D1%81%D0%B0-m/

§ 80. Примеры решения задач по теме: «Первый закон термодинамики

В большей части задач используется не общая форма первого закона термодинамики, а его различные частные формулировки, применимые к определённым процессам. Задачи на теплообмен в изолированной системе решаются с помощью уравнения теплового баланса (13.10).

При решении задач надо чётко выделять начальное и конечное состояния системы, а также характеризующие её параметры.

Задача 1. Во время расширения газа, вызванного его нагреванием, в цилиндре с площадью поперечного сечения S = 200 см 2 газу было передано количество теплоты Q = 1,5 • 10 5 Дж, причём давление газа оставалось постоянным и равным р = 2 • 10 7 Па. На сколько изменилась внутренняя энергия газа, если поршень передвинулся на расстояние Δh = 30 см?

Р е ш е н и е. Согласно первому закону термодинамики в форме (13.12) Q = ΔU + А’, где А’ = pSΔh — работа, совершённая газом. Отсюда ΔU = Q — pSΔh = 30 кДж.

Задача 2. Газ расширяется от объёма V1 до объёма V2 один раз изотермически, другой изобарно и третий адиабатно. При каком процессе газ совершает большую работу и при каком газу передаётся большее количество теплоты?

Р е ш е н и е. На диаграмме р—V (рис. 13.10) изобразим все три процесса. Работа численно равна площади криволинейной трапеции. Из рисунка очевидно, что работа при изобарном процессе будет максимальной, при адиабатном минимальной, т. е. A’1 — 2′ > A’1—2 > A1—2″.

Температура газа в состоянии 2′ больше, чем в состоянии 2, а температура в состоянии 2 больше, чем в состоянии 2″ (Т2′ > Т2 > Т2″). В этом легко убедиться, начертив изотермы, проходящие через точки 2′ и 2″. При процессе 1—2′ изменение внутренней энергии AU > 0, при процессе 1—2 ΔU = 0. Очевидно, что поскольку Q = ΔU + А’ (первый закон термодинамики), то Q1-2′ > Q2 — 2 > Q1- 2″ (Q1 — 2″ = 0).

Задача 3. Пусть азот нагревается при постоянном давлении. Зная, что масса азота m = 280 г, количество затраченной теплоты Q = 600 Дж и удельная теплоёмкость азота при постоянном объёме cv = 745 Дж/(кг • К), определите, на сколько повысилась температура азота. Молярная масса азота М = 0,028 кг/моль.

Р е ш е н и е. Согласно первому закону термодинамики Q = ΔU + А’.

Изменение внутренней энергии ΔU = cvmΔT.

Работа при изобарном процессе А’ = pΔV = (m/M)RΔT.

Следовательно, Q = mΔT(cv + R/M), откуда

Задачи для самостоятельного решения

1. Для изобарного нагревания газа, взятого в количестве 800 моль, на 500 К газу сообщили количество теплоты 9,4 • 10 6 Дж. Определите работу газа и изменение его внутренней энергии.

2. В цилиндрическом сосуде с площадью основания 250 см 2 находится азот массой 10 г, сжатый поршнем, на котором лежит гиря массой 12,5 кг. Какую работу совершит азот при нагревании его от 25 до 625 °С. На какую высоту при этом поднимется поршень? Атмосферное давление равно 1 атм.

3. Идеальный одноатомный газ в количестве 2 моль, находящийся при температуре 0 °С, сначала изохорно перевели в состояние, в котором давление в 2 раза больше первоначального, а затем изобарно в состояние, в котором объём в 2 раза больше первоначального. Определите изменение внутренней энергии газа.

4. В цилиндре под поршнем находится воздух. На его нагревание при постоянном давлении затрачено количество теплоты, равное 5 кДж. Определите работу, совершённую при этом воздухом. Теплоёмкость воздуха при постоянном давлении ср = 10 3 Дж/(кг • К), молярная масса 29 г/моль.

5. Положительна или отрицательна работа газа в процессах 1—2, 2—3 и 3—1 на рисунке 10.9? Получает газ тепло или отдаёт в этих процессах?

6. Какое количество теплоты необходимо для изохорного нагревания гелия массой 4 кг на 100 К?

7. Вычислите увеличение внутренней энергии водорода массой 2 кг при изобарном его нагревании на 10 К. (Удельная теплоёмкость водорода при постоянном давлении равна 14 кДж/(кг • К).)

8. В цилиндре компрессора сжимают идеальный одноатомный газ, количество вещества которого 4 моль. Определите, насколько поднялась температура газа за один ход поршня, если при этом была совершена работа 500 Дж. Процесс считайте адиабатным.

9. На одинаковые газовые горелки поставили два одинаковых плотно закупоренных сосуда вместимостью по 1 л. В одном сосуде находится вода, а в другом — воздух. Какой сосуд быстрее нагревается на 50 °С? Почему?

10. Предложен следующий проект вечного двигателя (рис. 13.11). Закрытый сосуд разделён на две половинки герметичной перегородкой, сквозь которую пропущены трубка и водяная турбина в кожухе с двумя отверстиями. Давление воздуха в нижней части больше, чем в верхней. Вода поднимается по трубке и наполняет открытую камеру. В нижней части очередная порция воды выливается из камеры турбины, подошедшей к отверстию кожуха. Почему данная машина не будет работать вечно?

11. В вакууме закреплён горизонтальный цилиндр, в котором слева находится гелий в количестве 0,1 моль, запертый поршнем. Поршень массой 90 г удерживается упорами и может скользить влево вдоль стенок цилиндра без трения. В поршень попадает пуля массой 10 г, летящая горизонтально со скоростью 400 м/с, и застревает в нём. Как изменится температура гелия в момент остановки поршня в крайнем левом положении? Считайте, что газ не успевает обменяться теплом с поршнем и цилиндром.

Источник статьи: http://xn--24-6kct3an.xn--p1ai/%D0%A4%D0%B8%D0%B7%D0%B8%D0%BA%D0%B0_10_%D0%BA%D0%BB_%D0%9C%D1%8F%D0%BA%D0%B8%D1%88%D0%B5%D0%B2/80.html

В сосуде под поршнем находится 1 г азота площадь поршня

В цилиндрическом сосуде под поршнем находится газ. Масса поршня 10 кг, атмосферное давление 100 кПа. Сосуд начинает ехать вверх с ускорением 1 м/c 2 вверх. Найти, во сколько раз отличается высота, которую занимает газ под поршнем. Площадь поперечного сечения поршня 50 см 2 . Температура во время процесса постоянна.

1) При равновесии поршня в начальный момент времени

2) Уравнение состояния газа в каждом случае с учетом, что

Критерии оценивания выполнения задания Баллы
I) записаны положения теории и физические законы, закономерности, применение которых необходимо для решения задачи выбранным способом;

II) описаны все вновь вводимые в решении буквенные обозначения физических величин (за исключением обозначений констант, указанных в варианте КИМ, обозначений, используемых в условии задачи, и стандартных обозначений величин, используемых при написании физических законов);

III) проведены необходимые математические преобразования и расчёты, приводящие к правильному числовому ответу (допускается решение «по частям» с промежуточными вычислениями);

IV) представлен правильный ответ с указанием единиц измерения искомой величины.

3
Правильно записаны все необходимые положения теории, физические законы, закономерности, и проведены необходимые преобразования. Но имеются один или несколько из следующих недостатков.

Записи, соответствующие пункту II, представлены не в полном объёме или отсутствуют.

В решении имеются лишние записи, не входящие в решение (возможно, неверные), которые не отделены от решения (не зачёркнуты; не заключены в скобки, рамку и т. п.).

В необходимых математических преобразованиях или вычислениях допущены ошибки, и (или) в математических преобразованиях/вычислениях пропущены логически важные шаги.

Отсутствует пункт IV, или в нём допущена ошибка

2
Представлены записи, соответствующие одному из следующих случаев.

Представлены только положения и формулы, выражающие физические законы, применение которых необходимо для решения данной задачи, без каких-либо преобразований с их использованием, направленных на решение задачи.

В решении отсутствует ОДНА из исходных формул, необходимая для решения данной задачи (или утверждение, лежащее в основе решения), но присутствуют логически верные преобразования с имеющимися формулами, направленные на решение задачи.

Источник статьи: http://phys-ege.sdamgia.ru/problem?id=19929

➤ Adblock
detector

Что такое молярная масса?

Молярная масса вещества — это отношение его массы к количеству молей. Для воздуха тоже действует это отношение. Поэтому при проведении вычислений в результате получается масса одного моля. Но не все вещества можно рассчитать подобным образом. Для того, чтобы узнать, чему равна молярная масса воздуха в физике используют специальные формулы. Выражается результат в граммах на моль.

Воздух является смесью различных газов. Из этого следует, что молярная масса воздуха включает в себя молярные массы газов, входящих в его состав. Именно поэтому результаты таких вычислений будут различаться в зависимости от состава воздуха и количества различных газов и примесей в его составе. Существует и усредненный показатель, и средняя молярная масса воздуха равняется 29 г/моль.

Если же при расчетах было выявлено сильное отклонение от нормального показателя без объективных причин, то следует задуматься. Нарушение баланса газов – это очень серьезная проблема, которая очень часто встречается в больших городах. Именно там ежедневно в воздух выбрасывается огромное количество разнообразных веществ, которые меняют состав воздуха. Вредные примеси и их скопления очень плохо влияют на состояние организма человека. Также и увеличение или уменьшение содержания азота, кислорода, углекислого газа и других веществ влечет за собой тоже большие проблемы. Недостаток кислорода губителен для живых организмов и для человека может быть даже смертельно опасным.

Тщательное исследование воздуха может выявить отклонения от нормы и предотвратить их негативное влияние на организм человека. В нашей независимой лаборатории можно заказать комплексное обследование, которое представляет собой проведение исследований на различные показатели и выявление нарушений.

Сколько азота в воздухе?

Если говорить о воздухе, то нельзя не затронуть тему содержания в нем азота. Он представляет собой бесцветный газ, у которого нет запаха и вкуса. Если разбирать химическую формулу, то молекула азота представляет собой два атома азота, которые скрещены между собой. Именно он составляет большую часть и составляет около 78% от всего объема воздуха. И молярная масса сжатого воздуха, высчитываемая по формуле, будет содержать в себе и молярную массу азота. Азот содержится практически везде и человек уже давно начал его использовать в своих нуждах. Даже в белке, который является основным строительным материалом всех живых организмов, тоже есть азот. Так аммиак, который применяется в сельском хозяйстве, получается при извлечении азота. И сам человек примерно на 2% состоит из азота.

Но азот может быть и опасным, если превышать его концентрацию. Безопасный азот обычно смешан с водородом в необходимых пропорциях. Азот необходим для разбавления кислорода, ведь чистый кислород тоже может быть губительным для живых организмов. Но если азот будет повышен, то это приведет к гипоксии, то есть понижению уровня кислорода в организме и внутренних органах. Вдыхаемый человеком азот не усваивается в организме, а выдыхается, так как служит только для защиты легких от кислорода.

  	    Человек ежедневно сталкивается с

   Человек ежедневно сталкивается с тем, что было создано не без помощи азота. Азот нашел свое применение в различных областях и сейчас мы можем видеть его как в упаковках на прилавках магазинов, так и в медицине. К примеру, жидкую форму азота уже давно используют для транспортировки донорских органов.

Растения тоже не могут обойтись без азота и получают его из почвы в виде нитратов. В почве находится большое количество азота. Так потом он попадает в организмы животных, которые едят растения. Главным поставщиком азота являются бактерии, благодаря которым образовывается более ста тонн этого вещества.

Видео

Чему равно M воздуха?

Средняя молярная масса важна для смесей газов, так как входит в термодинамические уравнения состояния газовых смесей. Более точный расчет средней молярной массы сухого воздуха дает 28,97 г/моль.

Какой воздух имеет большую плотность?

Учитывая, что плотность сухого воздуха составляет 1,2кг/м3, а плотность водяного пара – 0,72 кг/м3, становится очевидным, что влажный воздух легче сухого. В системах вентиляции этот факт играет большую роль.

Что такое идеальный газ

В предыдущем разделе мы не раз упомянули термин «идеальный газ». Поэтому немного расскажем о том, что это такое. Идеальным считается газ, если для него выполняются следующие предположения.

  • Молекулы газа не вступают во взаимодействие между собой, то есть между ними не отмечаются взаимные столкновения. Последние возможны только со стенками сосуда, который заполнен данным газом.
  • Между молекулами отсутствует любое взаимодействие на расстоянии, а столкновение со стенками сосуда носит упругий характер.

Таким образом идеальным газом можно считать некую теоретическую модель, которая принята для изучения термодинамики в физике. Окружающий нас атмосферный воздух по своим физическим характеристикам вполне может считаться идеальным газом.

Примеры и опыты

Примеры и опыты

Один из интереснейших опытов, доказывающих существование атмосферного давления, осуществил немецкий физик Отто Генрике в 1654 году в городе Магдебурге (рисунок 5).

Рисунок 5. Опыт Отто Генрике.

Рисунок 5. Опыт Отто Генрике.

Он сложил вместе два металлических полушария и выкачал из полости между ними весь воздух. Восемь пар лошадей тянули в разные стороны, пытаясь разорвать полушария, но атмосферное давление так сильно прижало их друг к другу, что они так и остались сцепленными. Когда же внутрь полушарий снова запустили воздух, они распались без единого внешнего усилия.

Рисунок 6. Трубка с поршнем, частично погруженная

Рисунок 6. Трубка с поршнем, частично погруженная в воду.

Здесь изображена стеклянная трубка с расположенным внутри нее поршнем. Трубка частично опущена в воду. Если мы начнем поднимать поршень, то за ним будет подниматься вода. Почему так происходит?

При подъеме поршня между ним и водой образуется безвоздушное пространство, в которое поднимается вода под давлением воздуха снаружи. Именно по такому принципу работают шприцы, пипетки, насосы.

Атмосферное давление также используется животными в дикой природе. Например, мухи и древесные лягушки могут держаться на вертикальных поверхностях благодаря маленьким присоскам, в которых создаётся разрежение, и атмосферное давление удерживает присоску на поверхности.

Слон же использует атмосферное давление, когда пьет: он опускает хобот и втягивает воздух. Под действием атмосферного давление хобот наполняется водой.

Теги

Физические свойства азота

Азот — инертный двухатомный газ без цвета и запаха, химическая формула двухатомной молекулы N2, молярная масса 28,01 кг/кмоль, самый распространённый элемент на Земле. Содержание азота в атмосферном воздухе составляет около 78,09% по объёму.
Применяется в технологических процессах в качестве инертной затворной среды, например, для сухих газовых торцовых уплотнений и уплотнительных комплексов, в химической промышленности для синтеза аммиака.
Жидкий азот используется как хладагент, в машиностроении для сборки неразъемных соединений с натягом [охлаждение охватываемой детали].
Азот находит применение в специальных технологических процессах для нанесения на поверхности стальных деталей тонкого слоя износостойкого покрытия — нитрида титана; в соединении с кремнием образует износостойкий перспективный керамический материал нитрид кремния Si3N4.

Плотность азота при нормальном атмосферном давлении 101,325 кПа (1 атм) и различной температуре

Температура азота Плотность азота, ρ
оС кг/м3
-23 1,3488
27 1,1233
77 0,9625
127 0,8425
177 0,7485
227 0,6739
277 0,6124


Динамическая и кинематическая вязкость азота при нормальном атмосферном давлении и различной температуре

Температура Динамическая вязкость азота, μ Кинематическая вязкость азота, ν
оС (Н • c / м2) x 10-7 2 / с) x 10-6
-73 129,2 7,65
-23 154,9 11,48
27 178,2 15,86
77 200,0 20,78
127 220,4 26,16
177 239,6 32,01
227 257,7 38,24

Основные физические свойства азота при различной температуре

Температура Плотность, ρ Удельная теплоёмкость, Cp Теплопроводность, λ Кинематическая вязкость, ν Число Прандтля, Pr
K кг/м3 Дж / (кг • К) Вт / (м • К) 2 / с) x 10-6
200 1,6883 1043 0,0183 7,65 0,736
300 1,1233 1041 0,0259 15,86 0,716
400 0,8425 1045 0,0327 26,16 0,704
500 0,6739 1056 0,0389 38,24 0,700
600 0,5615 1075 0,0446 51,79 0,701
700 0,4812 1098 0,0499 66,71 0,706

* Табличные данные подготовлены по материалам зарубежных справочников



Формулы физических свойств азота

При выполнении инженерных расчетов удобнее использовать приближённые формулы для оценки физических свойств азота N2⋆:

Плотность азота N2

⋆ [ кг/м3 ]

формула плотности азота

Теплоёмкость азота N2

⋆ [ Дж/(кг • К) ]

формула теплоемкости азота

Теплопроводность азота N2

⋆ [ Вт/(м • K) ]

формула теплопроводности азота

Динамическая вязкость азота N2

⋆ [ Па • c ]

формула динамической вязкости азота

Кинематическая вязкость азота N2

⋆ [ м2/с ]

формула кинематической вязкости азота

Температуропроводность азота N2

[ м2/с ]

формула температуропроводности азота

Число Прандтля азота N2

[ — ]

формула числа Прандтля азота

⋆ Приближённые формулы физических свойств азота получены авторами настоящего сайта.

Размерность величин: температура — градусы Цельсия. Формула плотности азота приведена для атмосферного давления.

Приближённые формулы действительны в диапазоне температур азота от -23 до 277 oC.

    Подводя итог результатам исследований адсорбции азота при —195°, можно сказать, что значение удельной поверхности, рассчитываемое по изотерме адсорбции методом БЭТ, обычно согласуется с значением, рассчитанным по размеру частиц или получаемым прямым измерением геометрической площади расхождение, как правило, не превышает 20%- Большее расхождение можно отнести за счет таких нарушающих факторов, как шероховатость поверхности, или за счет неправильно выбранного значения фактора формы. Что касается шероховатости поверхности, то здесь важно отметить, что в абсолютном большинстве случаев значение г превышает единицу. Поэтому соответствие удельной поверхности, измеренной методом адсорбции азота, с истинной удельной поверхностью гораздо лучше, чем в случае грубого учета фактора шероховатости. Расхождение в первых двух случаях не превышает нескольких процентов. [c.90]

    В широком ряде исследований, проводимых на некоторых образцах кремнезема [59] (о которых уже говорилось ранее), делалась попытка определить реальную площадь поверхности методом электронной микроскопии, но при этом, чтобы площадь поверхности приравнять удельной поверхности, определенной по адсорбции азота, пришлось принять слишком большое значение [c.103]

    Отличительной особенностью адсорбции этана при —183 или —195°, удобной для практического использования, является низкое давление насыщенного пара (0,0083 и 0,0017 Л1м рт. ст. соответственно). В соответствии с этим мала поправка на мертвое пространство (см. стр. 352), Эта особенность использовалась рядом исследователей. Первое исследование, по-видимому, принадлежит Вутену и Брауну [64], которые брали для молекулы этана Л, = 24 А , в то время как Росс [65] полагал Лт = 23 А при адсорбции на хлоридах натрия и калия и двуокиси титана, основываясь на сравнении с площадью, определенной по изотермам азота. Однако Джонсон и др. [66], а позже О Коннор и Улиг [67] использовали значение 20,5 А , основываясь на плотности твердого этана. В этом случае получено удовлетворительное соответствие значений удельной поверхности, рассчитанной методом БЭТ, и геометрической площади для стержней и шариков из стекла пирекс в качестве адсорбента. Например, по данным адсорбции этана при —183° шарики имели площадь поверхности 142 сл1 и геометрическую площадь 137 см . Для фольги железа, восстановленной водородом при 1000°, а затем откачанной при 400°, было получено значение фактора шероховатости г, равное 1,2. Для нержавеющей стали, травленной кислотой, г = = 1,4, а для полированной электрически — 1,12. [c.98]

    Представляет интерес исследование связи между логарифмом величины удерживания и площадью поверхности, занимаемой молекулой. Известно, что большинство гетероароматических соединений адсорбируются параллельно плоскости поверхности адсорбента и площадь, занимаемая молекулой, является простой суммой площадей составляющих ее атомов или групп [5]. В случае адсорбции на полярных сорбентах определяющую роль при этом играют гетерофункции молекулы (например, группы —N=, —NH— и др.) и значительно более слабую — алифатические заместители, кроме ближайших к ароматической системе атомов углерода боковых цепей. Поэтому для расчета площади ароматической молекулы, контактирующей с поверхностью полярного адсорбента, Снайдер [6] предложил эмпирическую формулу As = 6 + 0,8 O h) + 0,25 -h), где с 11 h — числа атомов углерода и водорода в эмпирической формуле соединения СсНл. При наличии в молекуле гетероатомов последние учитываются путем добавления к площади, занимаемой углеродным скелетом, площади соответствующего гетероатома для азота и кислорода — одной, для серы — трех единиц. В этом случае получается расчетная величина Л s, которая является, вероятно, лишь грубым приближением к истинной площади, занимаемой молекулой на поверхности адсорбента. Так как в нашем случае адсорбция протекает на неполярном адсорбенте, в общей площади, занимаемой молекулой, необходимо читывать вклады всех алифатических атомов независимо от их удаленности от ароматической части молекулы. Для метильной группы этот вклад составляет 0,8 этильной — 1,8 пропильной — 2,6 изоамильпой — 4,4 [6], Значения вычисленных площадей анализируемых молекул внесены в таблицу, на основании которых для каждой группы веществ построена графическая зависимость Ig к от ils (см. рисунок). Экспериментальные точки располагаются достаточно близко к расчетным прямым каждой группы соединений и в первом приближении могут быть использованы для определения площади, занимаемой молекулой на поверхности неполярного сорбента, по величине удерживания  [c.131]

    Вероятно, для всех адсорбентов в известной степени имеет место персорбция. Это обнаруживается при определении величины поверхности по адсорбции молекул различных размеров. Так, Брунауер и Эммет[1 ] нашли, что поверхность силикагеля, определенная по адсорбции бутана, на 22,5% меньше средней величины, полученной по изотермам адсорбции пяти газов с меньшими молекулами (аргон, азот, кислород, окись углерода и углекислый газ). Для исследованного образца угля получилось еще большее различие, которое составляло 34%. Хотя площадь, занимаемая бутаном [c.504]


Понравилась статья? Поделить с друзьями:
  • Как найти работу девушке подростку
  • Как найти спирт в аптеке
  • Как исправить первое впечатление мужчины
  • Как найти запчасти для китайских автомобилей
  • Как составить плал