Как найти площадь фигуры достроив ее

Почему бы просто не считать клеточки?

Возможно, вы читаете всё это и думаете: зачем все эти сложности? Формулы запоминать. Дорисовывать. Тут ведь сразу видно, сколько клеточек в фигуре.

Вот, например, трапеция:

Посчитаем клеточки: их всего 46, верно?

Но стоп, там же некоторые из них только наполовину внутри фигуры. Отметим их – всего таких 10. Итого, 36 полных (красные точки) и 10 половинчатых, вместе ( 36+frac{10}{2} = 41)

Вроде бы всё верно. Но, если присмотреться, можно заметить ещё маленькие треугольнички, которые попали внутрь. А также, что «синие» клеточки слева на самом деле разрезаны не ровно пополам – какие-то чуть больше, какие-то меньше…

Как всё это учитывать?

Попробуем рассуждать так: заметно, что тот маленький розовый треугольник дополняет серый кусок клетки.

А жёлтые сколько занимают? Постарайтесь ответить сами.

Если всё сделать правильно, то увидите, что жёлтые кусочки можно сложить вместе в одну целую клетку.

Итак, 2 жёлтых куска = 1 клетка.

Розовый треугольник + серый кусок = 1 клетка. Всего у нас две таких пары (розовый+серый) – это 2 полных клетки. 

Всё остальное как было: 36 полных клеток и 6 половинок у правой стороны – это ( 36+frac{6}{2}=39) клетки.

Итого клеток: ( 1 + 2 + 39 = 42).

Проверим результат по формуле площади трапеции: нижнее основание 11, верхнее основание 3, высота 6. Полусумма оснований равна 7, умножаем на высоту – получилось 42. Всё совпало.

Но! Настолько ли проще был наш способ подсчёта клеточек? Не сказал бы. А если там будет несколько косых линий, то вообще можно замучиться собирать этот паззл (искать, какие кусочки друг друга дополняют).

Вычислите площадь простых фигур тремя способами

Стороны клеток равны 1. Вычислите самостоятельно площадь фигуры всеми тремя способами. Сравните результаты.

Вычислите площадь произвольных фигур по формуле Пика

Вычислите самостоятельно площади фигур с помощью формулы Пика:

Посчитайте площадь корабля и котика по формуле Пика

Посчитайте самостоятельно для тренировки и чтобы запомнить формулу Пика!

Фигуры с отверстиями — посчитайте площади двумя способами

Ну и напоследок фигуры с «дырками». Как думаешь, здесь придётся вычислять сначала площадь целой фигуры, а потом площадь дырки?

Или достаточно просто посчитать точки внутри закрашенной области и на её границах (в том числе, на границе с дыркой)?

Проверим на простом примере: это квадрат ( 4times 4), и в нём вырезан прямоугольник ( 1times 2), значит, его площадь ( 16-2=14).

А теперь по точкам. На границах (включая внутренние) ( Г = 22). Внутри ( В = 3). Тогда площадь по формуле Пика

( S = frac{22}{2} + 3 -1 = 13.)

Хм, близко, но не совпало. Может, я где-то ошибся? Давай ещё одну фигуру, для верности.

Сосчитай сам и проверь.

Что получилось?

У меня снова на 1 меньше.

Так может быть просто формулу немного «подкрутить»? Нет!

Очень и очень не рекомендую вам запоминать несколько похожих формул для похожих случаев, потому что придёт время, и вы обязательно перепутаете формулу.

Даже если вы уверены, что не перепутаете, оно всё равно того не стоит. В общем, наилучший вариант – это запомнить одну формулу. А если попалась фигура с дыркой, вычислить всю фигуру, а потом дырку. И вычесть.

Площадь поверхности пирамиды

Для пирамиды тоже действует общее правило:

Площадь полной поверхности пирамиды – это сумма площадей всех граней.( displaystyle {{S}_{полн. пов. }}={{S}_{боков.пов. }}+{{S}_{основания }})

Теперь давай посчитаем площадь поверхности самых популярных пирамид.

Площадь поверхности правильной треугольной пирамиды

Пусть сторона основания равна ( displaystyle a), а боковое ребро равно ( displaystyle b). Нужно найти ( displaystyle {{S}_{осн}}) и ( displaystyle {{S}_{ASB}}).

И тогда

( displaystyle {{S}_{полн. пов. }}=3{{text{S}}_{ASB}}+{{text{S}}_{text{осн}.}})

Вспомним теперь, что

( displaystyle {{S}_{осн}}) — это площадь правильного треугольника ( displaystyle ABC).

И еще вспомним, как искать эту площадь.

Используем формулу площади:

( displaystyle S=frac{1}{2}abcdot sin gamma ).

У нас «( displaystyle a)» — это ( displaystyle a), а «( displaystyle b)» — это тоже ( displaystyle a), а ( displaystyle sin gamma =sin 60{}^circ =frac{sqrt{3}}{2}).

Значит, ( displaystyle {{S}_{ABC}}=frac{1}{2}{{a}^{2}}frac{sqrt{3}}{2}=frac{{{a}^{2}}sqrt{3}}{4}).

Теперь найдем ( displaystyle {{S}_{Delta ASB}}).

Пользуясь основной формулой площади и теоремой Пифагора, находим

( displaystyle {{S}_{Delta ASB}} = frac{1}{2}asqrt{b^2-frac{a^2}{4}})

Внимание: если у тебя правильный тетраэдр (т.е. ( displaystyle b=a)), то формула получается такой:

( displaystyle S={{a}^{2}}sqrt{3}).



При подготовке к основному государственному экзамену я встретился с заданиями, в которых требуется вычислить площадь фигуры, изображенной на клетчатом листе бумаги. Как правило, эти задания не вызывают больших затруднений, если фигура представляет собой трапецию, параллелограмм или треугольник. Достаточно хорошо знать формулы вычисления площадей этих фигур, посчитать количество клеточек и вычислить площадь. Если фигура представляет собой некоторый произвольный многоугольник, то здесь необходимо использовать особые приемы. Меня заинтересовала данная тема. И естественно возникли вопросы: где в повседневной жизни могут возникнуть задачи на вычисление площадей на клетчатой бумаге? В чем особенность таких задач? Существуют ли другие методы или же универсальная формула для вычисления площадей геометрических фигур, изображенных на клетчатой бумаге?

Изучение специальной литературы и интернет источников, показало, что существует универсальная формула, позволяющая вычислить площадь фигуры, изображенной на клетке. Эта формула называется формулой Пика. Однако, в рамках школьной программы данная формула не рассматривается, несмотря на свою простоту в применении и получении результата. Более того, мною проведен опрос друзей и одноклассников (в двух формах: при личной беседе и в социальных сетях), в котором приняли участие 43 учащихся школ города Тобольска. Данный опрос показал, что всего один человек (учащийся 11 класса) знаком с формулой Пика для вычисления площадей.

Пусть задана прямоугольная система координат. В этой системе рассмотрим многоугольник, который имеет целочисленные координаты. В учебной литературе точки с целочисленными координатами называются узлами. Причем многоугольник не обязательно должен быть выпуклым. И пусть требуется определить его площадь.

Возможны следующие случаи.

1. Фигура представляет собой треугольник, параллелограмм, трапецию:

1) подсчитывая клеточки нужно найти высоту, диагонали или стороны, которые требуются для вычисления площади;

2) подставить найденные величины в формулу площади.

Например, требуется вычислить площадь фигуры, изображенной на рисунке 1 с размером клетки 1см на 1 см.

Рис. 1. Треугольник

Решение. Подсчитываем клеточки и находим: . По формуле получаем: .

2 Фигура представляет собой многоугольник

Если фигура представляет собой многоугольник то возможно использовать следующие методы.

Метод разбиения:

1) разбить многоугольник на треугольники, прямоугольники;

2) вычислить площади полученных фигур;

3) найти сумму всех площадей полученных фигур.

Например, требуется вычислить площадь фигуры, изображенной на рисунке 2 с размером клетки 1см на 1 см методом разбиения.

Рис. 2. Многоугольник

Решение. Способов разбиения существует множество. Мы разобьем фигуру на прямоугольные треугольники и прямоугольник как показано на рисунке 3.

Рис. 3. Многоугольник. Метод разбиения

Площади треугольников равны: , , , площадь прямоугольника — . Складывая площади всех фигур получим:

Метод дополнительного построения

1) достроить фигуру до прямоугольника

2) найти площади полученных дополнительных фигур и площадь самого прямоугольника

3) из площади прямоугольника вычесть площади всех «лишних» фигур.

Например, требуется вычислить площадь фигуры, изображенной на рисунке 2 с размером клетки 1см на 1 см методом дополнительного построения.

Решение. Достроим нашу фигуру до прямоугольника как показано на рисунке 4.

Рис. 4. Многоугольник. Метод дополнения

Площадь большого прямоугольника равна , прямоугольника, расположенного внутри — , площади «лишних» треугольников — , , тогда площадь искомой фигуры .

При вычислении площадей многоугольников на клетчатой бумаге возможно использовать еще один метод, который носит название формула Пика по фамилии ученого ее открывшего.

Формула Пика

Пусть у многоугольника, изображённого на клетчатой бумаге только целочисленные вершины. Точки у которых обе координаты целые называются узлами решетки. Причем, многоугольник может быть как выпуклым, так и невыпуклым.

Площадь многоугольника с целочисленными вершинами равна , где B — количество целочисленных точек внутри многоугольника, а Г — количество целочисленных точек на границе многоугольника.

Например, для многоугольника, изображенного на рисунке 5.

Рис. 5. Узлы в формуле Пика

Например, требуется вычислить площадь фигуры, изображенной на рисунке 2 с размером клетки 1см на 1 см по формуле Пика.

Рис. 6. Многоугольник. Формула Пика

Решение. По рисунку 6: В=9, Г=10, тогда по формуле Пика имеем:

Ниже приведены примеры некоторых задач, разработанных автором на вычисление площадей фигур, изображенных на клетчатой бумаге.

1. В детском саду дети сделали аппликации родителям в подарок (рис.7). Найдите площадь аппликации. Размер каждой клетки равен 1см 1см.

Рис. 7. Условие задачи 1

2. Один гектар еловых насаждений может задерживать в год до 32 т пыли, сосновых — до 35 т, вяза — до 43 т, дуба — до 50 т. бука — до 68 т. Посчитайте, сколько тонн пыли задержит ельник за 5 лет. План ельника изображен на рисунке 8 (масштаб 1 см. — 200 м.).

Рис. 8. Условие задачи 2

3. В орнаментах хантов и манси, преобладают геометрические мотивы. Часто встречаются стилизованные изображения животных. На рисунке 9 изображен фрагмент мансийского орнамента «Заячьи ушки». Вычислите площадь закрашенной части орнамента.

узоры 6

Рис. 9. Условие задачи 3

4. Требуется покрасить стену заводского здания (рис. 10). Рассчитайте требуемое количество водоэмульсионной краски (в литрах). Расход краски: 1 литр на 7 кв. метров Масштаб 1см — 5м.

Рис. 10. Условие задачи 4

5. Звездчатый многоугольник — плоская геометрическая фигура, составленная из треугольных лучей, исходящих из общего центра, сливающихся в точке схождения. Особого внимания заслуживает пятиконечная звезда — пентаграмма. Пентаграмма — это символ совершенства, ума, мудрости и красоты. Это простейшая форма звезды, которую можно изобразить одним росчерком пера, ни разу не оторвав его от бумаги и при этом ни разу же не пройдя дважды по одной и той же линии. Нарисуйте пятиконечную звездочку не отрывая карандаша от листа клетчатой бумаги, так, чтобы все углы получившегося многоугольника находились в узлах клетки. Вычислите площадь полученной фигуры.

Проанализировав математическую литературу и разобрав большое количество примеров по теме исследования, я пришел к выводу, что выбор метода вычисления площади фигуры на клетчатой бумаге зависит от формы фигуры. Если фигура представляет собой треугольник, прямоугольник, параллелограмм или трапецию, то удобно воспользоваться всем известными формулами для вычисления площадей. Если фигура представляет собой выпуклый многоугольник, то возможно использовать как метод разбиения, так и дополнения (в большинстве случаях удобнее — метод дополнения). Если фигура представляет собой невыпуклый или звездчатый многоугольник, то удобнее применить формулу Пика.

Поскольку формула Пика является универсальной формулой для вычисления площадей (если вершины многоугольника находятся в узлах решетки), то ее можно использовать для любой фигуры. Однако, если многоугольник занимает достаточно большую площадь (или клетки мелкие), то велика вероятность допустить ошибку в подсчетах узлов решетки. Вообще, в ходе исследования, я пришел к выводу, что при решении подобных задач в ОГЭ лучше воспользоваться традиционными методами (разбиения или дополнения), а результат проверить по формуле Пика.

Литература:

  1. Вавилов В. В., Устинов А. В. Многоугольники на решетках. — М.: МЦНМО, 2006. — 72 с.
  2. Васильев И. Н. Вокруг формулы Пика// Научно-популярный физико-математический журнал «Квант». — 1974. — № 12. Режим доступа: http://kvant.mccme.ru/1974/12/vokrug_formuly_pika.htm
  3. Жарковская Н., Рисс Е. Геометрия клетчатой бумаги. Формула Пика. // Первое сентября. Математика. — 2009. -№ 23. — с.24,25.

Основные термины (генерируются автоматически): формула Пика, клетчатая бумага, площадь фигуры, фигура, вычисление площадей, многоугольник, площадь, размер клетки, условие задачи, универсальная формула.

Применение формулы Пика

при решении

задач на нахождение площади многоугольника на
клетчатой бумаге

                                                                                       
Автор : Асанова З.А

«Берем палец и считаем»

В.В.Вавилов

При решении задач
на нахождение площади многоугольника на клетчатой бумаге необходимо   воображение
и  знание основных геометрических свойств и формул. Существует множество
способов решения задач на клетчатой бумаге. Если фигура состоит из целых
квадратиков, это сделать довольно таки легко. Посчитать квадратики и всё!  Сложнее
задача, когда многоугольник имеет интересную форму и тогда его надо разбить на
простые многоугольники. А если фигура не многоугольник , а например
криволинейная трапеция ?  Для решения таких задач  существует достаточно
простой способ с использованием формулы Пика. Ее могут использовать школьники и
взрослые при решении реальных ситуаций; учителя, как при проведении уроков по
математике, так и на факультативных курсах и дополнительных занятий на
повторение.

Формула Пика.
Решетки. Узлы

При решении задач на клетчатой
бумаге  необходимы понятия решетки и узла. 

Клетчатая бумага (точнее — ее узлы), на которой мы часто предпочитаем
рисовать и чертить, является одним из важнейших примеров точечной решетки на
плоскости.

Рассмотрим на
плоскости два семейства параллельных прямых, разбивающих плоскость на равные
квадраты. Любой из этих квадратов называется фундаментальным квадратом или
квадратом, порождающим решетку. Множество всех точек пересечения этих прямых
называется точечной решеткой или просто решеткой, а сами точки –узлами решетки.

http://hijos.ru/wp-content/uploads/2011/08/pick1.bmp       Рис.1.

Чтобы оценить
площадь многоугольника на клетчатой бумаге, достаточно подсчитать, сколько
клеток покрывает этот многоугольник (площадь клетки мы принимаем за единицу)

А также, площадь
любого многоугольника, нарисованного на клетчатой бумаге, легко посчитать,
представив её как сумму или разность площадей прямоугольных треугольников и
прямоугольников, стороны которых идут по линиям сетки, проходящим
http://rudocs.exdat.com/pars_docs/tw_refs/16/15607/15607_html_121b312c.jpgчерез вершины нарисованного
треугольника. Чтобы вычислить  площадь многоугольника, изображенного на
рисунке, необходимо достроить его до прямоугольника
ABCD,  вычислить площадь прямоугольника ABCD, найти площадь заштрихованной фигуры
как сумму площадей треугольников  и прямоугольников её составляющих, вычесть
её  из площади прямоугольника. И хотя многоугольник и выглядит достаточно
просто, для вычисления его площади нам придется потрудиться. А если бы
многоугольник выглядел более причудливо,  как на следующих рисунках?

http://rudocs.exdat.com/pars_docs/tw_refs/16/15607/15607_html_m1a0182a7.jpghttp://le-savchen.ucoz.ru/test/B12/14a.pnghttp://le-savchen.ucoz.ru/test/B12/17a.pnghttp://le-savchen.ucoz.ru/test/B12/18a.png

http://le-savchen.ucoz.ru/test/B12/19a.pnghttp://www.zaba.ru/images/img1274.gifb6-100500-200-95.eps

Оказывается,
площади многоугольников, вершины которых расположены в узлах решетки, можно
вычислять гораздо проще: есть формула, связывающая их площадь с количеством
узлов, лежащих внутри и на границе многоугольника.

Эта замечательная
и простая формула называется формулой Пика:

S = В +  Г/( 2) - 1 

 

где  S– площадь многоугольника,

В – число узлов решетки,
расположенных строго внутри многоугольника,

Г – число узлов решетки,
расположенных на его границе, включая вершины.

Будем рассматривать только такие многоугольники, все
вершины которых лежат в узлах решетки.

Исследование площадей
многоугольников, изображенных на клетчатой бумаге

Приведу несколько
примеров из заданий ОГЭ на нахождение площадей многоугольников.

1)На клетчатой бумаге с
клетками размером 1 см х 1 см изображен треугольник. Найдите его площадь
в квадратных сантиметрах

Рисунок

По формуле геометрии

По формуле Пика

a=6; b=4

S1 = 1*5: 2 = 2,5.

S2=5*5:2 = 12,5

S = 2,5 + 12,5 = 15(см2)

Г=12,B=10 .

S=10+-1=15(см2)

2) На клетчатой бумаге с
клетками размером 1 см х 1 см изображен треугольник
ABC.Найдите его площадь в
квадратных сантиметрах.

Рисунок

По формуле геометрии

По формуле Пика

S1 =  ∙ 3
1 = 1,5

S2 =  ∙ 2 ∙ 1 = 1 см2

S = 1,5 – 1 = 0,5(см2)

Г=3, В=0.

S=0+-1=0,5(см2)

4)На клетчатой бумаге с
клетками размером 1 см х 1 см изображен  четырехугольник
ABCD. Найдите его площадь в квадратных
сантиметрах.

Рисунок

По формуле геометрии

По формуле Пика

Sкв.KMEN=77=49

Sтр.AKB=1/2KBAK=1/244=8

Sтр.DCE=1/2∙ DE∙CE = ½ ∙ 4 ∙ 4 =8

Sтр.AND= 1/2NDAN=1/233=4,5

Sтр.BMC=1/2∙BM ∙ CM= ½ ∙ 3∙3=4,5

SABCD=49-8-8-4,5-4,5=24см2

В=18, Г=14

S=18+-1=24 см2

3)На клетчатой бумаге с
клетками размером 1 см х 1 см изображен четырех угольник. Найдите его
площадь в квадратных сантиметрах

Рисунок

По формуле геометрии

По формуле Пика

S1=b=1/273,5

S2=b=1/272=7

S3=b=1/241=2

S4=b=1/251=2,5

S5=a²=1²=1

Sкв.= a²=7²=49

S=49-3,5-7-2-2,51=33(см²)

Г=4;В=32.

S=32+-1=33см²

S=a

S= =36 см2

Г=18, В=28

S=28+-1=36см2

5)На клетчатой бумаге с
клетками размером 1 см х 1 см изображен четырех угольник. Найдите его
площадь в квадратных сантиметрах

Рисунок

По формуле геометрии

По формуле Пика

S1=b=1/236=9

S2=b=1/266=18

S3=b=1/236=9

S=9+18+9=36см²

Г=18;В=28.

S=28+-1=36см²

6)На клетчатой бумаге с
клетками размером 1 см х 1 см изображен четырех угольник. Найдите его
площадь в квадратных сантиметрах

Рисунок

По формуле геометрии

По формуле Пика

S1=b=1/233=4,5

S2=b=1/266=18

S3=b=1/233=4,5

S4=b=1/266=18

Sкв.=9²=81см²

S=81-4,5-18-4,5-18=36см²

Г=18;В=28.

S=28+-1=36см²

7)На клетчатой бумаге с
клетками размером 1 см х 1 см изображен

четырех угольник. Найдите
его площадь в квадратных сантиметрах

Рисунок

По формуле геометрии

По формуле Пика

S1=b=1/224=4

S2==1/244=8

S3==1/282=8

S4==1/241=2

Sпр.=b=68=48

S5=48-4-8-8-2=26см²

Г=18;В=18.

S=18+-1=26см²

Таким образом,
рассматривая задачи на нахождение площадей многоугольников, изображенных на
клетчатой бумаге, по формулам геометрии и по формуле Пика и  сравнивая
результаты в таблицах, видно, что площадь фигуры, вычисленная по формуле Пика
равна площади фигуры, вычисленной по формуле геометрии.

Геометрические задачи с
практическим содержанием.

         Поможет нам формула Пика и
для решения геометрических задач с практическим содержанием.

сканирование0001Задача  1. Найдите площадь лесного массива (в м²), изображённого на
плане с квадратной сеткой 1 × 1(см) в масштабе 1
см – 200 м (рис. 3)

Решение. Найдём S площадь четырёхугольника,
изображённого на клетчатой бумаге по формуле  Пика:

S = В +  —
1

                  Рис. 3           В
= 8,  Г = 7.     
S = 8 + 7/2 – 1 = 10,5 (см²)

                                      1
см² — 200² м²;    
S = 40000 · 10,5 =
420 000 (м²)

            Ответ: 420
000 м²

Задача 2. Найдите площадь поля (в
м²), изображённого на плане с квадратной сеткой  1 × 1(см) в масштабе 1
см – 200 м. (рис. 4)

сканирование0002

   Рис. 4

Решение. Найдём S площадь четырёхугольника
изображенного  на клетчатой бумаге по формуле Пика: 
S = В +  —
1

В = 7,  Г = 4.      S = 7 + 4/2 – 1 = 8 (см²)

       1 см² — 200² м²;     S = 40000 · 8 = 320 000 (м²)

Ответ: 320
000 м²

Задача 3. Вершины квадрата соединены с
серединами его сторон, как показано на рисунке 5. Найдите площадь закрашенного
восьмиугольника, если  стороны квадрата равны 12.   

Рис. 5.                    Решение: По формуле
Пика:   
S=  В + Г /2 – 1. В = 21,

                                               Г = 8, S = 21 + 8 / 2 – 1 = 24 (кв.ед.)

Рассмотренные 
задания имеют различный уровень трудности – от простых до олимпиадных. Каждый
может найти среди них задачи посильного уровня сложности, отталкиваясь от
которых, можно будет переходить к решению более трудных. Такой способ
нахождения площадей многоугольников, изображенных на клетчатой бумаге, можно
использовать на ОГЭ для решения задач на ОГЭ и ЕГЭ.

Содержание

  1. Формула Пика
  2. Площади фигур (плоских и объемных)
  3. ПЛОЩАДИ ПЛОСКИХ ФИГУР
  4. Геометрия. Применение формул. Задача 5 Базового ЕГЭ по математике

Формула Пика

Формула Пика. Рассказ о формуле, при помощи которой можно находить площадь фигуры построенной на листе в клетку (треугольник, квадрат, трапеция, прямоугольник, многоугольник). Это формула Пика.

Она секретной не является. Информация о ней в интернете имеется, но многим материал статьи будет крайне полезен. Об этой формуле обычно рассказывается применительно к нахождению площади треугольника. На примере треугольника мы её и рассмотрим.

В задачах, которые будут на ЕГЭ есть целая группа заданий, в которых дан многоугольник построенный на листе в клетку и стоит вопрос о нахождении площади. Масштаб клетки это один квадратный сантиметр.

ФОРМУЛА ПИКА

Площадь искомой фигуры можно найти по формуле:

М – количество узлов на границе треугольника (на сторонах и вершинах)

N – количество узлов внутри треугольника

*Под «узлами» имеется ввиду пересечение линий.

Найдём площадь треугольника:

M = 15 (обозначены красным)

N = 34 (обозначены синим)

Ещё пример. Найдём площадь параллелограмма:

M = 18 (обозначены красным)

N = 20 (обозначены синим)

Найдём площадь трапеции:

M = 24 (обозначены красным)

N = 25 (обозначены синим)

Найдём площадь многоугольника:

M = 14 (обозначены красным)

N = 43 (обозначены синим)

Понятно, что находить площадь трапеции, параллелограмма, треугольника проще и быстрее по соответствующим формулам площадей этих фигур. Но знайте, что можно это делать и таким образом.

А вот когда дан многоугольник, у которого пять и более углов эта формула работает хорошо.

Теперь взгляните на следующие фигуры:

Это типовые фигуры, в заданиях стоит вопрос о нахождении их площади. Такие или подобные им будут на ЕГЭ. При помощи формулы Пика такие задачи решаются за минуту. Например, н айдём площадь фигуры:

M = 11 (обозначены красным)

N = 5 (обозначены синим)

Найдите площадь четырехугольника, изображенного на клетчатой бумаге с размером клетки 1 см 1 см. Ответ дайте в квадратных сантиметрах.

Найдите площадь четырехугольника, изображенного на клетчатой бумаге с размером клетки 1 см 1 см. Ответ дайте в квадратных сантиметрах.

Найдите площадь четырехугольника, изображенного на клетчатой бумаге с размером клетки 1 см 1 см. Ответ дайте в квадратных сантиметрах.

Найдите площадь четырехугольника, изображенного на клетчатой бумаге с размером клетки 1 см 1 см. Ответ дайте в квадратных сантиметрах.

Конечно, можно и эти «микрофигурки» дробить на более простые фигуры (треугольники, трапеции). Способ решения выбирать вам.

Найдём площадь фигуры:

Опишем около неё прямоугольник:

Из площади прямоугольника (в данном случае это квадрат) вычтем площади полученных простых фигур:

В будущем будем рассматривать задания на нахождение площади, связанные с окружностями построенными на листе в клетку, не пропустите! На этом всё. Успехов вам!

Источник

Площади фигур (плоских и объемных)

Сначала мы рассмотрим площади плоских фигур.

Слышал ты что-нибудь про формулу Пика? Когда ее можно применять, а когда нельзя?

Сколько ты знаешь способов нахождения площади фигур на клетчатой бумаге? А их на самом деле три! И хотя задачу по нахождению площади фигур на клетчатой бумаге убрали из ЕГЭ, сам навык очень полезен для понимания планиметрии!

Во второй части мы рассмотрим как находить площади объемных фигур (призмы и пирамиды)

ПЛОЩАДИ ПЛОСКИХ ФИГУР

Способы нахождения площади фигур на клетчатой бумаге:

Способ 1. Считай клетки и применяй формулы

Удобен для стандартных фигур: треугольника, трапеции и т.д.

  • Подсчитывая клеточки и применяя простые теоремы, найти те стороны, высоту, диагонали, которые требуются для применения формулы площади;
  • Подставить найденные значения в уравнение площади.

Способ 2. Дострой до прямоугольника и вычти лишнее

Очень удобен для сложных фигур, но и для простых неплох

  • Достроить искомую фигуру до прямоугольника;
  • Найти площадь всех получившихся дополнительных фигур и площадь самого прямоугольника;
  • Из площади прямоугольника вычесть сумму площадей всех лишних фигур.

Способ 3. Формула Пика

Работает только для многоугольников без дырок, все вершины которых попадают в узлы сетки.

  • Назовём «узлами» точки пересечения линий сетки нашей клетчатой бумаги.

Подсчитаем, сколько узлов попадает в нашу фигуру. Причём, отдельно посчитаем те узлы, которые попадают внутрь нашей фигуры, и отдельно – те, которые лежат на границе.

В примере на рисунке получилось ( Г = 22) на границе и ( В = 32) внутри.

Формула Пика. Делим границу пополам, прибавляем внутренности и вычитаем 1:( S = Г/2 + В – 1 )

Источник

Геометрия. Применение формул. Задача 5 Базового ЕГЭ по математике

Чтобы уверенно решать задачи по геометрии — даже такие простые — необходимо выучить основные понятия и формулы.

Это формулы площадей фигур — треугольника (5 формул), параллелограмма, ромба, прямоугольника, произвольного четырехугольника, а также круга. Формулы для длины окружности, длины дуги и площади сектора. Для средней линии треугольника и средней линии трапеции.

Надо знать, что такое центральный и вписанный угол. Знать основные тригонометрические соотношения. В общем, учите основы планиметрии.

Больше полезных формул — в нашем ЕГЭ-Справочнике.

В этой статье — основные типы заданий №5 Базового ЕГЭ по математике. Задачи взяты из Банка заданий ФИПИ.

Вычисление длин отрезков, величин углов и площадей фигур по формулам

1. На клетчатой бумаге с размером клетки изображена трапеция. Найдите длину средней линии этой трапеции.

Средняя линия трапеции равна полусумме её оснований:

2. Найдите величину угла ABC. Ответ дайте в градусах.

Величина вписанного угла равна половине величины центрального угла, опирающегося на ту же дугу. Соединим точки А и С с центром окружности и проведем диаметры через точки А и С. Видим, что величина центрального угла АОС равна Тогда

3. Найдите синус угла AOB. В ответе укажите значение синуса, умноженное на

Проведем из точки В перпендикуляр к прямой ОА. Из прямоугольного треугольника ОВС по теореме Пифагора:

Осталось умножить найденное значение синуса на

4. Найдите площадь ромба, изображенного на клетчатой бумаге с размером клетки Ответ дайте в квадратных сантиметрах.

Самый простой способ — воспользоваться формулой площади ромба, выраженной через его диагонали:

, где и — диагонали.

5. Найдите площадь трапеции, изображенной на клетчатой бумаге с размером клетки Ответ дайте в квадратных сантиметрах.

Площадь трапеции равна произведению полусуммы оснований на высоту:

Основания нашей трапеции равны 4 и 8, а высота равна боковой стороне (поскольку трапеция прямоугольная), то есть 3 см. Площадь трапеции

Нахождение площадей многоугольников сложной формы

А что делать, если надо найти не площадь трапеции или треугольника, а площадь какой-либо сложной фигуры? Есть универсальные способы! Покажем их на примерах из банка заданий ФИПИ и на авторских задачах.

6. Как найти площадь нестандартной фигуры? Например, произвольного четырёхугольника? Простой приём — разобьём эту фигуру на такие, о которых мы всё знаем, и найдем её площадь — как сумму площадей этих фигур.

Разделим этот четырёхугольник горизонтальной линией на два треугольника с общим основанием, равным . Высоты этих треугольников равны и . Тогда площадь четырёхугольника равна сумме площадей двух треугольников: .

7. В некоторых случаях площадь фигуры можно представить как разность каких-либо площадей.

Не так-то просто посчитать, чему равны основание и высота в этом треугольнике! Зато мы можем сказать, что его площадь равна разности площадей квадрата со стороной и трёх прямоугольных треугольников. Видите их на рисунке? Получаем: .

Многие репетиторы рекомендуют в таких задачах пользоваться формулой Пика. В ней нет необходимости, однако эта формула довольно интересна.

Согласно формуле Пика, площадь многоугольника равна В+Г/2-1

где В — количество узлов внутри многоугольника, а Г — количество узлов на границе многоугольника.

Узлами здесь названы точки, в которых пересекаются линии нашей клетчатой бумаги.

Посмотрим, как решается задача 7 с помощью формулы Пика:

Синим на рисунке отмечены узлы внутри треугольника. Зеленым — узлы на границе.

Аккуратно посчитав те и другие, получим, что В = 9, Г = 5, и площадь фигуры равна S = 9 + 5/2 — 1 = 10,5.

Выбирайте — какой способ вам больше нравится.

8. Найдите площадь четырехугольника, изображенного на клетчатой бумаге с размером клетки

Такой четырехугольник получится, если от квадрата размером отрезать 2 прямоугольника и 4 треугольника. Найдите их на рисунке.

Площадь каждого из больших треугольников равна

Площадь каждого из маленьких треугольников равна

Тогда площадь четырехугольника

9. Авторская задача. Найдите площадь закрашенной фигуры, изображенной на клетчатой бумаге с размером клетки

На рисунке изображен ромб с вырезанным из него квадратом.

Площадь ромба равна половине произведения его диагоналей.

Площадь вырезанного квадрата равна 4.

Площадь фигуры равна 36 — 4 = 32.

Площадь круга, длина окружности, площадь части круга

Длина дуги во столько раз меньше длины окружности, во сколько раз ее градусная мера меньше, чем полный круг, то есть 360 градусов.

Площадь сектора во столько раз меньше площади всего круга, во сколько раз его градусная мера меньше, чем полный круг, то есть 360 градусов.

10. Иногда в задании надо найти площадь не всей фигуры, а её части. Обычно речь здесь идет о площади сектора — части круга.Найдите площадь сектора круга радиуса , длина дуги которого равна .

На этом рисунке мы видим часть круга. Площадь всего круга равна , так как . Остается узнать, какая часть круга изображена. Поскольку длина всей окружности равна (так как ), а длина дуги данного сектора равна , следовательно, длина дуги в раз меньше, чем длина всей окружности. Угол, на который опирается эта дуга, также в раз меньше, чем полный круг (то есть градусов). Значит, и площадь сектора будет в раз меньше, чем площадь всего круга.

11. На клетчатой бумаге нарисован круг площадью 2,8. Найдите площадь закрашенного сектора.

На рисунке изображен сектор, то есть часть круга. Но какая же это часть? Это четверть круга и еще круга, то есть круга.

Значит, нам надо умножить площадь круга на . Получим:

12. На клетчатой бумаге изображены два круга. Площадь внутреннего круга равна 9. Найдите площадь закрашенной фигуры.

Площадь фигуры равна разности площадей двух кругов, один из которых расположен внутри другого. По условию, площадь внутреннего круга равна 9. Радиус внешнего круга относится к радиусу внутреннего как 4 к 3. Площадь круга равна , то есть пропорциональна квадрату радиуса. Значит, площадь внешнего круга в раза больше площади внутреннего и равна 16. Тогда площадь фигуры равна 16 — 9 = 7.

Задачи на координатной плоскости

13. Найдите площадь четырехугольника, вершины которого имеют координаты (4;2), (8;4), (6;8), (2;6).

Заметим, что этот четырехугольник — квадрат. Сторона квадрата a является гипотенузой прямоугольного треугольника с катетами, равными 2 и 4. Тогда

14. Найдите площадь четырехугольника, вершины которого имеют координаты

На рисунке изображен параллелограмм (четырехугольник, имеющий две пары параллельных сторон). Площадь параллелограмма равна произведению основания на высоту. Основание равно 2, высота 8, площадь равна 16.

Источник

Многоугольником считается фигура,имеющая количество сторон больше или равное 3.

1)Площадь треугольника со сторонами a,b,c, и высотами h1,h2,h3,

площадь S =a*h1/2=b*h2/2=c*h3/2,

или по формуле Герона :

S= V p*(p-a)*(p-b)*(p-c),

где p — полупериметр.

Площадь четырехугольника:

1)площадь квадрата :S = a^2,

2)площадь прямоугольника :S = a *b,

3)площадь параллелограмма : S =a * h1 = b *h2,

4)площадь ромба S = a *h =d1*d2,

где a,b -стороны четырёхугольника,h1,h2-высоты,d1,d2-диагонали ромба.

5)площадь произвольного четырёхугольника определяется путем разбивки его по диагонали и нахождения площади каждого треугольника отдельно.

Площадь правильного многоугольника равна произведению полупериметра =n*a,на апофему h

S=(n*a)*h/2

где а-сторона многоугольника,n-число сторон,h-апофема.

Понравилась статья? Поделить с друзьями:
  • Как найти бригаду для стройки
  • Как найти сколько вершин у правильного многоугольника
  • Как составить сплит программу тренировок
  • Как найти свой комментарий в google
  • Как найти потерянные наушники разряженные