Как найти площадь двух векторов

Векторное произведение векторов

О чем эта статья:

11 класс, ЕГЭ/ОГЭ

Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат (в правом нижнем углу экрана).

Определение векторного произведения

Система координат — способ определить положение и перемещение точки или тела с помощью чисел или других символов.

Координаты — это совокупность чисел, которые определяют положение какого-либо объекта на прямой, плоскости, поверхности или в пространстве. Как найти координаты точки мы рассказали в этой статье.

Скаляр — это величина, которая полностью определяется в любой координатной системе одним числом или функцией.

Вектор — направленный отрезок прямой, для которого указано, какая точка является началом, а какая — концом.

Вектор с началом в точке A и концом в точке B принято обозначать как →AB. Векторы также можно обозначать малыми латинскими буквами со стрелкой или черточкой над ними, вот так: →a.

Коллинеарность — отношение параллельности векторов. Два ненулевых вектора называются коллинеарными, если они лежат на параллельных прямых или на одной прямой.

Проще говоря это «параллельные» векторы. Коллинеарные векторы могут быть одинаково направлены или противоположно направлены. Основное обозначение — →a || →b. Сонаправленные коллинеарные векторы обозначаются так →a ↑↑ →b, противоположно направленные — →a ↑↓ →b.

Прежде чем дать определение векторного произведения, разберемся с ориентацией упорядоченной тройки векторов →a, →b, →c в трехмерном пространстве.

Отложим векторы →a, →b, →c от одной точки. В зависимости от направления вектора →c тройка →a, →b, →c может быть правой или левой.

Посмотрим с конца вектора →c на то, как происходит кратчайший поворот от вектора →a к →b. Если кратчайший поворот происходит против часовой стрелки, то тройка векторов →a, →b, →c называется правой, по часовой стрелке — левой.

Теперь возьмем два неколлинеарных вектора →a и →b. Отложим от точки А векторы →AB = →a и →AC = →b. Построим некоторый вектор →AD = →c, перпендикулярный одновременно и →AB и →AC.

Очевидно, что при построении вектора →AD = →c мы можем поступить по-разному, если зададим ему либо одно направление, либо противоположное.

В зависимости от направления вектора →AD = →c упорядоченная тройка векторов →a, →b, →c может быть правой или левой.

И сейчас мы подошли к определению векторного произведения. Оно дается для двух векторов, которые заданы в прямоугольной системе координат трехмерного пространства.

Еще не устали от теории? Онлайн-школа Skysmart предлагает обучение на курсах по математике — много практики и поддержка внимательных преподавателей!

Векторным произведением двух векторов →a и →b, которые заданы в прямоугольной системе координат трехмерного пространства, называется такой вектор →c, что:

  • он является нулевым, если векторы →a и →b коллинеарны;
  • он перпендикулярен и вектору →a и вектору →b;
  • длина векторного произведения равна произведению длин векторов →a и →b на синус угла между ними
  • тройка векторов →a, →b, →c ориентирована так же, как и заданная система координат.

Векторным произведением вектора →a на вектор →b называется вектор →c, длина которого численно равна площади параллелограмма построенного на векторах →a и →b, перпендикулярный к плоскости этих векторов и направленный так, чтобы наименьшее вращение от →a к →b вокруг вектора c осуществлялось против часовой стрелки, если смотреть с конца вектора →c.

Векторное произведение двух векторов a = и b = в декартовой системе координат — это вектор, значение которого можно вычислить, используя формулы вычисления векторного произведения векторов:

Векторное произведение векторов →a и →b обозначается как [→a • →b].

Другое определение связано с правой рукой человека, откуда и есть название. На рисунке тройка векторов →a, →b, [→a • →b] является правой.

Еще есть аналитический способ определения правой и левой тройки векторов — он требует задания в рассматриваемом пространстве правой или левой системы координат, причём не обязательно прямоугольной и ортонормированной.

Нужно составить матрицу, первой строкой которой будут координаты вектора →a, второй — вектора →b, третьей — вектора →c. Затем, в зависимости от знака определителя этой матрицы, можно сделать следующие выводы:

  • Если определитель положителен, то тройка векторов имеет ту же ориентацию, что и система координат.
  • Если определитель отрицателен, то тройка векторов имеет ориентацию, противоположную ориентации системы координат.
  • Если определитель равен нулю, то векторы компланарны (линейно зависимы).

Координаты векторного произведения

Рассмотрим векторное произведение векторов в координатах.

Сформулируем второе определение векторного произведения, которое позволяет находить его координаты по координатам заданных векторов.

В прямоугольной системе координат трехмерного пространства векторное произведение двух векторов →a = (ax, ay, az) и →b = (bx, by, bz) есть вектор

→i, →j, →k — координатные векторы.

Это определение показывает нам векторное произведение в координатной форме.

Векторное произведение удобно представлять в виде определителя квадратной матрицы третьего порядка, первая строка которой есть орты →i, →j, →k, во второй строке находятся координаты вектора →a, а в третьей — координаты вектора →b в заданной прямоугольной системе координат:

Если разложим этот определитель по элементам первой строки, то получим равенство из определения векторного произведения в координатах:

Важно отметить, что координатная форма векторного произведения согласуется с определением,которое мы дали в первом пункте этой статьи. Более того, эти два определения векторного произведения эквивалентны.

Свойства векторного произведения

Векторное произведение в координатах представляется в виде определителя матрицы:

На основании свойств определителя можно легко обосновать свойства векторного произведения векторов:

  1. Антикоммутативность
  2. Свойство дистрибутивности

Сочетательное свойство

, где λ произвольное действительное число.

Для большей ясности докажем свойство антикоммутативности векторного произведения.

Нам известно, что значение определителя матрицы изменяется на противоположное, если переставить местами две строки, поэтому

что доказывает свойство антикоммутативности векторного произведения.

Чтобы найти модуль векторного произведения векторов u и v нужно найти площадь параллелограмма, который построен на данных векторах: S = | u × v | = | u | * | v | * sinθ, где θ — угол между векторами.

Векторное произведение векторов u и v равно нулевому вектору, если u и v параллельны (коллинеарны): u × v = 0, если u ∥ v (θ = 0).

Примеры решения задач

Пример 1

а) Найти длину векторного произведения векторов →a и →b, если |→a| = 2, |→b| = 3, ∠(→a, →b) = π/3.

б) Найти площадь параллелограмма, построенного на векторах →a и →b, если |→a| = 2, |→b| = 3, ∠(→a, →b) = π/3.

а) По условию требуется найти длину векторного произведения. Подставляем данные в формулу:

Так как в задаче речь идет о длине, то в ответе указываем размерность — единицы.

б) По условию требуется найти площадь параллелограмма, который построен на векторах →a и →b. Площадь такого параллелограмма численно равна длине векторного произведения:

Пример 2

Найти |[-3→a x 2→b]|, если |→a| = 1/2, |→b| = 1/6, ∠(→a, →b) = π/2.

По условию снова нужно найти длину векторного произведения. Используем нашу формулу:

Согласно ассоциативным законам, выносим константы за переделы векторного произведения.

Выносим константу за пределы модуля, при этом модуль позволяет убрать знак минус. Длина же не может быть отрицательной.

Пример 3

Даны вершины треугольника A (0, 2, 0), B (-2, 5,0), C (-2, 2, 6). Найти его площадь.

Сначала найдём векторы:

Затем векторное произведение:

Вычислим его длину:

Подставим данные в формулы площадей параллелограмма и треугольника:

Геометрический смысл векторного произведения

По определению длина векторного произведения векторов равна

А из курса геометрии средней школы мы знаем, что площадь треугольника равна половине произведения длин двух сторон треугольника на синус угла между ними.

Поэтому длина векторного произведения равна удвоенной площади треугольника, имеющего сторонами векторы →a и →b, если их отложить от одной точки. Проще говоря, длина векторного произведения векторов →a и →b равна площади параллелограмма со сторонами |→a| и |→b| и углом между ними, равным (→a, →b). В этом состоит геометрический смысл векторного произведения.

Физический смысл векторного произведения

В механике — одном из разделов физики — благодаря векторному произведению можно определить момент силы относительно точки пространства. Поэтому сформулируем еще одно важное определение.

Под моментом силы →F, приложенной к точке B, относительно точки A понимается следующее векторное произведение [→A B × →F].

Вектор линейной скорости →V точки M колеса равен векторному произведению вектора угловой скорости →W и радиус-вектора точки колеса, то есть →V = →W`→rM.

Длина вектора — основные формулы

Время чтения: 16 минут

Основные понятия вектора

Для того чтобы приступить к разбору формул нахождения длины вектора, необходимо разобраться в основных понятиях и определениях векторов.

Понятие вектора получило широкое распространение в 19 веке, в математических науках, особенно в таком её разделе, как «Комплексные числа».

Вектор — это отрезок с определённой длиной и направлением.

Графическое изображение вектора — отрезок который имеет указание направления в виде стрелки.

Вектор, который будет иметь начальную точку Х и конец в точке А, правильно обозначать ХА, с верхним подчёркиванием или стрелочкой, а также допустимо прописывать одной прописной буквой.

Длину вектора (модуль), определяет числовое значение длины отрезка, имеющего направление. Обозначается длинна двумя вертикальными отрезками |ХА|.

  • Понятие нулевого вектора. Такое название получил вектор, у которого и начало, и конец находятся в одной точке. Обозначение он имеет в виде цифры ноль с верхним подчёркивание, а длина равна нулю.
  • Коллинеарные вектора. Одна прямая может содержать несколько векторов, такие векторы получили название коллинеарных. Также коллинеарными считаются векторы на параллельных прямых.

  • Сонаправленные. Два коллинеарных вектора считаются сонаправленными, если имеют одно направление.
  • Противоположно направленные. Вектора, с направлениями в разные стороны, и являются коллинеарными, называют противоположно направленными.
  • Компланарные вектора. Такими векторами называют, те что лежат в одной плоскости
    Так как, всегда можно отыскать плоскость, которая будет параллельной двум векторам, то любые два вектора всегда копланарные.

Так как, всегда можно отыскать плоскость, которая будет параллельной двум векторам, то любые два вектора всегда копланарные.

Вектора могут находится не только на плоскости, но и в пространстве, от этого расположения будет зависеть какую формулу необходимо использовать для нахождения их длины или модуля. Стоит также отметить, что вектора могут быть равными, при этом они должны иметь одно направление, одинаковые длины и быть коллинеарными. Существует понятие единичного вектора, таким он будет являться если равен единице измерения.

Как найти длину вектора

Модуль вектора а будем обозначать .

Для того чтобы найти модуль вектора или его длину, на плоскости по координатам, необходимо рассмотреть вектор используя прямоугольную декартову систему координат Оxy. Допустим в данной системе будет задан, так вектор имеющий координаты (aₓ ; aᵧ). Получим формулу, которая поможет найти длину вектора , через известные нам координаты aₓ и aᵧ.

На взятой системе координат, от её начала отложим вектор
В соответствии с проекцией точки А возьмём и определим Aₓ и Aᵧ на оси координат. Рассмотрим полученный прямоугольник ОAₓ и АAᵧ с диагональю ОА.

Далее используя теорему Пифагора мы получим равенство АО² = ОAₓ² и OAᵧ², отсюда следует

Теперь в соответствии с определением вектора относительно прямоугольной оси координат выходит, что ОAₓ² = aₓ² и также для OAᵧ² = aᵧ² , а так как на построенном прямоугольнике мы видим, что ОА равна длине вектора получаем

Из вышесказанного выходит, что для того чтобы найти длину вектора с точками (aₓ ; aᵧ), выводим следующую формулу:

Когда вектор дан в формате разложения по координатным векторам , то вычислить его можно по той же формуле , в таком варианте коэффициент aₓ и aᵧ будут выражать в роли координат , в данной системе координат.

Чтобы рассчитать длину = (3, √x), расположенного в прямоугольной системе координат.

Чтобы найти модуль вектора используем ранее приведённую формулу

Ответ:

Существуют также формулы вычисления длины вектора в пространстве, они выводятся аналогично тем, что в системе координат на плоскости. Если взять вектор =(aₓ ; aᵧ ; a )

В таком случае ( AO^2=OA_x^2+OA_y^2+OA_z^2 ) (из рисунка видно, что АО — диагональ прямоугольного параллелепипеда), поэтому

из определения получаются равенства ОAₓ=aₓ; OAᵧ=aᵧ; OA=a , а значение длины ОА совпадает с длиной вектора, которую необходимо найти. Из этого следует:

Ответ:

Длина вектора через координаты точек начала и конца

Ранее мы рассмотрели формулы, которые позволят находить длину вектора используя при этом координаты. Рассматривались примеры в трёхмерном пространстве на плоскости. Используя данные формулы можно найти длину вектора, если известны координаты точек его начала и конца.

Возьмём точки с обозначенными координатами начала A(aₓ ; aᵧ) и конца В(bₓ ; bᵧ), из чего следует, что вектор имеет координаты (bₓ-aₓ ; bᵧ-aᵧ), поэтому его длину мы выразим в формуле

При этом формула вычисления длины вектора для трёхмерного пространства, с координатами и ), будет следующей:

Для прямой системы координат, найти длину вектора ( overrightarrow) , где A(1,√3) B(-3,1)

Решение
Применив формулу, для нахождения длины вектора, с известными координатами точек начала и конца, в плоской системе координат, выходит:


Существует второй вариант решения, где формулы применяются по очереди:


Ответ:

Найти, решения, при подстановке которых, длина вектора будет равна корню из тридцати, при координатах точек А (0,1,2) и В (5,2,(λ^2))

В первую очередь представим длину вектора в виде формулы.
( left|vecright|=sqrt<left ( b_x-a_x right )^2+ left ( b_y-a_y right )^2 + left ( b_z-a_z right )^2>)
(=sqrt <left ( 5-0 right )^2+ left ( 2-1 right )^2 + left ( lambda^2 -2right )^2>= sqrt<26 + left ( lambda^2 -2right )^2>)
Теперь приравняем полученное выражение к корню из тридцати и найдём неизвестное значение, решив полученное уравнение.
( sqrt<26+left(lambda^2-2right)^2>=sqrt <30>)
( 26+left(lambda^2-2right)^2=30 )
( left(lambda^2-2right)^2=4 )
( lambda^2-2=2 ) или ( lambda^2-2=-2 ) ( lambda_1=-2, lambda_2=2, lambda_3=0. )
Ответ: ( lambda_1=-2, lambda_2=2, lambda_3=0. )

Длина вектора по теореме косинусов

Так как бывают случаи, когда не известны координаты точек вектора, необходимо искать другие варианты, при помощи которых можно найти длину вектора. Таким способов может стать применение теоремы косинусов.

К примеру, нам известны длины двух векторов (overrightarrow) и (overrightarrow) , а также угол между ними, или его косинус. При этом необходимо найти длину вектора ( overrightarrow ) , в таком варианте задания необходимо воспользоваться теоремой косинусов, представив треугольник АВС. В данном треугольнике мы будем искать сторону ВС, она и будет равна длине искомого вектора. Подробнее рассмотрим на примере.

Даны длины двух векторов ( overrightarrow) и ( overrightarrow) 2 и 4 соответственно, а угол между ними равен ( frac<pi> <3>) . необходимо найти длину ( overrightarrow).

В нашем примере длины векторов и длины сторон треугольника АМК совпадают. Две из сторон нам известны это АК и АМ, а также известен угол треугольника, находящийся между этими сторонами. Используя теорему косинусов получим:
( KM^2=AK^2+AM^2-2cdot AKcdot AMcdotcosfrac<pi><3>)
(=2^2+4^2-2cdot2cdot4cdotcosfrac<pi><3>)
(=4+16-16cosfrac<pi><3>)
(=20-8=12 )
Получается (KM=sqrt <12>)
Ответ: ( left|overrightarrowright|=sqrt <12>)

Теперь мы видим, что для нахождения длины вектора существует несколько формул, которыми можно воспользоваться в зависимости от известных параметров.

длина вектора формула для трёхмерного пространства;

длина вектора формула по известным координатам начала и конца вектора находящегося пространстве; ( left|vecright|=sqrt<left ( b_z-a_z right )^2+ left ( b_y-a_y right )^2>) если известны координаты начала и конца вектора на плоскости.

Существует также формула длины вектора перемещения: ( left|vecright|=sqrt< s_x^2+s_y^2>) чаще такая формула применима в физике, для того чтобы узнать длину пути материальной точки.

В случае если известен угол, между двумя векторами, можно использовать теорему Пифагора.

Применение векторов в других сферах

Понятие и вычисление вектора важно не только в математике, но и других науках:

  • в физике. Для визуального изображения таких понятий как скорость, сила, ускорение и т.д. А также векторы помогают моделировать физические процессы;
  • в химии. Для изображения химических процессор. При помощи векторов изображают движение электронов и других частиц;
  • в биологии. Биологические процессы, также имеют графическое изображение при помощи векторов. К примеру перенос паразитов;
  • географии. Вектором обозначается движение воздушных масс, или течение реки;

Векторы используются не только в науках, но и различных отраслях и профессиях. В судоходстве и аэрофлоте, архитектуре и конструировании, а также многих других областях. Для того чтобы найти длину вектора, мы можем использовать одну из формул, в зависимости от того, что нам о нём известно, и в каком пространстве или плоскости находится неизвестный вектор.

Нахождение длины вектора, примеры и решения

Длина вектора — основные формулы

Длину вектора a → будем обозначать a → . Данное обозначение аналогично модулю числа, поэтому длину вектора также называют модулем вектора.

Для нахождения длины вектора на плоскости по его координатам, требуется рассмотреть прямоугольную декартову систему координат O x y . Пусть в ней задан некоторый вектор a → с координатами a x ; a y . Введем формулу для нахождения длины (модуля) вектора a → через координаты a x и a y .

От начала координат отложим вектор O A → = a → . Определим соответственные проекции точки A на координатные оси как A x и A y . Теперь рассмотрим прямоугольник O A x A A y с диагональю O A .

Из теоремы Пифагора следует равенство O A 2 = O A x 2 + O A y 2 , откуда O A = O A x 2 + O A y 2 . Из уже известного определения координат вектора в прямоугольной декартовой системе координат получаем, что O A x 2 = a x 2 и O A y 2 = a y 2 , а по построению длина O A равна длине вектора O A → , значит, O A → = O A x 2 + O A y 2 .

Отсюда получается, что формула для нахождения длины вектора a → = a x ; a y имеет соответствующий вид: a → = a x 2 + a y 2 .

Если вектор a → дан в виде разложения по координатным векторам a → = a x · i → + a y · j → , то вычислить его длину можно по той же формуле a → = a x 2 + a y 2 , в данном случае коэффициенты a x и a y выступают в роли координат вектора a → в заданной системе координат.

Вычислить длину вектора a → = 7 ; e , заданного в прямоугольной системе координат.

Чтобы найти длину вектора, будем использовать формулу нахождения длины вектора по координатам a → = a x 2 + a y 2 : a → = 7 2 + e 2 = 49 + e

Формула для нахождения длины вектора a → = a x ; a y ; a z по его координатам в декартовой системе координат Oxyz в пространстве, выводится аналогично формуле для случая на плоскости (см. рисунок ниже)

В данном случае O A 2 = O A x 2 + O A y 2 + O A z 2 (так как ОА – диагональ прямоугольного параллелепипеда), отсюда O A = O A x 2 + O A y 2 + O A z 2 . Из определения координат вектора можем записать следующие равенства O A x = a x ; O A y = a y ; O A z = a z ; , а длина ОА равна длине вектора, которую мы ищем, следовательно, O A → = O A x 2 + O A y 2 + O A z 2 .

Отсюда следует, что длина вектора a → = a x ; a y ; a z равна a → = a x 2 + a y 2 + a z 2 .

Вычислить длину вектора a → = 4 · i → — 3 · j → + 5 · k → , где i → , j → , k → — орты прямоугольной системы координат.

Дано разложение вектора a → = 4 · i → — 3 · j → + 5 · k → , его координаты равны a → = 4 , — 3 , 5 . Используя выше выведенную формулу получим a → = a x 2 + a y 2 + a z 2 = 4 2 + ( — 3 ) 2 + 5 2 = 5 2 .

Длина вектора через координаты точек его начала и конца

Выше были выведены формулы, позволяющие находить длины вектора по его координатам. Мы рассмотрели случаи на плоскости и в трехмерном пространстве. Воспользуемся ими для нахождения координат вектора по координатам точек его начала и конца.

Итак, даны точки с заданными координатами A ( a x ; a y ) и B ( b x ; b y ) , отсюда вектор A B → имеет координаты ( b x — a x ; b y — a y ) значит, его длина может быть определена по формуле: A B → = ( b x — a x ) 2 + ( b y — a y ) 2

А если даны точки с заданными координатами A ( a x ; a y ; a z ) и B ( b x ; b y ; b z ) в трехмерном пространстве, то длину вектора A B → можно вычислить по формуле

A B → = ( b x — a x ) 2 + ( b y — a y ) 2 + ( b z — a z ) 2

Найти длину вектора A B → , если в прямоугольной системе координат A 1 , 3 , B — 3 , 1 .

Используя формулу нахождения длины вектора по координатам точек начала и конца на плоскости, получим A B → = ( b x — a x ) 2 + ( b y — a y ) 2 : A B → = ( — 3 — 1 ) 2 + ( 1 — 3 ) 2 = 20 — 2 3 .

Второй вариант решения подразумевает под собой применение данных формул по очереди: A B → = ( — 3 — 1 ; 1 — 3 ) = ( — 4 ; 1 — 3 ) ; A B → = ( — 4 ) 2 + ( 1 — 3 ) 2 = 20 — 2 3 . —

Ответ: A B → = 20 — 2 3 .

Определить, при каких значениях длина вектора A B → равна 30 , если A ( 0 , 1 , 2 ) ; B ( 5 , 2 , λ 2 ) .

Для начала распишем длину вектора A B → по формуле: A B → = ( b x — a x ) 2 + ( b y — a y ) 2 + ( b z — a z ) 2 = ( 5 — 0 ) 2 + ( 2 — 1 ) 2 + ( λ 2 — 2 ) 2 = 26 + ( λ 2 — 2 ) 2

Затем полученное выражение приравняем к 30 , отсюда найдем искомые λ :

26 + ( λ 2 — 2 ) 2 = 30 26 + ( λ 2 — 2 ) 2 = 30 ( λ 2 — 2 ) 2 = 4 λ 2 — 2 = 2 и л и λ 2 — 2 = — 2 λ 1 = — 2 , λ 2 = 2 , λ 3 = 0 .

Ответ: λ 1 = — 2 , λ 2 = 2 , λ 3 = 0 .

Нахождение длины вектора по теореме косинусов

Увы, но в задачах не всегда бывают известны координаты вектора, поэтому рассмотрим другие способы нахождения длины вектора.

Пусть заданы длины двух векторов A B → , A C → и угол между ними (или косинус угла), а требуется найти длину вектора B C → или C B → . В таком случае, следует воспользоваться теоремой косинусов в треугольнике △ A B C , вычислить длину стороны B C , которая и равна искомой длине вектора.

Рассмотрим такой случай на следующем примере.

Длины векторов A B → и A C → равны 3 и 7 соответственно, а угол между ними равен π 3 . Вычислить длину вектора B C → .

Длина вектора B C → в данном случае равна длине стороны B C треугольника △ A B C . Длины сторон A B и A C треугольника известны из условия (они равны длинам соответствующих векторов), также известен угол между ними, поэтому мы можем воспользоваться теоремой косинусов: B C 2 = A B 2 + A C 2 — 2 · A B · A C · cos ∠ ( A B , → A C → ) = 3 2 + 7 2 — 2 · 3 · 7 · cos π 3 = 37 ⇒ B C = 37 Таким образом, B C → = 37 .

Итак, для нахождения длины вектора по координатам существуют следующие формулы a → = a x 2 + a y 2 или a → = a x 2 + a y 2 + a z 2 , по координатам точек начала и конца вектора A B → = ( b x — a x ) 2 + ( b y — a y ) 2 или A B → = ( b x — a x ) 2 + ( b y — a y ) 2 + ( b z — a z ) 2 , в некоторых случаях следует использовать теорему косинусов.

источники:

http://www.napishem.ru/spravochnik/matematika/dlina-vektora-osnovnye-formuly.html

http://zaochnik.com/spravochnik/matematika/vektory/dlina_vectora/

Векторным
произведением
вектора a на вектор b
называется вектор c, длина которого
численно равна площади параллелограмма
построенного на векторах a и b,
перпендикулярный к плоскости этих
векторов и направленный так, чтоб
наименьшее вращение от a к b вокруг
вектора c осуществлялось против часовой
стрелки, если смотреть с конца вектора
c (рис. 1).

рис. 1

Формулы
вычисления векторного произведения
векторов

Векторное
произведение
двух векторов a = {ax;
ay; az} и b = {bx; by;
bz} в декартовой системе координат
— это вектор, значение которого можно
вычислить, используя следующие формулы:

a × b =

   i

   j

   k

 = i(aybz
— azby)
j(axbz
— azbx)
+ k(axby
— aybx)

 ax

 ay

 az

 bx

 by

 bz

a × b = {aybz— azby; azbx— axbz;
axby— aybx}

Свойства
векторного произведения векторов

  • Геометрический смысл векторного
    произведения.

Модуль векторного произведения двух
векторов a и b равен площади параллелограмма
построенного на этих векторах:

Sпарал= a × b]

  • Геометрический смысл векторного
    произведения.

Площадь треугольника построенного на
векторах a и b равна половине модуля
векторного произведения этих векторов:

SΔ = 

1

|a × b|

2

  • Векторное произведения двух не нулевых
    векторов a и b равно нулю тогда и только
    тогда, когда вектора
    коллинеарны.

  • Вектор c, равный векторному произведению
    не нулевых векторов a и b, перпендикулярен
    этим векторам.

  • a × b = -b × a

  • (k a) × b = a × (k b) = k (a × b)

  • (a + b) × c = a × c + b × c

14. Смешанное произведение векторов, его свойства. Условие компланарности вектора. Объем параллелепипеда. Объём пирамиды.

Смешанным
произведением
некомпланарныхвекторов,взятых в данном порядке, называетсяобъём параллелепипеда, построенного
на данных векторах, снабжённый знаком
«+», если базисправый,
и знаком «–», если базислевый.

1.
Смешанное
произведение не меняется при циклической
перестановке его сомножителей (не
меняется ни объем параллелепипеда, ни
ориентация его ребер):
.

2.
Смешанное
произведение не меняетсязнаков
векторного и скалярного умножения:,
поэтому смешанное произведение записывают.

3.
Смешанное
произведение меняет свой знак при
перемене любых двух вектор-сомножителей:
,.

4.
Смешанное
произведение ненулевых векторов
,иравно
нулю тогда и только тогда, когда они
компланарны:,, –
компланарны.

Доказательство.
Предположим, что векторы
,и
не компланарны. Тогда можно построить
параллелепипед имеющий объем,
т.е.,
но это противоречит условию, согласно
которого,.
Следовательно, векторы,и
компланарны.

Обратно,
пусть
,и
компланарны. Тогда вектори
перпендикулярен плоскости, в которой
находятся векторы,и,
значит, он перпендикулярен любому
вектору, лежащему в этой плоскости,
напримерЭто
значит, что .

Смешанное
произведение векторов, заданных своими
проекциями в декартовой системе
координат.

Пусть
векторы заданы своими разложениями по
ортам в декартовой системе координат:

,
и.

Найдем
их смешанное произведение, используя
выражения в координатах для векторного
и скалярного произведений:

.

Итак,

.

Приложения
смешанного произведения:

1.
Определение
взаимной ориентации векторов в
пространстве.

Если
,и
правая тройка, еслилевая.

2.
Установление
компланарности векторов:

( 
(,, –
компланарны).

3.
Определение
объема параллелепипеда и треугольной
пирамиды (тетраэдра):

,
.

Пример.
Компланарны ли векторы
,и,
если .

Решение.
Вычислим смешанное произведение
векторов:

векторы
,ине
компланарны.

Пример.
Доказать, что векторы
,икомпланарны.

Решение.
Рассмотрим матрицу, составленную из
координат векторов
,и 

,
т. к. определитель матрицы равен нулю,
то векторы линейно зависимы, следовательно
они компланарны.

Пример.
Вычислить объем тетраэдра с вершинами
в точках
и
его высоту, опущенную из вершинына
грань,
если

Решение.
Найдем координаты векторов:

,
,.

Вычислим
объем:

.

Поскольку
объем тетраэдра
,
то высота.

Вычислим
площадь основания тетраэдра

.

Итак,
высота
.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Площадь параллелограмма, построенного на векторах

Чтобы найти площадь параллелограмма, построенного на векторах нужно вычислить модуль векторного произведения этих векторов.

Пусть заданы два вектора $ overline{a} = alpha_1 overline{p} + alpha_2 overline{q} $ и $ overline{b} = beta_1 overline{p} + beta_2 overline{q} $, синус угла между ними $ sin varphi $ и длины векторов $ |overline{p}|, |overline{q}| $. Тогда формула записывается следующим образом:

$$ S = Big | [overline{a}, overline{b}] Big | = |alpha_1 beta_2 — alpha_2 beta_1| cdot |overline{p}| cdot |overline{q}| cdot sin varphi $$

Примеры решений

Пример 1
Вычислить площадь параллелограмма, построенного на векторах: $ overline{a} = overline{p}+3overline{q} $ и $ overline{b} = 2overline{p} — overline{q} $, длины которых равны $ |overline{p}|=2, |overline{q}| = 1 $, а угол между ними $ varphi = frac{pi}{6} $
Решение

Вычисляем векторное произведение векторов:

$$ [overline{a},overline{b}] = [overline{p}+3overline{q}, 2overline{p}-overline{q}] = $$

Выполняем поэлементное перемножение каждого из слагаемых:

$$ = 2[overline{p},overline{p}] — [overline{p},overline{q}] + 6 [overline{q},overline{p}] — 3[overline{q}, overline{q}] = $$

Учитывая свойства векторного произведения, такие как $ [overline{p},overline{p}]=0, [overline{q},overline{q}]=0 $, $ [overline{q},overline{p}]=-[overline{p},overline{q}] $ выполняем упрощение последнего полученного выражения:

$$ = 2 cdot 0 — [overline{p},overline{q}] — 6 [overline{p},overline{q}] — 3 cdot 0 = -7 [overline{p},overline{q}] $$

Находим модуль полученного векторного произведения, подставляя из условия задания длины векторов и угол между ними:

$$ S = |-7 [overline{p},overline{q}] | = 7 |overline{p}| |overline{q}| sin frac{pi}{6} = 7 cdot 2 cdot 1 cdot frac{1}{2} = 7 $$

Если не получается решить свою задачу, то присылайте её к нам. Мы предоставим подробное решение онлайн. Вы сможете ознакомиться с ходом вычисления и почерпнуть информацию. Это поможет своевременно получить зачёт у преподавателя!

Ответ
$$ S = 7 $$
Пример 2
Найти площадь параллелограмма, построенного на векторах: $ overline{a} = overline{p}+overline{q} $ и $ overline{b} = 2overline{p}-overline{q} $, если известны их длины $ |overline{p}| = 2 $, $ |overline{q}| = 3 $ и угол между ними $ varphi = frac{pi}{3} $
Решение

Вычисляем векторное произведение:

$$ [overline{a},overline{b}] = [overline{p}+overline{q}, 2overline{p}-overline{q}] = $$

Выполняем попарное умножение слагаемых, из которых состоят векторы:

$$ = 2[overline{p},overline{p}] — [overline{p},overline{q}] + 2 [overline{q},overline{p}]-[overline{q},overline{q}] = $$ $$ = 2 cdot 0 — [overline{p},overline{q}] — 2[overline{p},overline{q}]-0 = -3 [overline{p},overline{q}] $$

Берём модуль последнего выражения и подставляем недостающие данные из условия задачи:

$$ S = | [overline{a},overline{b}]| = |-3 [overline{p},overline{q}]| = 3cdot |overline{p}| |overline{q}| sin varphi = $$

$$ = 3 cdot 2 cdot 3 sin frac{pi}{3} =18 cdot frac{sqrt{3}}{2} = 9sqrt{3} $$

Ответ
$$ S = 9sqrt{3} $$

Векторное произведение векторов.

Определение. Векторным произведением вектора a на вектор b называется вектор c, длина которого численно равна площади параллелограмма построенного на векторах a и b, перпендикулярный к плоскости этих векторов и направленный так, чтоб наименьшее вращение от a к b вокруг вектора c осуществлялось против часовой стрелки, если смотреть с конца вектора c (рис. 1).

Векторное произведение векторов
рис. 1

Формулы вычисления векторного произведения векторов

Векторное произведение двух векторов a = {ax; ay; az} и b = {bx; by; bz} в декартовой системе координат — это вектор, значение которого можно вычислить, используя следующие формулы:

a × b =

ijk
axayaz
bxbybz

= i (aybz — azby) — j (axbz — azbx) + k (axby — aybx)

a × b = {aybzazby; azbxaxbz; axbyaybx}

Свойства векторного произведения векторов

  • Геометрический смысл векторного произведения.

    Модуль векторного произведения двух векторов a и b равен площади параллелограмма построенного на этих векторах:

    Sпарал = [a × b]

  • Геометрический смысл векторного произведения.

    Площадь треугольника построенного на векторах a и b равна половине модуля векторного произведения этих векторов:

  • Векторное произведения двух не нулевых векторов a и b равно нулю тогда и только тогда, когда вектора коллинеарны.

  • Вектор c, равный векторному произведению не нулевых векторов a и b, перпендикулярен этим векторам.

  • a × b = —b × a

  • (k a) × b = a × (k b) = k (a × b)

  • (a + b) × c = a × c + b × c

Примеры задач на вычисления векторного произведения векторов

Пример 1. Найти векторное произведение векторов a = {1; 2; 3} и b = {2; 1; -2}.

Решение:

a × b  i   j   k   =
 1   2   3 
 2   1   -2 

= i(2 · (-2) — 3 · 1) — j(1 · (-2) — 2 · 3) + k(1 · 1 — 2 · 2) =

= i(-4 — 3) — j(-2 — 6) + k(1 — 4) = -7i + 8j — 3k = {-7; 8; -3}

треугольник построенный на векторах

Пример 2.
Найти площадь треугольника образованного векторами a = {-1; 2; -2} и b = {2; 1; -1}.

Решение: Найдем векторное произведение этих векторов:

a × b  i   j   k   =
 -1   2   -2 
 2   1   -1 

= i(2 · (-1) — (-2) · 1) — j((-1) · (-1) — (-2) · 2) + k((-1) · 1 — 2 · 2) =

= i(-2 + 2) — j(1 + 4) + k(-1 — 4) = -5j — 5k = {0; -5; -5}

Из свойств векторного произведения:

SΔ =

12

|a × b| =

12

02 + 52 + 52 =

12

25 + 25 = 12√50 =

5√22

= 2.5√2

Ответ: SΔ = 2.5√2.

Автор статьи

Наталья Игоревна Восковская

Эксперт по предмету «Математика»

Задать вопрос автору статьи

Вспомним в начале, что такое векторное произведение.

Замечание 1

Векторным произведением для $vec{a}$ и $vec{b}$ является $vec{c}$, представляющий собой некоторый третий вектор $vec{c}= |[ab]|$, причём этот вектор обладает особенными свойствами:

  • Cкаляр полученного вектора — произведение $|vec{a}|$ и $|vec{b}|$ на синус угла $vec{c}= |[ab]|= |vec{a}| cdot |vec{b}|cdot sin α left(1right)$;
  • Все $vec{a}, vec{b}$ и $vec{c}$ образуют правую тройку;
  • Полученный вектор ортогонален к $vec{a}$ и $vec{b}$.

Если для векторов присутствуют некоторые координаты ($vec{a}={x_1; y_1; z_1}$ и $vec{b}= {x_2; y_2; z_2}$), то их векторное произведение в декартовой системе координат можно определить по формуле:

$[a times b] = {y_1 cdot z_2 – y_2 cdot z_1; z_1 cdot x_2 – z_2 cdot x_1; x_2 cdot y_2 – x_2 cdot y_1}$

Легче всего запомнить эту формулу записав в форме определителя:

$[ab] = begin{array} {|ccc|} i & j & k \ x_1 & y_1 & z_1 \ x_2 & y_2 & z_2 \ end{array}$.

Эта формула весьма удобна для использования, но чтобы понимать, как её использовать, для начала следует ознакомиться с темой матриц и их определителей.

Площадь параллелограмма, стороны которого определяются двумя векторами $vec{a}$ и $vec{b}$ равна скаляру векторного произведения данных двух векторов.

Это соотношение совсем несложно вывести.

Вспомним формулу для нахождения площади обычного параллелограмма, который можно охарактеризовать образующими его отрезками $a$ и $b$:

$S = a cdot b cdot sin α$

При этом длины сторон равны скалярным значениям векторов $vec{a}$ и $vec{b}$, что вполне себе подходит нам, то есть, скаляр векторного произведения данных векторов и будет площадью рассматриваемой фигуры.

Пример 1

Даны векторы $vec{c}$ c координатами ${5;3; 7}$ и вектор $vec{g}$ с координатами ${3; 7;10 }$ в декартовой системе координат. Найти, чему равна площадь параллелограмма, образованного $vec{c}$ и $vec{g}$.

Решение:

Отыщем векторное произведение для этих векторов:

$[c times g] = begin{array} {|ccc|} i & j & k \ 5 & 3 & 7 \ 3 & 7 & 10 \ end{array}= i cdot begin{array} {|cc|} 3 & 7 \ 7 & 10 \ end{array} — j cdot begin{array} {|cc|} 5 & 7 \ 3 & 10 \ end{array} + k cdot begin{array} {|cc|} 5 & 3 \ 3 & 7 \ end{array} = i cdot (3 cdot 10 – 49) – j cdot (50 -21) + k cdot (35-9) = -19i -29j + 26k={- 19; 29; 26}$.

Теперь найдём модульное значение для полученного направленного отрезка, оно и является значением площади построенного параллелограмма:

$S= sqrt{|19|^2 + |29|^2 + |26|^2} = sqrt{1878} ≈ 43, 34$.

«Примеры как вычислить площадь параллелограмма, построенного на векторах» 👇

Данный ход рассуждений справедлив не только для нахождения площади в 3-хмерном пространстве, но и для двухмерного. Познакомьтесь со следующей задачкой на эту тему.

Пример 2

Вычислить площадь параллелограмма, если его образующие отрезки задаются векторами $vec{m}$ с координатами ${2; 3}$ и $vec{d}$ с координатами ${-5; 6}$.

Решение:

Эта задача представляет собой частный пример задачки 1, решённой выше, но при этом оба вектора лежат в одной плоскости, а это значит, что третью координату, $z$, можно принять за нуль.

Подведём итоги по всему вышесказанному, площадь параллелограмма составит:

$S = begin{array} {||cc||} 2 & 3\ -5 & 6 \ end{array} = sqrt{12 + 15} =3 sqrt3$.

Пример 3

Даны векторы $vec{a} = 3i – j + k; vec{b}= 5i$. Определите площадь образуемого ими параллелограмма.

$[ vec{a} times vec{b}] = (3i – j + k) times 5i = 15 [i times i] – 5 [j times i] + [5ktimes i]$

Упростим согласно приведённой таблице для единичных векторов:

Разложение вектора по базису. Автор24 — интернет-биржа студенческих работ

Рисунок 1. Разложение вектора по базису. Автор24 — интернет-биржа студенческих работ

$[ vec{a} times vec{b}] = 5 k + 5 j$.

Время подсчётов:

$S = sqrt{|-5|^2 + |5|^2} = 5sqrt{2}$.

Предыдущие задачи были о векторах, координаты которых заданы в декартовой системе координат, но рассмотрим также случай, если угол между базисными векторами отличается от $90°$:

Пример 4

Вектор $vec{d} = 2a + 3b$, $vec{f}= a – 4b$, длины $vec{a}$ и $vec{b}$ равны между собой и равны единице, а угол между $vec{a}$ и $vec{b}$ равен 45°.

Решение:

Вычислим векторное произведение $vec{d} times vec{f}$:

$[vec{d} times vec{f} ]= (2a + 3b) times ( a – 4b) = 2 [a times a] – 8 [a times b] + 3 [b times a] – 12 [b times b]$.

Для векторных произведений согласно их свойствам справедливо следующее: $[a times a]$ и $[b times b]$ равны нулю, $[b times a] = — [a times b]$.

Используем это для упрощения:

$[vec{d} times vec{f} ]= -8[a times b] + 3 [b times a] = -8[a times b] — 3[a times b] =-11[a times b]$.

Теперь воспользуемся формулой $(1)$ :

$[vec{d} times vec{f} ] = |-11 [a times b]| = 11 cdot |a| cdot |b| cdot sin α = 11 cdot 1 cdot 1 cdot frac12=5,5$.

Находи статьи и создавай свой список литературы по ГОСТу

Поиск по теме

Понравилась статья? Поделить с друзьями:
  • Как найти бесплатный интернет в машине
  • Как могу найти китайские телефоны
  • Как найти на айфоне скопированное видео
  • Как найти основание цилиндра если известен объем
  • Как найти время разгона формул