Как найти площадь диагонального сечения призмы четырехугольной

Задача № 18 решается так:

Так как боковая грань — прямоугольник, то ее площадь Q = ΑΑ1∙AD). А так как основание призмы — квадрат, то диагональ AC=AD√2. Тогда площадь диагонального сечения:
 S = АС∙АА1 = √2 ∙AD∙AA1 = Q∙√2.
Ответ: Q√2 .
 

Как найти площадь диагонального сечения призмы

Призма — это многогранник с двумя параллельными основаниями и боковыми гранями в форме параллелограмма и в количестве, равном числу сторон многоугольника основания.

Призмы

Инструкция

В произвольной призме боковые ребра расположены под углом к плоскости основания. Частным случаем является прямая призма. В ней боковые стороны лежат в плоскостях, перпендикулярных основаниям. В прямой призме боковые грани — прямоугольники, а боковые ребра равны высоте призмы.

Диагональное сечение призмы — часть плоскости, полностью заключенная во внутреннем пространстве многогранника. Диагональное сечение может быть ограничено двумя боковыми ребрами геометрического тела и диагоналями оснований. Очевидно, что число возможных диагональных сечений при этом определяется количеством диагоналей в многоугольнике основания.

Или границами диагонального сечения могут служить диагонали боковых граней и противоположные стороны оснований призмы. Диагональное сечение прямоугольной призмы имеет форму прямоугольника. В общем случае произвольной призмы форма диагонального сечения — параллелограмм.

В прямоугольной призме площадь диагонального сечения S определяется по формулам:
S=d*H
где d — диагональ основания,
H — высота призмы.
Или S=a*D
где а — сторона основания, принадлежащая одновременно плоскости сечения,
D — диагональ боковой грани.

В произвольной непрямой призме диагональное сечение — параллелограмм, одна сторона которого равна боковому ребру призмы, другая — диагонали основания. Или сторонами диагонального сечения могут быть диагонали боковых граней и стороны оснований между вершинами призмы, откуда проведены диагонали боковых поверхностей. Площадь параллелограмма S определяется формулой:
S=d*h
где d — диагональ основания призмы,
h — высота параллелограмма — диагонального сечения призмы.
Или S=a*h
где а — сторона основания призмы, являющаяся и границей диагонального сечения,
h — высота параллелограмма.

Для определения высоты диагонального сечения недостаточно знать линейные размеры призмы. Необходимы данные о наклоне призмы к плоскости основания. Дальнейшая задача сводится к последовательному решению нескольких треугольников в зависимости от исходных данных об углах между элементами призмы.

Войти на сайт

или

Забыли пароль?
Еще не зарегистрированы?

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

Содержание

  1. Площадь сечения призмы
  2. Четырехугольная призма: высота, диагональ, площадь
  3. Понятие о призме
  4. Что такое призма четырехугольная?
  5. Виды параллелепипедов
  6. Поверхность призмы и ее площадь
  7. Площадь прямоугольной призмы с квадратным основанием
  8. Площадь косоугольного параллелепипеда
  9. Длина диагонали прямоугольного параллелепипеда
  10. Объем призмы
  11. Задача с прямоугольным параллелепипедом
  12. Задача с косоугольным параллелепипедом

Площадь сечения призмы

Призма — это многогранник, две грани которого являются равными многоугольниками, лежащими в параллельных плоскостях, а остальные грани параллелограммами, имеющими общие стороны с этими многоугольниками. Основными математическими характеристиками призмы являются площадь основания и высота.

Сечение призмы — это изображение фигуры, образованной рассечением призмы плоскостью в поперечном или продольном направлении.

Формула для расчета площади бокового сечения призмы:

a — сторона призмы;
b — высота призмы.

Формула для расчета площади диагонального сечения призмы:

b — высота призмы;
c — диагональ призмы.

Смотрите также статью о всех геометрических фигурах (линейных 1D, плоских 2D и объемных 3D).

Быстро выполнить эту математическую операцию можно с помощью нашей онлайн программы. Для этого необходимо в соответствующее поле ввести исходное значение и нажать кнопку.

На этой странице представлен самый простой онлайн калькулятор расчета площади бокового или диагонального сечения призмы, если известны длина сторон, диагональ и высота призмы. С помощью этого калькулятора вы в один клик сможете рассчитать площадь сечения призмы (площадь бокового сечения призмы, площадь диагонального сечения призмы и площадь сечения призмы плоскостью).

Источник

Четырехугольная призма: высота, диагональ, площадь

В школьном курсе стереометрии одной из самых простых фигур, которая имеет не нулевые размеры вдоль трех пространственных осей, является четырехугольная призма. Рассмотрим в статье, что это за фигура, из каких элементов она состоит, а также как можно рассчитать площадь ее поверхности и объем.

Понятие о призме

В геометрии призмой полагают пространственную фигуру, которая образована двумя одинаковыми основаниями и боковыми поверхностями, которые соединяют стороны этих оснований. Отметим, что оба основания переходят друг в друга с помощью операции параллельного переноса на некоторый вектор. Такое задание призмы приводит к тому, что все ее боковые стороны всегда являются параллелограммами.

Количество сторон основания может быть произвольным, начиная от трех. При стремлении этого числа к бесконечности, призма плавно переходит в цилиндр, поскольку ее основание становится кругом, а боковые параллелограммы, соединяясь, образуют цилиндрическую поверхность.

Как и любой полиэдр, призма характеризуется сторонами (плоскости, которые ограничивают фигуру), ребрами (отрезки, по которым пересекаются две любые стороны) и вершинами (точки встречи трех сторон, для призмы две из них являются боковыми, а третья — основанием). Количества названных трех элементов фигуры связаны между собой следующим выражением:

Здесь Р, С и В — это число ребер, сторон и вершин, соответственно. Это выражение является математической записью теоремы Эйлера.

Выше приведен рисунок, где показаны две призмы. В основании одной из них (A) лежит правильный шестиугольник, и стороны боковые перпендикулярны основаниям. Рисунок B демонстрирует другую призму. Ее боковые стороны уже не перпендикулярны основаниям, а основание представляет собой правильный пятиугольник.

Что такое призма четырехугольная?

Как понятно из описания выше, тип призмы в первую очередь определяется видом многоугольника, который образует основание (оба основания одинаковые, поэтому речь можно вести об одном из них). Если этим многоугольником является параллелограмм, то мы получаем четырехугольную призму. Таким образом, все стороны этого вида призмы являются параллелограммами. Четырехугольная призма имеет собственное название — параллелепипед.

Количество сторон параллелепипеда равно шести, причем каждая сторона имеет аналогичную параллельную ей. Поскольку основания параллелепипеда — это две стороны, то оставшиеся четыре являются боковыми.

Количество вершин параллелепипеда равно восьми, в чем легко убедиться, если вспомнить, что вершины призмы образуются только на вершинах базовых многоугольников (4х2=8). Применяя теорему Эйлера, получаем число ребер:

Из 12-ти ребер, только 4 образованы самостоятельно боковыми сторонами. Остальные 8 лежат в плоскостях оснований фигуры.

Далее в статье речь пойдет только о четырехугольных призмах.

Виды параллелепипедов

Первый тип классификации заключается в особенности параллелограмма, лежащего в основании. Он может быть следующего вида:

Второй тип классификации заключается в угле, при котором боковая сторона пересекает основание. Здесь возможно два разных случая:

  • этот угол не является прямым, тогда призму называют косоугольной или наклонной;
  • угол равен 90 o , тогда такая призма является прямоугольной или просто прямой.

Третий тип классификации связан с высотой призмы. Если призма является прямоугольной, и в основании лежит либо квадрат, либо прямоугольник, тогда ее называют прямоугольным параллелепипедом. Если же в основании находится квадрат, призма является прямоугольной, а ее высота равна длине стороны квадрата, то мы получаем всем известную фигуру куб.

Поверхность призмы и ее площадь

Совокупность всех точек, которые лежат на двух основаниях призмы (параллелограммах) и на ее боковых сторонах (четыре параллелограмма), образуют поверхность фигуры. Площадь этой поверхности может быть вычислена, если рассчитать площадь основания и эту величину для боковой поверхности. Тогда их сумма даст искомое значение. Математически это записывается так:

Здесь So и Sb — площадь основания и боковой поверхности, соответственно. Цифра 2 перед So появляется в виду того, что оснований два.

Отметим, что записанная формула справедлива для любой призмы, а не только для площади четырехугольной призмы.

Полезно напомнить, что площадь параллелограмма Sp вычисляется по формуле:

Где символы a и h обозначают длину одной из его сторон и высоту, проведенную к этой стороне, соответственно.

Площадь прямоугольной призмы с квадратным основанием

В правильной четырехугольной призме основание представляет собой квадрат. Обозначим для определенности его сторону буквой a. Чтобы рассчитать площадь правильной четырехугольной призмы, следует знать ее высоту. Согласно определению для этой величины, она равна длине перпендикуляра, опущенного из одного основания на другое, то есть равна расстоянию между ними. Обозначим ее буквой h. Поскольку все боковые грани перпендикулярны основаниям для рассматриваемого типа призмы, то высота правильной четырехугольной призмы будет равна длине ее бокового ребра.

В общей формуле для площади поверхности призмы стоит два слагаемых. Площадь основания в данном случае рассчитать просто, она равна:

Чтобы вычислить площадь боковой поверхности, рассуждаем следующим образом: эта поверхность образована 4-мя одинаковыми прямоугольниками. Причем стороны каждого из них равны a и h. Это означает, что площадь Sb буде равна:

Заметим, что произведение 4*a — это периметр квадратного основания. Если обобщить это выражение на случай произвольного основания, тогда для прямоугольной призмы боковую поверхность можно рассчитать так:

Где Po — периметр основания.

Возвращаясь к задаче расчета площади правильной четырехугольной призмы, можно записать итоговую формулу:

Площадь косоугольного параллелепипеда

Вычислить ее несколько сложнее, чем для прямоугольного. В этом случае площадь основания четырехугольной призмы вычисляется по той же формуле, что и для параллелограмма. Изменения касаются способа определения площади боковой поверхности.

Для этого используется та же формула через периметр, что приведена в пункте выше. Только теперь в ней появятся несколько иные множители. Общая формула для Sb в случае косоугольной призмы имеет вид:

Здесь с — это длина бокового ребра фигуры. Величина Psr является периметром прямоугольного среза. Строится этот сред следующим образом: необходимо плоскостью пересечь все боковые грани таким образом, чтобы она была перпендикулярна всем им. Образованный прямоугольник и будет искомым срезом.

На рисунке выше приведен пример косоугольного параллелепипеда. Заштрихованное его сечение с боковыми сторонами образует прямые углы. Периметр сечения равен Psr. Он образован четырьмя высотами боковых параллелограммов. Для этой четырехугольной призмы площадь боковой поверхности рассчитывается по указанной выше формуле.

Длина диагонали прямоугольного параллелепипеда

Диагональ параллелепипеда — это отрезок, который соединяет две вершины, не имеющие общих сторон, которые их образуют. В любой четырехугольной призме диагоналей всего четыре. Для прямоугольного параллелепипеда, в основании которого расположен прямоугольник, длины всех диагоналей равны друг другу.

Ниже на рисунке приведена соответствующая фигура. Красный отрезок является ее диагональю.

Рассчитать ее длину очень просто, если вспомнить о теореме Пифагора. Каждый школьник может получить искомую формулу. Она имеет следующую форму:

Здесь D — длина диагонали. Остальные символы — это длины сторон параллелепипеда.

Многие путают диагональ параллелепипеда с диагоналями его сторон. Ниже приводится рисунок, где цветными отрезками изображены диагонали сторон фигуры.

Длина каждой из них также определяется по теореме Пифагора и равна квадратному корню из суммы квадратов соответствующих длин сторон.

Объем призмы

Помимо площади правильной четырехугольной призмы или других видов призм, для решения некоторых геометрических задач следует знать и их объем. Эта величина для абсолютно любой призмы вычисляется по следующей формуле:

Если призма является прямоугольной, тогда достаточно вычислить площадь ее основания и умножить его на длину ребра боковой стороны, чтобы получить объем фигуры.

Если призма является правильной четырехугольной, тогда ее объем будет равен:

Легко видеть, что эта формула преобразуется в выражение для объема куба, если длина бокового ребра h равна стороне основания a.

Задача с прямоугольным параллелепипедом

Для закрепления изученного материала решим следующую задачу: имеется прямоугольный параллелепипед, стороны которого равны 3 см, 4 см и 5 см. Необходимо рассчитать площадь его поверхности, длину диагонали и объем.

Для определенности будем считать, что основанием фигуры является прямоугольник со сторонами 3 см и 4 см. Тогда его площадь равна 12 см 2 , а период составляет 14 см. Используя формулу для площади поверхности призмы, получаем:

Для определения длины диагонали и объема фигуры можно непосредственно воспользоваться приведенными выше выражениями:

Задача с косоугольным параллелепипедом

Ниже на рисунке изображена косоугольная призма. Ее стороны равны: a=10 см, b = 8 см, с = 12 см. Необходимо найти площадь поверхности этой фигуры.

Сначала определим площадь основания. Из рисунка видно, что острый угол равен 50 o . Тогда его площадь равна:

Для определения площади боковой поверхности, следует найти периметр заштрихованного прямоугольника. Стороны этого прямоугольника равны a*sin(45 o ) и b*sin(60 o ). Тогда периметр этого прямоугольника равен:

Полная площадь поверхности этого параллелепипеда равна:

Подставляем данные из условия задачи для длин сторон фигуры, получаем ответ:

Из решения этой задачи видно, что для определения площадей косоугольных фигур используются тригонометрические функции.

Источник

Правильная четырехугольная призма

Определение.

Правильная четырехугольная призма — это шестигранник, основаниями которого являются два равных квадрата, а боковые грани представляют собой равные прямоугольники

Боковое ребро — это общая сторона двух смежных боковых граней

Высота призмы — это отрезок, перпендикулярный основаниям призмы

Диагональ призмы — отрезок, соединяющий две вершины оснований, которые не принадлежат к одной грани

Диагональная плоскость — плоскость, которая проходит через диагональ призмы и ее боковые ребра

Диагональное сечение — границы пересечения призмы и диагональной плоскости. Диагональное сечение правильной четырехугольной призмы представляет собой прямоугольник

Перпендикулярное сечение (ортогональное сечение) — это пересечение призмы и плоскости, проведенной перпендикулярно ее боковым ребрам

Элементы правильной четырехугольной призмы

Правильная четырехугольная призма с элементами - ребро, основание, сечение, диагональ призмы

На рисунке изображены две правильные четырехугольные призмы, у которых обозначены соответствующими буквами:

  • Основания ABCD и A1B1C1D1 равны и параллельны друг другу
  • Боковые грани AA1D1D, AA1B1B, BB1C1C и CC1D1D, каждая из которых является прямоугольником
  • Боковая поверхность — сумма площадей всех боковых граней призмы
  • Полная поверхность — сумма площадей всех оснований и боковых граней (сумма площади боковой поверхности и оснований)
  • Боковые ребра AA1, BB1, CC1 и DD1.
  • Диагональ B1D
  • Диагональ основания  BD
  • Диагональное сечение BB1D1D
  • Перпендикулярное сечение A2B2C2D2 .

Свойства правильной четырехугольной призмы

  • Основаниями являются два равных квадрата
  • Основания параллельны друг другу
  • Боковыми гранями являются прямоугольники
  • Боковые грани равны между собой
  • Боковые грани перпендикулярны основаниям
  • Боковые ребра параллельны между собой и равны
  • Перпендикулярное сечение перпендикулярно всем боковым ребрам и параллельно основаниям
  • Углы перпендикулярного сечения — прямые
  • Диагональное сечение правильной четырехугольной призмы представляет собой прямоугольник
  • Перпендикулярное (ортогональное сечение) параллельно основаниям

Формулы для правильной четырехугольной призмы

Формулы площади и объема правильной четырехугольной призмы, включая диагональное сечение

Указания к решению задач

При решении задач на тему «правильная четырехугольная призма» подразумевается, что:

Правильная призма — призма в основании которой лежит правильный многоугольник, а боковые ребра перпендикулярны плоскостям основания. То есть правильная четырехугольная призма содержит в своем основании квадрат. (см. выше свойства правильной четырехугольной призмы)

Примечание. Это часть урока с задачами по геометрии (раздел стереометрия —  призма). Здесь размещены задачи, которые вызывают трудности при решении. Если Вам необходимо решить задачу по геометрии, которой здесь нет — пишите об этом в форумеДля обозначения действия извлечения квадратного корня в решениях задач используется символ √ .   

Задача.

В правильной четырёхугольной призме площадь основания 144 см2, а высота 14 см. Найти диагональ призмы и площадь полной поверхности.

Решение.
Правильный четырехугольник — это квадрат.
Соответственно, сторона основания будет равна

144 = 12 см.
Откуда диагональ основания правильной прямоугольной призмы будет равна
√( 122 + 122 ) = √288 = 12√2

Диагональ правильной призмы образует с диагональю основания и высотой призмы прямоугольный треугольник. Соответственно, по теореме Пифагора диагональ заданной правильной четырехугольной призмы будет равна:
√( ( 12√2 )2 + 142 ) = 22 см

Ответ: 22 см

Задача

Определите полную поверхность правильной четырехугольной призмы, если ее диагональ равна 5 см, а диагональ боковой грани равна 4 см.

Решение.
Поскольку в основании правильной четырехугольной призмы лежит квадрат, то сторону основания (обозначим как a) найдем по теореме Пифагора:

a2 + a2 = 52
2a2 = 25
a = √12,5

Высота боковой грани (обозначим как h) тогда будет равна:

h2 + 12,5 = 42
h2 + 12,5 = 16
h2 = 3,5
h = √3,5

Площадь полной поверхности будет равна сумме площади боковой поверхности и удвоенной площади основания

S = 2a2 + 4ah
S = 25 + 4√12,5 * √3,5
S = 25 + 4√43,75
S = 25 + 4√(175/4)
S = 25 + 4√(7*25/4)
S = 25 + 10√7 ≈ 51,46 см2 .

Ответ: 25 + 10√7 ≈ 51,46 см2 .


15306.1214
 

 Прямая призма |

Описание курса

| Куб 

Так как боковая грань — прямоугольник, то ее площадь Q=AA1⋅AD. А так как основание призмы — квадрат, то диагональ

AC=AD√2 . Тогда площадь диагонального сечения:

Ответ:

Понравилась статья? Поделить с друзьями:
  • Как можно найти потерявшего человека
  • Как исправить однородный цвет
  • Как составить любовные письма
  • Сумеречный лес как найти гигантов
  • Как составить расписание по подготовке к школе