Как найти площадь дуги ограниченной хордой

Сегмент круга

Вычисляет площадь, длину дуги, длину хорды, высоту и периметр сегмента круга. Описывается несколько вариантов расчета по параметрам сегмента — по углу, по хорде, по радиусу, по высоте и длине дуги.

Сегмент круга

Круговой сегмент — часть круга ограниченная дугой и секущей (хордой).

На рисунке:
L — длина дуги сегмента
c — хорда
R — радиус
a — угол сегмента
h — высота

Первый калькулятор рассчитывает параметры сегмента, если известен радиус и угол по следующим формулам:

Формулы вычисления параметров сегмента

Площадь сегмента:
[1]
Длина дуги:

Нахождение площади сегмента круга

В данной публикации мы рассмотрим определение сегмента круга и формулы, с помощью которых можно вычислить его площадь (через радиус и центральный угол кругового сектора). Также разберем примеры решения задач для демонстрации практического применения формул.

Определение сегмента круга

Сегмент круга – это часть круга, которая ограничена дугой окружности и ее хордой.

Хорда – это часть прямой (секущей), которая пересекает круг. Концы хорды соединяются с центром круга, в результате чего образуется равнобедренный треугольник, боковые стороны которого являются радиусом окружности. Если к этом треугольнику добавить сегмент, получится сектор.

На рисунке выше:

  • сегмент круга закрашен зеленым цветом;
  • отрезок AB – это хорда;
  • часть окружности между точками AB – дуга окружности;
  • R – радиус круга;
  • α – угол сектора.

Формулы нахождения площади кругового сегмента

Через радиус и центральный угол в градусах

α° – угол в градусах.

Примечание: в расчетах используется значение π , приблизительное равное числу 3,14.

Через радиус и угол сектора в радианах

αрад – угол в радианах.

Примеры задачи

Задание 1
Найдите площадь сегмента круга, если его радиус равен 8 см, а центральный угол сектора, стягивающего сегмент, составляет 45 градусов.

Решение
Воспользуемся первой формулой, подставив в нее известные значения:

Задание 2
Площадь кругового сегмента составляет 24 см 2 , а центральный угол сектора круга, частью которого является сегмент, равняется 1 радиану. Найдите радиус круга.

Решение
В данном случае мы можем получить радиус из формулы, в которой задействован угол в радианах:

Площадь круга и его частей. Длина окружности и ее дуг

Основные определения и свойства. Число π
Формулы для площади круга и его частей
Формулы для длины окружности и ее дуг
Площадь круга
Длина окружности
Длина дуги
Площадь сектора
Площадь сегмента

Основные определения и свойства

Множество точек плоскости, находящихся на одном и том же расстоянии от одной точки — центра окружности

Часть окружности, расположенная между двумя точками окружности

Конечная часть плоскости, ограниченная окружностью

Часть круга, ограниченная двумя радиусами

Часть круга, ограниченная хордой

Выпуклый многоугольник, у которого все стороны равны и все углы равны

Около любого правильного многоугольника можно описать окружность

Фигура Рисунок Определения и свойства
Окружность
Дуга
Круг
Сектор
Сегмент
Правильный многоугольник

Множество точек плоскости, находящихся на одном и том же расстоянии от одной точки — центра окружности

Дуга

Часть окружности, расположенная между двумя точками окружности

Круг

Конечная часть плоскости, ограниченная окружностью

Сектор

Часть круга, ограниченная двумя радиусами

Сегмент

Часть круга, ограниченная хордой

Правильный многоугольник

Выпуклый многоугольник, у которого все стороны равны и все углы равны

Около любого правильного многоугольника можно описать окружность

Определение 1 . Площадью круга называют предел, к которому стремятся площади правильных многоугольников, вписанных в круг, при неограниченном возрастании числа сторон.

Определение 2 . Длиной окружности называют предел, к которому стремятся периметры правильных многоугольников, вписанных в круг, при неограниченном возрастании числа сторон.

Замечание 1 . Доказательство того, что пределы площадей и периметров правильных многоугольников, вписанных в круг, при неограниченном возрастании числа сторон действительно существуют, выходит за рамки школьной математики и в нашем справочнике не приводится.

Определение 3 . Числом π (пи) называют число, равное площади круга радиуса 1.

Замечание 2 . Число π является иррациональным числом, т.е. числом, которое выражается бесконечной непериодической десятичной дробью:

Число π является трансцендентным числом, то есть числом, которое не может быть корнем алгебраического уравнения с целочисленными коэффициентами.

Формулы для площади круга и его частей

,

где R – радиус круга, D – диаметр круга

,

если величина угла α выражена в радианах

,

если величина угла α выражена в градусах

,

если величина угла α выражена в радианах

,

если величина угла α выражена в градусах

Числовая характеристика Рисунок Формула
Площадь круга
Площадь сектора
Площадь сегмента

,

где R – радиус круга, D – диаметр круга

Площадь сектора

,

если величина угла α выражена в радианах

,

если величина угла α выражена в градусах

Площадь сегмента

,

если величина угла α выражена в радианах

,

если величина угла α выражена в градусах

Формулы для длины окружности и её дуг

где R – радиус круга, D – диаметр круга

если величина угла α выражена в радианах

,

если величина угла α выражена в градусах

Числовая характеристика Рисунок Формула
Длина окружности
Длина дуги

где R – радиус круга, D – диаметр круга

Длина дуги

если величина угла α выражена в радианах

,

если величина угла α выражена в градусах

Площадь круга

Рассмотрим две окружности с общим центром ( концентрические окружности ) и радиусами радиусами 1 и R , в каждую из которых вписан правильный n – угольник (рис. 1).

Обозначим через O общий центр этих окружностей. Пусть внутренняя окружность имеет радиус 1 .

Поскольку при увеличении n площадь правильного n – угольника, вписанного в окружность радиуса 1 , стремится к π , то при увеличении n площадь правильного n – угольника, вписанного в окружность радиуса R , стремится к числу πR 2 .

Таким образом, площадь круга радиуса R , обозначаемая S , равна

Длина окружности

то, обозначая длину окружности радиуса R буквой C , мы, в соответствии с определением 2, при увеличении n получаем равенство:

откуда вытекает формула для длины окружности радиуса R :

Следствие . Длина окружности радиуса 1 равна 2π.

Длина дуги

Рассмотрим дугу окружности, изображённую на рисунке 3, и обозначим её длину символом L(α), где буквой α обозначена величина соответствующего центрального угла.

В случае, когда величина α выражена в градусах, справедлива пропорция

из которой вытекает равенство:

В случае, когда величина α выражена в радианах, справедлива пропорция

из которой вытекает равенство:

Площадь сектора

Рассмотрим круговой сектор, изображённый на рисунке 4, и обозначим его площадь символом S (α) , где буквой α обозначена величина соответствующего центрального угла.

В случае, когда величина α выражена в градусах, справедлива пропорция

из которой вытекает равенство:

В случае, когда величина α выражена в радианах, справедлива пропорция

из которой вытекает равенство:

Площадь сегмента

Рассмотрим круговой сегмент, изображённый на рисунке 5, и обозначим его площадь символом S (α), где буквой α обозначена величина соответствующего центрального угла.

Поскольку площадь сегмента равна разности площадей кругового сектора MON и треугольника MON (рис.5), то в случае, когда величина α выражена в градусах, получаем

В случае, когда величина α выражена в в радианах, получаем

источники:

Нахождение площади сегмента круга

http://www.resolventa.ru/demo/diaggia6.htm

Сегмент круга
Сегмент круга

Круговой сегмент — часть круга ограниченная дугой и секущей (хордой).

На рисунке:
L — длина дуги сегмента
c — хорда
R — радиус
a — угол сегмента
h — высота

Первый калькулятор рассчитывает параметры сегмента, если известен радиус и угол по следующим формулам:

Формулы вычисления параметров сегмента

Площадь сегмента:
S=frac{1}{2}R^2(alpha-sin{alpha}) [1]
Длина дуги:
L={alpha}R
Длина хорды:
c=2{R}{sin{frac{alpha}{2}}}
Высота сегмента:
h={R}left(1-{cos{frac{alpha}{2}}}right)

PLANETCALC, Сегмент

Сегмент

Угол в градусах, образуемый радиусами сектора

Точность вычисления

Знаков после запятой: 2

Однако, как справедливо заметил наш пользователь:«на практике часто случается, что как радиус дуги, так и угол неизвестны» (см. длина дуги ). Для этого случая для расчета площади сегмента и длины дуги можно использовать следующий калькулятор:

PLANETCALC, Параметры сегмента по хорде и высоте

Параметры сегмента по хорде и высоте

Точность вычисления

Знаков после запятой: 2

Калькулятор вычисляет радиус круга по длине хорды и высоте сегмента по следующей формуле:
R=frac{h}{2}+frac{c^2}{8h}

Далее, зная радиус и длину хорды, легко найти угол сегмента по формуле:
alpha=2arcsin{ frac{c}{2R} }
Остальные параметры сегмента вычисляются аналогично первому калькулятору, по формулам, приведенным в начале статьи.

Следующий калькулятор вычисляет площадь сегмента по высоте и радиусу:

PLANETCALC, Площадь сегмента круга по радиусу и высоте

Площадь сегмента круга по радиусу и высоте

Точность вычисления

Знаков после запятой: 2

Этот калькулятор вычисляет угол из высоты и радиуса по следующей формуле:
alpha=2arccosleft(1-frac{h}{R}right)
далее используется формула [1] для получения площади.

15 вычислений по сегменту круга в одной программе

Последний калькулятор включает в себя все оставшиеся вычисления параметров кругового сегмента:

  • длина дуги
  • угол
  • хорда
  • высота
  • радиус
  • площадь

Выберите два известных аргумента и калькулятор выдаст вам все оставшиеся.

PLANETCALC, Круговой сегмент - все варианты расчета

Круговой сегмент — все варианты расчета

Точность вычисления

Знаков после запятой: 2

Файл очень большой, при загрузке и создании может наблюдаться торможение браузера.

Площадь сегмента круга

  1. Главная
  2. /
  3. Математика
  4. /
  5. Геометрия
  6. /
  7. Площадь сегмента круга

Чтобы посчитать площадь сегмента круга воспользуйтесь нашим онлайн калькулятором:

Онлайн калькулятор

По углу и радиусу

Площадь сегмента круга по углу и радиусу
Угол α =
Радиус r =

Площадь сегмента круга

Sск =

0

Округление ответа: Округление числа π:

По длине хорды и высоте сегмента

Площадь сегмента круга по длине хорды и высоте сегмента
Хорда c =
Высота сегмента h =

Площадь сегмента круга

Sск =

0

Округление ответа:

По высоте и радиусу (или диаметру)

Площадь сегмента круга по высоте и радиусу
=
Высота сегмента h =

Площадь сегмента круга

Sск =

0

Округление ответа:

Просто введите данные и получите ответ.

Теория

Площадь сегмента окружности через угол и радиус

Чему равна площадь сегмента окружности Sск, если её радиус r, а угол сегмента α ?

Формула

В градусах:

Sск = 2(π ⋅ α180° — sin α)

В радианах:

Sск = 2(α — sin α)

Пример

К примеру, посчитаем площадь сегмента круга, имеющего радиус r = 2 см, а угол сегмента ∠α = 45°:

Sск = 2(3.14 ⋅ 45180 — sin 45) = 2 ⋅ (0.785 — 0.707) = 0.156 см²

Площадь сегмента окружности через хорду и высоту сегмента

Чему равна площадь сегмента окружности Sск, если длина хорды c, а высота сегмента h ?

Чтобы посчитать площадь сегмента, нам для начала потребуется вычислить радиус окружности r и угол сегмента α. А затем воспользоваться формулой площади сегмента из предыдущего параграфа.

Формула

Радиус круга:

r = c² + 4h²8h

Угол сегмента:

∠α = 2 ⋅ arcsinc2r

Пример

К примеру, посчитаем площадь сегмента круга, имеющего высоту h = 2 см и длину хорды c = 5 см:

r = 5² + 4⋅2²8⋅2 = 25 + 1616 = 2.5625 см∠α = 2 ⋅ arcsin52 ⋅ 2.5625 = 2 ⋅ arcsin 0.9756 ≈ 2.7 radSск = 2.5625²2 ⋅ (2.7 — sin 2.7) = 3.2832 ⋅ (2.7 — 0,427) = 7.46 см²

Площадь сегмента окружности через высоту и радиус (или диаметр)

Чему равна площадь сегмента окружности Sск, если его высота h, а радиус r ?

Если нам известен не радиус, а диаметр, то делим его на 2 и получаем радиус (r = d ÷ 2).

Далее нам остаётся определить угол сегмента α. А затем воспользоваться формулой площади сегмента, описанной выше.

Формула

Угол сегмента:

∠α = 2 ⋅ arccosr — hr

Пример

К примеру, посчитаем площадь сегмента круга, имеющего высоту h = 1 см, а диаметр окружности d = 4 см:

r = 4 ÷ 2 = 2 см

∠α = 2 ⋅ arccos2 — 12 = 2 ⋅ arccos 0.5 = 2.094 radSск = 2 ⋅ (2.094 — sin 2.094) = 2 ⋅ (2.094 — 0.866) = 2.456 см²

См. также

Определение сегмента круга

Сегмент — это геометрическая фигура, которая получается путем отсечение части круга хордой.

Онлайн-калькулятор площади сегмента круга

Находится эта фигура между хордой и дугой круга.

Хорда

Это отрезок, лежащий внутри круга и соединяющий две произвольно выбранные точки на нем.

При отсечении части круга хордой можно рассмотреть две фигуры: это наш сегмент и равнобедренный треугольник, боковые стороны которого — радиусы круга.

Площадь сегмента можно найти как разность площадей сектора круга и этого равнобедренного треугольника.

Площадь сегмента можно найти несколькими способами. Остановимся на них более подробно.

Формула площади сегмента круга через радиус и длину дуги круга, высоту и основание треугольника

S=12⋅R⋅s−12⋅h⋅aS=frac{1}{2}cdot Rcdot s-frac{1}{2}cdot hcdot a

RR — радиус круга;
ss — длина дуги;
hh — высота равнобедренного треугольника;
aa — длина основания этого треугольника.

Пример

нахождения площади через каноническое уравнение

Дан круг, его радиус, численно равный 5 (см.), высота, которая проведена к основанию треугольника, равная 2 (см.), длина дуги 10 (см.). Найти площадь сегмента круга.

Решение

R=5R=5
h=2h=2
s=10s=10

Для вычисления площади нам не хватает только основания треугольника. Найдем его по формуле:

a=2⋅h⋅(2⋅R−h)=2⋅2⋅(2⋅5−2)=8a=2cdotsqrt{hcdot(2cdot R-h)}=2cdotsqrt{2cdot(2cdot 5-2)}=8

Теперь можно вычислить площадь сегмента:

S=12⋅R⋅s−12⋅h⋅a=12⋅5⋅10−12⋅2⋅8=17S=frac{1}{2}cdot Rcdot s-frac{1}{2}cdot hcdot a=frac{1}{2}cdot 5cdot 10-frac{1}{2}cdot 2cdot 8=17 (см. кв.)

Ответ: 17 см. кв.

Формула площади сегмента круга по радиусу круга и центральном углу

S=R22⋅(α−sin⁡(α))S=frac{R^2}{2}cdot(alpha-sin(alpha))

RR — радиус круга;
αalpha — центральный угол между двумя радиусами, стягивающий хорду, измеряющийся в радианах.

Пример

нахождения площади через каноническое уравнение

Найти площадь сегмента круга, если радиус круга равен 7 (см.), а центральный угол 30 градусов.

Решение

R=7R=7
α=30∘alpha=30^{circ}

Переведем сначала угол в градусах в радианы. Поскольку πpi радиан равен 180 градусов, то:
30∘=30∘⋅π180∘=π630^{circ}=30^{circ}cdotfrac{pi}{180^{circ}}=frac{pi}{6} радиан. Тогда площадь сегмента:

S=R22⋅(α−sin⁡(α))=492⋅(π6−sin⁡(π6))≈0.57S=frac{R^2}{2}cdot(alpha-sin(alpha))=frac{49}{2}cdotBig(frac{pi}{6}-sinBig(frac{pi}{6}Big)Big)approx0.57 (см. кв.)

Ответ: 0.57 см. кв.

Не знаете, как выполнить работу с нахождением площади сегмента круга? Наши эксперты помогут вам решить контрольную по геометрии онлайн!

Тест по теме «Площадь сегмента круга»

balunduti109

balunduti109

Вопрос по геометрии:

Найдите площадь фигуры, ограниченной дугой окружности и стягивающей ее хордой, если длина хорды равна 4 м, а градусная мера дуги равна 60 градусам.

Трудности с пониманием предмета? Готовишься к экзаменам, ОГЭ или ЕГЭ?

Воспользуйся формой подбора репетитора и занимайся онлайн. Пробный урок — бесплатно!

Ответы и объяснения 1

pereldrousha

pereldrousha

решение см. в файле

ответ можно округлить подставив 3,14 и вытащив из под корня 3 

Изображение к ответу

Знаете ответ? Поделитесь им!

Гость

Гость ?

Как написать хороший ответ?

Как написать хороший ответ?

Чтобы добавить хороший ответ необходимо:

  • Отвечать достоверно на те вопросы, на которые знаете
    правильный ответ;
  • Писать подробно, чтобы ответ был исчерпывающий и не
    побуждал на дополнительные вопросы к нему;
  • Писать без грамматических, орфографических и
    пунктуационных ошибок.

Этого делать не стоит:

  • Копировать ответы со сторонних ресурсов. Хорошо ценятся
    уникальные и личные объяснения;
  • Отвечать не по сути: «Подумай сам(а)», «Легкотня», «Не
    знаю» и так далее;
  • Использовать мат — это неуважительно по отношению к
    пользователям;
  • Писать в ВЕРХНЕМ РЕГИСТРЕ.

Есть сомнения?

Не нашли подходящего ответа на вопрос или ответ отсутствует?
Воспользуйтесь поиском по сайту, чтобы найти все ответы на похожие
вопросы в разделе Геометрия.

Трудности с домашними заданиями? Не стесняйтесь попросить о помощи —
смело задавайте вопросы!

Геометрия — раздел математики, изучающий пространственные структуры и отношения, а также их обобщения.

Понравилась статья? Поделить с друзьями:
  • Как найти неисправность в радиоприемнике
  • Как составить резюме управление персоналом
  • Как найти папку в линукс через терминал
  • Как найти корень в слове рыбка
  • Как найти передвижение судна