Как найти площадь боковой пов цилиндра

Как рассчитать площадь цилиндра

На данной странице калькулятор поможет рассчитать площадь поверхности цилиндра онлайн. Для расчета задайте высоту и радиус.

Цилиндр — геометрическое тело, ограниченное цилиндрической поверхностью и двумя параллельными плоскостями, пересекающими её.

Боковая поверхность


Боковая площадь цилиндра


Формула площадь боковой поверхности цилиндра через высоту и радиус:

π — константа равная (3.14); r — радиус основания; h — высота цилиндра.


Полная поверхность


Полная площадь цилиндра


Формула площадь полной поверхности цилиндра через высоту и радиус:

π — константа равная (3.14); r — радиус основания; h — высота цилиндра.

Чтобы найти площадь поверхности цилиндра необходимо знать радиус его основания и высоту. Очень важно понимать, что существует две поверхности — боковая и полная. Площадь боковой поверхности включает в себя площадь поверхности цилиндра без учета площади его оснований. Полная же площадь основания цилиндра включает как площадь боковой поверхности, так и обоих оснований цилиндра.

На нашем сайте вы можете рассчитать и объем цилиндра

Цилиндр — геометрическое тело, ограниченное цилиндрической поверхностью и двумя параллельными плоскостями, которые её пересекают.

Содержание:
  1. калькулятор площади поверхности цилиндра
  2. формула площади поверхности цилиндра
  3. формула площади боковой поверхности цилиндра
  4. примеры задач

Формула площади поверхности цилиндра

Площадь поверхности цилиндра

{S_{полн} = 2pi R(h+R)}

R — радиус основания цилиндра

h — высота цилиндра

Формула площади боковой поверхности цилиндра

Площадь боковой поверхности цилиндра

{S_{бок} = 2pi Rh}

R — радиус основания цилиндра

h — высота цилиндра

Примеры задач на нахождение площади поверхности цилиндра

Задача 1

Найдите площадь поверхности цилиндра если его высота равна 5см а радиус 6см.

Решение

Так как необходимо найти площадь полной поверхности цилиндра, воспользуемся первой формулой. Подставим в нее значения из условия и произведем вычисления.

S_{полн} = 2pi R(h+R) = 2pi cdot 6(5+6) = 12pi cdot 11 = 132 pi : см^2 approx 414.69023 : см^2

Ответ: 132 pi : см^2 approx 414.69023 : см^2

Чтобы проверить правильность ответа можно использовать калькулятор .

Задача 2

Найдите площадь боковой поверхности цилиндра, если радиус основания равен 2см а высота 7см.

Решение

Для решения этой задачи нам потребуется вторая формула.

S_{бок} = 2pi Rh = 2pi cdot 2 cdot 7 = 28 pi : см^2 approx 87.96459 : см^2

Ответ: 28 pi : см^2 approx 87.96459 : см^2

Осталось убедиться, что задача решена верно, для этого используем калькулятор .

Площадь поверхности цилиндра

Рассчитайте онлайн площадь поверхности любого цилиндрического объекта.

Что известно

Размерность

Радиус основания

см

Диаметр основания

см

Высота

см

Раcсчитать

Оглавление:

  • 📝 Как это работает?
  • 🤔 Частые вопросы и ответы
  • 📋 Похожие материалы
  • 📢 Поделиться и комментировать

🧮 Что такое калькулятор площади цилиндра?

Калькулятор площади цилиндра — это онлайн-инструмент, который помогает рассчитать площадь поверхности цилиндра, исходя из его параметров.

Площадь поверхности цилиндра состоит из двух частей: площади боковой поверхности и площади оснований.

Для чего может быть использован такой калькулятор?

калькулятор площади поверхности цилиндра

Калькулятор площади цилиндра может быть использован в различных областях, где требуется расчет площади поверхности цилиндрических объектов. Некоторые из возможных применений калькулятора площади цилиндра включают:

  1. Проектирование трубопроводов: при проектировании трубопроводов важно рассчитать не только объем жидкости или газа, но и площадь поверхности трубы, чтобы определить необходимое количество материала и затраты на изготовление трубопровода.
  2. Производство бочек и цистерн: при производстве бочек и цистерн необходимо рассчитать площадь поверхности, чтобы правильно распределить материалы и обеспечить надежность конструкции.
  3. Архитектура и строительство: при проектировании зданий, которые имеют цилиндрическую форму (например, башни, купола), необходимо рассчитать площадь поверхности, чтобы определить необходимое количество материалов для отделки или облицовки.
  4. Образование: калькулятор площади цилиндра может быть полезен для студентов и учителей при изучении геометрии и тела вращения.

В целом, калькулятор площади цилиндра может использоваться в любой сфере, где требуется подсчет площади цилиндрических объектов.

🛢️ Как и по какой формуле онлайн калькулятор рассчитывает площадь цилиндра?

Для расчета площади цилиндра онлайн калькулятор использует формулу:

S=2πR(h+R)

где:

  • S — площадь цилиндра
  • R — радиус основания цилиндра
  • h — высота цилиндра
  • π (Пи) — математическая константа, примерное значение которой равно 3.14159265359

Формула вычисляет площадь боковой поверхности цилиндра (2πrh) и площадь двух оснований цилиндра (2πr²), а затем складывает их для получения общей площади.

Онлайн калькулятор просто запрашивает у пользователя значения радиуса и высоты цилиндра, затем подставляет их в формулу и выводит результат площади цилиндра.

Широкое применение цилиндров в повседневной жизни

Цилиндр — это геометрическое тело, которое может использоваться в различных областях. Ниже приведены некоторые примеры использования цилиндра:

  1. Создание двигателей внутреннего сгорания: таких как двигатель автомобиля или мотоцикла.
  2. Механика: например в гидравлических цилиндрах, которые используются для перемещения или прессования тяжелых предметов.
  3. Создание емкостей: таких как баки для хранения газа или жидкости.
  4. Столярное дело: для создания столбов, колонн или других элементов архитектуры.
  5. Математика: для решения геометрических задач и для вычисления объемов и площадей тел.
  6. Кулинария: для формирования булочек, пирогов, кексов и других блюд.
  7. Сосуды для хранения и транспортировки жидкостей: таких как газы, масла, смазки и прочее.
  8. Научные исследования: например для измерения давления, температуры и других параметров.

❓Вопросы и ответы

Обратите внимание на ответы на некоторые часто задаваемые вопросы.

Какова формула для вычисления площади цилиндра?

Формула для вычисления площади цилиндра зависит от того, какую площадь вы хотите найти. Обычно вычисляют площадь боковой поверхности и площадь полной поверхности цилиндра. Для нахождения площади боковой поверхности цилиндра используйте формулу 2πrh, где r — радиус цилиндра, а h — его высота. Для нахождения площади полной поверхности цилиндра нужно прибавить к площади боковой поверхности удвоенную площадь оснований, т.е. используйте формулу 2πrh + 2πr^2.

Как использовать онлайн калькулятор для вычисления площади цилиндра?

Чтобы использовать онлайн калькулятор для вычисления площади цилиндра, вам нужно ввести значения радиуса и высоты цилиндра в соответствующие поля. Затем онлайн калькулятор автоматически рассчитает площадь цилиндра.

Как найти радиус цилиндра, если известна его площадь?

Для нахождения радиуса цилиндра по известной площади необходимо использовать формулу S = 2πrh + 2πr^2, где S — площадь цилиндра, r — радиус цилиндра, h — его высота. После подстановки известных значений в формулу можно найти радиус цилиндра.

Можно ли использовать онлайн калькулятор площади цилиндра для вычисления площади других геометрических фигур, таких как конус или сфера?

Нет, онлайн калькулятор площади цилиндра предназначен только для вычисления площади цилиндра. Для вычисления площади других геометрических фигур необходимо использовать соответствующие калькуляторы.

Каковы ограничения на значения радиуса и высоты, которые можно ввести в онлайн калькулятор площади цилиндра?

Онлайн калькулятор площади цилиндра не имеет ограничений на значения радиуса и высоты, которые можно ввести. Однако, для более точных результатов, рекомендуется использовать реалистичные значения.

Как мне использовать результаты вычислений, полученные с помощью онлайн калькулятора площади цилиндра?

Результаты вычислений, полученные с помощью онлайн калькулятора площади цилиндра, можно использовать для решения различных задач, связанных с геометрией, например, для расчета объема цилиндра, для определения необходимого количества материала для изготовления цилиндрического объекта или для определения количества жидкости, которая может поместиться в цилиндрический резервуар.

Похожие калькуляторы

Возможно вам пригодятся ещё несколько калькуляторов по данной теме:

  • Калькулятор площади шара (сферы). Рассчитайте онлайн площадь поверхности шарообразного объекта (сферы).
  • Площадь правильного шестиугольника: калькулятор. Рассчитайте площадь правильного (равностороннего) шестиугольника с помощью онлайн-калькулятора.
  • Калькулятор числа «e». Посмотрите онлайн нужное число знаков после запятой в числе «e» (Эйлера или Непера).
  • Площадь поверхности куба: калькулятор. Рассчитайте онлайн площадь поверхности куба по длине ребер, диагонали куба или диагоналям его сторон.
  • Калькулятор масштабов. Переведите онлайн именованный масштаб на чертеже в реальный и наоборот.
  • Калькулятор числа Пи. Узнайте, чему равно число Пи с точностью до нужного количества знаков после запятой.
  • Калькулятор объема параллелепипеда. Рассчитайте онлайн объем любого параллелепипеда по длинам его ребер и не только.
  • Калькулятор объема куба. Рассчитайте онлайн объем любого кубического предмета по длине стороны или диагоналям.
  • Калькулятор объема бака. Посчитайте объем цилиндрического, прямоугольного или автомобильного бака по габаритам (по расходу и пройденному расстоянию).
  • Калькулятор объема помещения. Посчитайте объем комнаты или любого помещения в кв.метра или литрах.

Если понравилось, поделитесь калькулятором в своих социальных сетях: вам нетрудно, а проекту полезно для продвижения. Спасибо!

Есть что добавить?

Напишите своё мнение, комментарий или предложение.

Показать комментарии

4.png

Рис. (1). Цилиндр

Площадь поверхности цилиндра состоит из площади боковой поверхности и площади оснований цилиндра.

Площадь боковой поверхности цилиндра

где (R) — радиус цилиндра,

(H) — высота цилиндра

р 7.png

Рис. (2). Боковая поверхность цилиндра

Развёртка боковой поверхности цилиндра на плоскости — прямоугольник.

Одна сторона прямоугольника является  высотой цилиндра.

(AB = H).

Вторая сторона прямоугольника является длиной окружности основания цилиндра.

Основания цилиндра — круги.  (S(круга) =)

πR2

.

Площадь полной поверхности цилиндра равна:

(S(полн.) = 2S(осн.) + S(бок.) =)

2πR2

 (+)

2πRH

.

Объём цилиндра (V)(цилиндра) (=)

πR2
·H

.

Источники:

Рис. 1. Цилиндр, © ЯКласс.
Рис. 2. Боковая поверхность цилиндра, © ЯКласс. 

Определение цилиндра

Цилиндр — геометрическое тело, которое можно получить при вращении прямоугольника вокруг какой-либо его стороны.

Онлайн-калькулятор площади поверхности цилиндра

На самом деле, это определение только самого простого, кругового цилиндра. Более общее определение цилиндрического тела следующее:

Цилиндром называют тело, образованное пересечением параллельных друг другу прямых и двух плоских поверхностей.

Такие прямые называются образующими данного цилиндра.
Прямая, перпендикулярная обоим основаниям, является высотой цилиндра.
Плоские поверхности называют основаниями данного цилиндра. Часто, они параллельны друг другу, но не всегда.

Виды цилиндра

Виды цилиндра зависят от того, под каким углом пересекаются образующие и основания нашего тела.

Если угол равен 90 градусам, то получим, так называемый, прямой цилиндр. У него есть ось симметрии – это перпендикуляр, соединяющий центры его оснований.

Если угол другой, то цилиндр называется наклонным.

Если форма основания – гипербола, то цилиндр гиперболический, если парабола — параболический, если эллипс — эллиптический, если круг — круговой.

Если основания цилиндра не параллельны, то он называется косым.

Формула площади поверхности цилиндра

Полная площадь поверхности цилиндра является суммой его боковой площади поверхности и площади оснований.

S=Sосн+SбокS=S_{text{осн}}+S_{text{бок}}

SоснS_{text{осн}} — площадь оснований;
SбокS_{text{бок}} — площадь боковой поверхности.

При вычислении площади поверхности цилиндра важным фактором является вид цилиндра. От него зависит и конкретная формула для площади.

Формула площади поверхности кругового цилиндра

Sосн=2⋅π⋅r2S_{text{осн}}=2cdotpicdot r^2

Sбок=2⋅π⋅r⋅hS_{text{бок}}=2cdotpicdot rcdot h

rr — радиус круга (основания кругового цилиндра);
hh — высота этого цилиндра.

Сокращенно, это формулу можно записать так:

S=Sосн+Sбок=2⋅π⋅r2+2⋅π⋅r⋅h=2⋅π⋅r⋅(r+h)S=S_{text{осн}}+S_{text{бок}}=2cdotpicdot r^2+2cdotpicdot rcdot h=2cdotpicdot rcdot(r+h)

Пример

площадь прямого кругового цилиндра

Радиус круга, лежащего в основании прямого кругового цилиндра, имеет длину 6 (см.). Высота цилиндра – 20 (см.). Найдите полную площадь его поверхности.

Решение:

r=6r=6
h=20h=20

По формуле:

S=2⋅π⋅r⋅(r+h)=2⋅π⋅6⋅(6+20)≈979,68S=2cdotpicdot rcdot(r+h)=2cdotpicdot 6cdot(6+20)approx979,68 (см. кв.)

Ответ: 979,68 см. кв.

Формула площади поверхности наклонного кругового цилиндра

Sосн=2⋅π⋅r2S_{text{осн}}=2cdotpicdot r^2

Sбок=p⋅lS_{text{бок}}=pcdot l

rr — радиус круга (основания кругового цилиндра);
pp — периметр сечения наклонного цилиндра перпендикулярно образующей;
ll — длина образующей этого цилиндра.

Пример

площадь наклонного кругового цилиндра

Найти площадь поверхности наклонного цилиндра, если периметр pp сечения плоскости, составляющей прямой угол с образующей, равен 30 (см.), а сама образующая равна 7 (см.) Радиус окружности, лежащей в основе цилиндра в два раза меньше его образующей.

Решение:

r=l2r=frac{l}{2}
p=30p=30
l=7l=7

Найдем сначала радиус основания:

r=l2=72=3.5r=frac{l}{2}=frac{7}{2}=3.5

Тогда полная площадь:

S=Sосн+Sбок=2⋅π⋅r2+p⋅l=2⋅π⋅3.52+30⋅7≈76,93+210=286,93S=S_{text{осн}}+S_{text{бок}}=2cdotpicdot r^2+pcdot l=2cdotpicdot 3.5^2+30cdot 7approx76,93+210=286,93 (см. кв.)

Ответ: 286,93 см. кв.

На сайте Студворк предусмотрено решение контрольных работ на заказ для школьников и студентов.

Тест по теме «Площадь поверхности цилиндра»

Понравилась статья? Поделить с друзьями:
  • Ведьмак 3 имлерих как найти
  • Как исправить оценку в решении
  • Как найти радиус описанной окружности остроугольного треугольника
  • Как ты нашла мою страничку
  • Как составить акт приемки в эксплуатацию