Как найти площадь фигуры ограниченной гиперболой

Вычислить площадь фигуры ограниченной линиями

Общие сведения

Вычислить площадь фигуры на плоскости считается довольно простой операцией. Для ее выполнения необходимо знать только формулу. Существенно усложняет задачу фигура, ограниченная прямыми.

 определенный интеграл

Одной из них считается криволинейная трапеция. Ее площадь можно определить только при нахождении значений определенного интеграла.

Операция интегрирования считается довольно сложной, поскольку необходимо знать основные правила. Перед нахождением площади криволинейной трапеции специалисты рекомендуют внимательно изучить и освоить правила интегрирования основных функций.

Разбирается неопределенный интеграл, а затем осуществляется переход к более сложным операциям.

Информация об интегралах

С понятием интеграла связано много направлений научных отраслей. Обозначается он символом «∫». С помощью интеграла открываются большие возможности по быстрому и эффективному нахождению значений следующих величин: площади криволинейной трапеции, объема тела вращения, поверхности, пути при неравномерном движении, массы неоднородного физического тела и так далее.

Упрощенный вариант представления и определения интеграла — сумма бесконечно малых слагаемых. Интеграл бывает нескольких типов: одинарный, двойной, тройной, криволинейный и так далее. Для любого элемента он может быть двух типов:

 Вычисление площади фигуры, ограниченной заданными линиями

  1. Неопределенный.
  2. Определенный.

Операция нахождения первого типа значительно проще второго. Это объясняется тем, что во втором случае следует не только найти первообразную, но и выполнить правильную подстановку значений.

Неопределенным интегралом функции вида f(х) называется такая первообразная функция F(х), производная которой равна подинтегральному выражению. Записывается это таким образом: ∫(f(x)) = F(х) + С.

Последняя величина является константой, поскольку при выполнении операции нахождения производной константа равна 0.

Для нахождения первообразной используется специальная таблица интегралов:

 вычисление определенных интегралов

Рисунок 1. Таблица интегралов и их первообразные.

В таблице приведены простые функции. Для нахождения площади фигуры, которая ограничена линиями, достаточно значений первообразных на рисунке 1. Вычисление определенного интеграла заключается в получении первообразной и подстановке начального и конечного значений. Следует отметить, что константа при этом не берется. Существует способ, чтобы найти определенный интеграл. Формула Ньютона-Лейбница позволяет быстро и эффективно вычислить площадь фигуры. Для этого нужно подставить значения ее границ (a и b) в первообразные: F(x)|(a;b) = F(b) — F(a).

Криволинейные фигуры

Криволинейная фигура (трапеция) — класс плоских фигур, которые ограничены графиком неотрицательной и непрерывной функции, а также осью ОУ и прямыми (х = а, х = b). Она изображена на рисунке 2. Для нахождения ее площади следует использовать определенный интеграл.

Определенный интеграл формула ньютона лейбница

Рисунок 2. Фигуры с криволинейными сторонами.

Интегрирование разбивает фигуру на прямоугольные части. Длина каждой из них равна ординате y = f(х) через промежутки, которые очень малы, по оси декартовой системы координат (есть еще и полярная) ОХ на отрезке [a;b]. Ширина является бесконечно малым значением. При интегрировании находятся площади прямоугольников и складываются. Для того чтобы не путаться в графиках, геометрическую фигуру следует заштриховать.

Криволинейная трапеция — геометрическая фигура с неровными сторонами, которые образовались в результате пересечения графика непрерывной функции с осями абсцисс и ординат.

Применение обыкновенных методов нахождения площади этой фигуры невозможно, поскольку она обладает одной или несколькими неровными сторонами (кривыми линиями).

Способы вычисления и рекомендации

Для расчетов площади криволинейной трапеции используется несколько методов. Их условно можно разделить на следующие: автоматизированные и ручные. Первый из них выполняется при помощи специализированного программного обеспечения (ПО). Примером является онлайн-калькулятор, который не только находит площадь заданной фигуры, но и изображает ее в декартовой системе координат.

Площадь криволинейной трапеции

Существует и другое ПО, которое является более «мощным». К нему можно отнести наиболее популярные среды: Maple и Matlab. Однако существует множество программ, написанных на языке программирования Python. Программы нужны также при освоении темы интегрирования. Если необходимо рассчитать множество интегралов и площадей криволинейных фигур, то без них не обойтись.

Новичку для автоматизированных вычислений рекомендуется применять различные онлайн-калькуляторы. Однако следует выделить неплохую программу, которая обладает довольно неплохими функциональными возможностями.

Она называется Integral calculator и представляет собой очень удобное приложение для Android-устройств. Кроме того, можно скачать подобное ПО для Linux, Mac и Windows.

Программа — это калькулятор, который используется для нахождения интегралов и производных, а также его можно применять для решения уравнений интегрального и дифференциального типов. Integral calculator обладает такими функциональными возможностями:

  1. Вычисление производных.
  2. Нахождения первообразных для определенных и неопределенных интегралов.
  3. Решение систем уравнений.
  4. Выполнения операций над матрицами и определителями.
  5. Построение графиков заданных функций в 2D и 3D.
  6. Расчет точек перегиба.
  7. Вычисление рядов Фурье.
  8. Решение дифференциальных уравнений линейного типа первого и второго порядков.

Однако специалисты не рекомендуют использовать приложения такого типа, поскольку нужно уметь решать подобные задачи самостоятельно. Любые математические операции развивают мышление, а злоупотребление ПО приводит к значительной деградации. Решать какие-либо задачи рекомендуется также людям, которые не имеют отношения к математической сфере.

Основной алгоритм

При нахождении площади криволинейной трапеции рекомендуется следовать определенному алгоритму. Он поможет избежать ошибок, поскольку задача разбивается на несколько простых подзадач, решение которых довольно просто контролировать. Алгоритм имеет следующий вид:

Вычислить площадь фигуры ограниченной линиями примеры

  1. Нужно прочитать и понять условие задачи.
  2. Начертить декартовую систему координат.
  3. Построить график заданной функции.
  4. Изобразить линии, ограничивающие фигуру.
  5. После определения границ нужно аккуратно заштриховать фигуру.
  6. Вычислить неопределенный интеграл функции, которая дана в условии.
  7. Посчитать площадь, подставив значения ограничивающих прямых в первообразную.
  8. Проверить решение задачи при помощи программы.

Первый пункт — внимательное чтение условия задачи. Этап считается очень важным, поскольку формирует дальнейший алгоритм. Необходимо выписать все известные данные, а затем подумать над дальнейшим решением задачи. Следует обратить особое внимание на график функции, который при возможности нужно упростить. Далее следует выписать линии, которые будут ограничивать фигуру.

Следующий пункт считается наиболее простым, поскольку нужно начертить обыкновенную систему координат. В условии должен быть указан ее тип. Если обозначена полярная система, то следует ее начертить. Во всех остальных случаях изображается декартовая система координат.

Третий пункт алгоритма — правильное построение графика функции. В этом случае нет необходимости составлять таблицу зависимости значения функции от аргумента. График должен быть схематичным. Например, если это парабола, то нужно ее изобразить. В этом случае необходимо ознакомиться с основными базовыми функциями и их графиками.

Вычисление площадей

Следующим шагом является правильное изображение прямых. Если ее уравнение имеет следующий вид «x = 5» или что-то подобное, то она будет проходить параллельно оси ОУ. Например, при y = 10 прямая проходит параллельно оси ОХ. В других случаях нужно составить таблицу зависимостей значений уравнения прямой от переменной. Следует брать всего два значения аргумента, поскольку их достаточно для проведения прямой.

После всех операций образуется фигура, которая ограничена линиями. Ее необходимо заштриховать. После этого вычисляется неопределенный интеграл заданной функции. Необходимо воспользоваться табличными значениями первообразных на рисунке 2. Однако здесь есть небольшой нюанс: константу записывать нет необходимости. Она «уничтожается» при подстановке в формулу Ньютона-Лейбница.

В полученное значение следует подставить значения границ. Кроме того, необходимо обратить особое внимание на знак формулы. При отрицательном значении границы формула принимает следующий вид: F(x)|(-a;b) = F(b) — F(-a) = F(b) + F(a). Проверка правильности решения выполняется с помощью ПО.

Примеры решения

Для закрепления теоретического материала специалисты рекомендуют решить несколько задач. В качестве примера можно взять криволинейные трапеции, изображенные на рисунке 2.

Разновидность параболы

В первом примере функция вида y = -x^2 + 2x и ось ОХ образуют фигуру. Необходимо найти ее площадь. Из функции видно, что ветви параболы направлены вниз (отрицательный знак перед квадратом). Точки пересечения находятся следующим образом:

Парабола

  1. Тело функции приравнивается к 0: -х^2 + 2x = 0.
  2. Выносится общий множитель: -x(x-2) = 0.
  3. Решаются обе части уравнения.
  4. Первый корень: -х1 = 0 или х1 = 0.
  5. Для нахождения второго нужно решить другую часть уравнения: х2-2 = 0. Отсюда, х2 = 2.

Ветви параболы проходят через координаты по ОХ: 0 и 2 соответственно. Координата «х» вершины точки параболы находится с помощью подстановки в формулу: x = -b/(2*a) = -2 / -2 = 1. В этом случае координата «у» вычисляется следующим образом: y = -(1^2) + 2 * 1 = -1 + 2 = 1. Точка с координатами (1;1) является вершиной параболы. Границы интегрирования — координаты по ОХ, через которые проходят ветви параболы.

После всех операций следует вычислить неопределенный интеграл функции, воспользовавшись таблицей на рисунке 1: ∫ (-х^2 + 2x) dx = — (x^3 / 3 + x^2) + C = x^2 — x^3 / 3 + C. После этого следует подставить начальное и конечное значения (константа убирается): S = x^2 — x^3 / 3 = (2^2 — 2^3 / 3) — (0^2 — 0^3 / 3) = 4 — 8/3 = 4 / 3 (кв. ед.). Последняя запись является единицей измерения площади. Она обозначается в условных единицах, так как в условии задачи размерность сторон фигуры не указана.

Гипербола, степенная и прямая

На следующем рисунке изображен график функции гиперболы (у = 1 / х). Прямые, которые ограничивают график, описываются следующими законами: у1 = -2 и у2 = -1. Для вычисления площади заданной фигуры следует взять интеграл: ∫(1/х) dx = ln (|x|) + С. Для окончательного решения необходимо подставить значения в натуральный логарифм: S = ln (2) — ln (1) = 0,6931 — 0 = 0,6931 (кв. ед.).

Вычислить площадь фигуры ограниченной линиями решения

Фигура, которая ограничена прямыми y1 = -1 и y2 = 1, и представлена функцией вида y = 3^x. Площадь находится следующим образом: S = ∫ (3^x) dx = 3^x / (ln(|3|)) = [3^1 / (ln(3))] — [3^(-1) / (ln(3))] = (3 / 1,0986) — ((1/3) / 1,0986) = 2,7307 — 0,3034 = 2,4273 (кв. ед.).

Последняя фигура представлена графиком прямой y = 0,5х + 1, которую ограничивают прямые х1 = -1 и х2 = 2. Значение площади можно найти таким способом: S = ∫ (0,5х + 1) dx = (0,5 * х^2) / 2 + x = [((0,5 * 2^2) / 2) + 2] — [((0,5 * (-1)^2) / 2) + (-1)] = 3 — 0,75 = 2,25 (кв. ед.).

Для определения значения площади криволинейной фигуры (трапеции) необходимо использовать определенные интегралы. При решении нужно внимательно следить за знаками и первообразными из таблицы на рисунке 1.



Задачка это школьная, но, несмотря на то, почти 100% встретится в вашем курсе высшей математики. Поэтому со всей серьёзностью отнесёмся ко ВСЕМ примерам, и первое, что нужно сделать – это ознакомиться с Приложением Графики функций, чтобы освежить в памяти технику построения элементарных графиков. …Есть? Отлично! Типовая формулировка задания звучит так:

Пример 10
Вычислить площадь фигуры, ограниченной линиями .

И первый важнейший этап решения состоит как раз в построении чертежа. При этом я рекомендую следующий порядок: сначала лучше построить все прямые (если они есть) и только потомпараболы, гиперболы, графики других функций.

В нашей задаче: прямая  определяет ось , прямые  параллельны оси  и парабола  симметрична относительно оси , для неё находим несколько опорных точек:

Искомую фигуру желательно штриховать:

Второй этап состоит в том, чтобы правильно составить и правильно вычислить определённый интеграл. На отрезке   график функции  расположен над осью , поэтому искомая площадь:

Ответ:

После того, как задание выполнено, полезно взглянуть на чертёж
и прикинуть, реалистичный ли получился ответ.

И мы «на глазок» подсчитываем количество заштрихованных клеточек – ну, примерно 9 наберётся, похоже на правду. Совершенно понятно, что если бы у нас получилось, скажем, 20 квадратных единиц, то, очевидно, где-то допущена ошибка – в построенную фигуру 20 клеток явно не вмещается, от силы десяток. Если ответ получился отрицательным, то задание тоже решено некорректно.

Пример 11
Вычислить площадь фигуры, ограниченной линиями  и осью

Быстренько разминаемся (обязательно!) и рассматриваем «зеркальную» ситуацию – когда криволинейная трапеция расположена под осью :

Пример 12
Вычислить площадь фигуры, ограниченной линиями ,  и координатными осями.

Решение: найдём несколько опорных точек для построения экспоненты:

и выполним чертёж, получая фигуру площадью около двух клеток:

Если криволинейная трапеция расположена не выше оси , то её площадь можно найти по формуле: .
В данном случае:

Ответ:  – ну что же, очень и очень похоже на правду.

На практике чаще всего фигура расположена и в верхней и в нижней полуплоскости, а поэтому от простейших школьных задачек мы переходим к более содержательным примерам:

Пример 13
Найти площадь плоской фигуры, ограниченной линиями , .

Решение: сначала нужно выполнить чертеж, при этом нас особо интересуют точки пересечения параболы  и прямой , поскольку здесь будут находиться пределы интегрирования.  Найти их можно двумя способами. Первый способ – аналитический. Составим и решим уравнение:

таким образом:

Достоинство аналитического способа состоит в его точности, а недостаток – в длительности (и в этом примере нам ещё повезло). Поэтому во многих задачах бывает выгоднее построить линии поточечно, при этом пределы интегрирования выясняются как бы «сами собой».

С прямой  всё понятно, а вот для построения параболы удобно найти её вершину, для этого возьмём производную и приравняем её к нулю:
 – именно в этой точке и будет находиться вершина. И, в силу симметрии параболы, остальные опорные точки найдём по принципу «влево-вправо»:

Выполним чертеж:

А теперь рабочая формула: если на отрезке  некоторая непрерывная функция  больше либо равна непрерывной функции , то площадь фигуры, ограниченной графиками этих функций и отрезками прямых , можно найти по формуле:

Здесь уже не надо думать, где расположена фигура – над осью или под осью, а, грубо говоря, важно, какой из двух графиков ВЫШЕ.

В нашем примере очевидно, что на отрезке  парабола располагается выше прямой, а поэтому из  нужно вычесть

Завершение решения может выглядеть так:

На отрезке : , по соответствующей формуле:

Ответ:

Следует отметить, что простые формулы, рассмотренные в начале параграфа – это частные случаи формулы . Поскольку ось  задаётся уравнением , то одна из функций будет нулевой, и в зависимости от того, выше или ниже лежит криволинейная трапеция, мы получим формулу  либо

А сейчас пара типовых задач для самостоятельного решения

Пример 14
Найти площадь фигур, ограниченных линиями:

а) , .

б) , ,

Решение с чертежами и краткими комментариями в конце книги

В ходе решения рассматриваемой задачи иногда случается забавный казус. Чертеж выполнен правильно, интеграл решён правильно, но по невнимательности… найдена площадь не той фигуры, именно так несколько раз ошибался ваш покорный слуга. Вот реальный случай из жизни:

Пример 15
Вычислить площадь фигуры, ограниченной линиями

Решение: выполним бесхитростный чертёж,

хитрость которого состоит в том, что искомая площадь заштрихована зелёным цветом (внимательно смотрИте на условие – чем ограничена фигура!). Но на практике по невнимательности нередко возникает «глюк», что нужно найти площадь фигуры, которая заштрихована серым цветом! Особое коварство состоит в том, что прямую  можно недочертить до оси , и тогда мы вовсе не увидим нужную фигуру.

Этот пример ещё и полезен тем, что в нём площадь фигуры считается с помощью двух определённых интегралов. Действительно:

1) на отрезке  над осью  расположен график прямой ;
2) на отрезке  над осью  расположен график гиперболы .

Совершенно понятно, что площади можно (и нужно) сложить:

Ответ:

И познавательный пример для самостоятельного решения:

Пример 16
Вычислить площадь фигуры, ограниченной линиями , ,  и координатными осями.

Итак, систематизируем важные моменты этой задачи:

На первом шаге ВНИМАТЕЛЬНО изучаем условие – КАКИЕ функции нам даны? Ошибки бывают даже здесь, в частности, арккотангенс  зачастую принимают за арктангенс. Это, кстати, относится и к другим заданием, где встречается арккотангенс.

Далее следует ПРАВИЛЬНО выполнить чертёж. Сначала лучше построить прямые (если они есть), затем графики других функций (если они есть J). Последние во многих случаях выгоднее строить поточечно – найти несколько опорных точек и аккуратно соединить их линией.

Но здесь могут подстерегать следующие трудности. Во-первых, из чертежа не всегда понятны пределы интегрирования – так бывает, когда они дробные. На mathprofi.ru в соответствующей статье я рассмотрел пример с параболой  и прямой , где из чертежа не понятна одна из точек их пересечения. В таких случаях следует использовать аналитический метод, составляем уравнение:

и находим его корни:
 – нижний предел интегрирования,  – верхний предел.

Во-вторых, не всегда понятен «внешний вид» линии, и функция  (Пример 16) – яркий тому пример. Я и сам «с ходу» не представляю, как выглядит график этой функции. Здесь можно воспользоваться специализированными программами или онлайн сервисами (а-ля «построить график онлайн»), а в экстремальной ситуации найти побольше опорных точек (штук 10-15), чтобы поточнее провести «неизвестную» кривую.
Ну и, конечно, я призываю вас повышать свои знания и навыки в графиках, в частности, приведу прямую ссылку на особо полезную статью:
http://mathprofi.ru/kak_postroit_grafik_funkcii_s_pomoshyu_preobrazovanii.html

После того, как чертёж построен, анализируем полученную фигуру – ещё раз окидываем взглядом предложенные функции и перепроверяем, ТА ЛИ это фигура. Затем анализируем её форму и расположение, бывает, что площадь достаточно сложнА и тогда её следует разделить на две, а то и на три части.

Составляем определённый интеграл или несколько интегралов по формуле , все основные вариации мы разобрали выше.

Решаем определённый интеграл (ы). При этом он может оказаться достаточно сложным, и тогда применяем поэтапный алгоритм: 1) находим первообразную и проверяем её дифференцированием, 2) используем формулу Ньютона-Лейбница.

Результат полезно проверить с помощью программного обеспечения / онлайн сервисов или просто «прикинуть» по чертежу по клеточкам. Но и то, и другое не всегда осуществимо, поэтому крайне внимательно относимся к каждому этапу решения!

1.9. Объём тела вращения

1.7. Геометрический смысл определённого интеграла

| Оглавление |



Полную и свежую версию данного курса в pdf-формате,
а также курсы по другим темам можно найти здесь.

Также вы можете изучить эту тему подробнее – просто, доступно, весело и бесплатно!

С наилучшими пожеланиями, Александр Емелин

Внимательно изучите по учебнику Г. М. Фихтенгольца главу XII, п° 193—196. Разберите примеры, приведенные в п° 196. При решении задач с геометрическим содержанием всегда старайтесь сопроводить решение чертежом.

I. Уравнения кривых заданы в декартовой системе координат.

443. Вычислить площадь фигуры, ограниченной дугой параболы, прямыми X=I9 х — А и отрезком

оси абсцисс.

Решение. В теоретическом курсе показано, что площадь криволинейной трапеции численно равна определенному интегралу

В данном случае (рис. 5) криволинейная трапеция ABDC9 площадь которой мы вычисляем, ограничена параллельными прямыми AB и CD, отрезком прямой AC и отрезком кривой линии BD.

Искомая площадь равна:

444. Вычислить площадь трапеции, ограниченной дугой параболы и отрезком прямой х = 2.

Решение. Из рисунка 6 видно, что искомая площадь расположена симметрично относительно оси абсцисс и, следовательно,

445. Вычислить площадь фигуры, ограниченной кривыми;

Решение. На рисунке 7 изображена фигура, площадь которой мы должны вычислить. Как видно из рисунка, площадь фигуры OBMAO можно представить как разность двух площадей (пл. OBMPO и OAMPU1 где MP — перпендикуляр, опущенный из точки M на ось Ох).

Найдем координаты точки Al. Решая систему уравнений

получимСледов ат ельн о,

Легко видеть, что данную задачу можно решить и другим путем. Искомую площадь можно представить в виде разности двух площадей—пл. OAMNO и пл. OBMNO (MN — перпендикуляр, опущенный из точки M на ось Oy):

Тогда


Ясно, что значение площади OBMAO не зависит от способа ее вычисления.

446. Вычислить площадь фигуры, ограниченной петлей кривой:

Решение. Из уравнений кривой видно, что она расположена симметрично относительно оси Ох. Следовательно, можно легко вычислить половину искомой площади (см. рис. 8).

Рекомендуем провести самостоятельно подробное исследование кривой.

Записав уравнение кривой в виде легко найдем точки пересечения кривой с осью Ох, положив у = 0. Мы получим.Учитывая все сказанное, окончательно найдем:

447. Вычислить площадь фигуры, ограниченной синусоидой wИ осью Ох, если

Вся площадь петли равна:

Решение. Из рисунка 9 видно, что искомая площадь на сегментеРасположена над осью Ох, а на сегменте

Под осью Ох. Следовательно, достаточно вычислить площадь, ограниченную полуволной синусоиды на отрезке|, и удвоить полученный результат:

448. Найти всю площадь фигуры, ограниченной кривыми, прямыми X = 3, X = —2 и осью Ох.

Решение. Из рисунка 10 видно, что искомая площадь может быть представлена как сумма площадей:

где BA и MN—перпендикуляры, опущенные из точек В и Al на ось Ох.

Определим координаты точек В, С, М, Р. Для этого решим следующие системы уравнений:

Решая систему (I) уравнений, найдем координаты точек В и M : В (I, 2), M {— I, 2).

Решая систему (2) уравнений, найдем координаты точки С : С (3, К».

Решая систему (3) уравнений, найдем координаты точки P : Р(— 2, 5).

Найдем теперь значения промежуточных площадей:

Отсюда

449. Найти площадь фигуры, ограниченной линиями:

450. Найти площадь фигуры, ограниченной линиями:

451. Найти площадь фигуры, ограниченной параболами:

452. Найти площадь фигуры, ограниченной линиями:

453. Найти площадь фигуры, ограниченной линиями:

454. Найти площадь «Ьигуоы. огоаниченной линиями:

455. Найти площадь круга:

456. Найти площадь эллипса

457. Найти площадь, заключенную между кривыми

458. Найти площадь фигуры, ограниченной гипоци-лоидой

459. Найти площадь фигуры, ограниченной гиперболой

И прямой

460. Вычислить площадь фигуры, заключенной между параболой, осями координат и прямой х=3,5.

461. Найти площадь фигуры, заключенной между кривыми:

462. Найти площадь частей эллипса отсеченных гиперболой

463. Найти площадь фигуры, ограниченной кривой

464. Найти площадь фигуры, заключенной между кривыми

2. Кривые заданы параметрическими уравнениями. Если кривая, ограничивающая площадь плоской фигуры, задана параметрическими уравнениями:

где функцииНепрерывны вместе со своими про

изводными наТо для вычисления площади

плоской фигуры следует в определенном интеграле произвести замену переменной:

465. Вычислить площадь, ограниченную эллипсом!

Решение. Эллипс расположен симметрично относительно обеих осей (рис. Последовательно, можно вычислить сначала• часть площади данной фигуры. Вычислим площадь той части плоской фигуры, которая расположена в первом квадранте:

Найдем пределы интегрирования для переменной t из условий:

Имеем:

466. Найти площадь фигуры, ограниченной астроидой:

PsP ш е н и е. Искомая площадь изображена на рисунке 12. Вычислим сначала площадь тсй части плоской фигуры, которая расположена в первом квадранте, это будет

Рис. 12.

часть всей искомой площади. Найдем пределы интегрирования для переменной / из условий:

Следовательно,

467. Вычислить площадь, ограниченную одной аркой циклоиды:И осью Ох.

Решение. Из рисунка 13 видно, что при изменении параметра t от 0 до 2л точка (ху у) обегает всю арку циклоиды, причем х изменяется в промежутках от 0 до 2т. Следовательно,

Вся площадь, ограниченная астроидой, равна:


о

468. Вычислить площадь четверти круга: x = 2cos t, y = 2sint.

469. Найти площадь, ограниченную эволютой эллипса:

(.Эволютой кривой называется геометрическое место её центров кривизны. Эволютой эллипса является деформированная астроида.)

470. Найти площадь, ограниченную кардиоидой:

х = a(2cost — cos 21), у = a (2sin/— sin 2/).

3. Кривые заданы в полярной системе координат. Из

теоретического курса известно, что площадь S1 ограниченная неподвижным полярным радиусом г0, подвижным полярным радиусом г и кривой г — /(ф), может быть вычислена по следующей формуле:


<Р> Ч, г

S = — j J/-2 Лр = J — j /(<р)]2<*Ф.

90

471. Вычислить площадь, ограниченную первым витком спирали Архимеда г — а<р (рис. 14).

Решение. Найдем пределы интегрирования. Первый виток спирали образуется при изменении параметра t от О до 2зх. Следовательно,

,12*

D3 Д

472. Найти площадь, ограниченную одним лепестком кривой г = a sin 2<р.

Решение. Пределы интегрирования для <р найдем из условий:

О < 2<р<я.

Отсюда

и, следовательно,

473. Вычислить площадь, ограниченную кривой г = = a cos ф.


Решение. Данная кривая—окружность радиуса у,

проходящая через полюс, расположенная симметрично относительно полярной оси. Эго легко увидеть, если перейти к декартовым координатам. (Проделайте это самостоя-

а2 I

тельно.) Тогда S = я — — = —я;а2.

7 4 4

Можно было найти искомую площадь, используя полярное уравнение данной кривой. Пределы для q> найдут* ся из условия cos ф> 0, следовательно,



1C

T

S = J a® cos2 ф dq> =

TC TC

—< ф < —.

2 Y 2

Таким образом, имеем:


474. Вычислить площадь OAB (см. рис. 15), ограниченную полярными радиусамиг, = OA и r2 = OB и дугой логарифмической спирали

Решение. Будем считать, что полярному радиусу г, соответствует полярный угол фг, а полярному радиусу г2 соответствует полярный угол ф2. Тогда

475. Найти площадь петли листа Декарта:

Решение. Перейдем к полярным координатам с помощью известных соотношений:

Уравнение данной кривой в полярных координатах примет вид:

откуда

На получим

откуда

, в этом промежутке изменения полярного

углаф кривая опишет петлю. ПриИли

знаменатель стремится к нулю и, следовательно, р —» оо. Это значит, что существует асипмтота данной кривой. Найдем ее, пользуясь исходным уравнением кривой в лекап-товых координатах. Разделив обе части равенства

Из полученного уравнения кривой видно, чтоПри

HO

и, следовательно, таким образом,

Уравнение асимптоты:

Подставляя вместо k и b найденные значения, получим искомое уравнение асимптоты данной кривой:

Для построения данной кривой совместим полюс с началом декартовых координат и будем считать положительное направление оси Ox совпадающим с направлением полярной оси. Составим таблицу значений

Соединяя теперь плавной кривой полученные точки, получим петлю данной кривой (рис. 16).

Найдем площадь, ограниченную петлей листа Декарта. Из геометрических соображений видно, что полярный угол <р

изменяется от 0 до.Tаким образом, находим:


476. Вычислить площадь круга

477. Найти площадь, ограниченную петлей лемнискаты>

Построив предварительно данную кривую.

478. Найти площадь, ограниченную кривой:

P = a cos 4<р.

479. Найти площадь, ограниченную одним лепестком кривой:

P = a cos 2ф.

480. Найти площадь фигуры, ограниченной вторым витком спирали Архимеда р = аф и отрезком полярной оси, соединяющим концы первого и второго витков (см. рис. 14).

481. Найти площадь, ограниченную улиткой Паскаля:

P = 2а (2 cos ф).

482. Вычислить площадь, ограниченную кардиоидой:

P = а (I — cos ф).

< Предыдущая   Следующая >

Площадь
S
криволинейной трапеции, ограниченной
непрерывной кривой
,
двумя прямыми x=a
и x=b
и отрезком оси абсцисс
,
вычисляется по одной из следующих
формул:

,
если

на отрезке
;

,
если

на отрезке
.

Площадь
S
фигуры, ограниченной двумя непрерывными
кривыми
и

и двумя прямыми x=a
и x=b,
где
на отрезке,
вычисляется по формуле

.

Рассмотрим
примеры
.

1.
Вычислить площадь, ограниченную
параболой
,
прямыми x=2,
x=4
и осью абсцисс.

Площадь
вычислим, используя формулу
.
Тогда

2.
Вычислить площадь фигуры, ограниченной
прямыми

и осью ординат (рис.3).

Рис. 3

При вычислении
искомой площади учтем, что изменены
роли осей координат, т.е.:

3.
Вычислить площадь фигуры, ограниченной
ветвью гиперболы
,
прямыми x=
3,
x=
1
и осью абсцисс.

На
отрезке

функция

отрицательна. Поэтому для вычисления
площади рассматриваемой фигуры
воспользуемся формулой

.

Получим

4.
Вычислить площадь между линиями
.

Рис.4

Искомая площадь
изображена на рис. 4 и представляет
собой разность между площадью
прямоугольного треугольника OMx0
и площадью криволинейного треугольника,
ограниченного сверху участком параболы:

.

Абсциссу
x0
точки пересечения графиков находим,
решая совместно уравнения
,
откуда
.

Подставляя
полученное значение верхнего предела
интегрирования, получаем

    1. Вычислить
      площадь, ограниченную гиперболой,
      осью абсцисс и ординатами
      .

    2. Вычислить
      площадь фигуры, заключенной между
      линиями
      .
      Изобразить фигуру графически.

    3. Найти
      площадь фигуры, заключенной между
      осью абсцисс и кривой
      .

    4. Найти
      площадь фигуры, ограниченной кривой
      ,
      прямыми

      и осью абсцисс.

    5. Вычислить
      площадь фигуры, образованной линиями
      .

    6. Определить
      площадь фигуры, ограниченной параболой

      и прямой
      .

    7. Найти
      площадь фигуры, заключенной между
      прямыми
      и
      осью абсцисс.

    8. Вычислить
      площадь между линиями

      и
      .

    9. Определить
      площадь, ограниченную экспонентой
      ,
      осью абсцисс и ординатами
      .

    10. Найти
      площадь фигуры, ограниченной параболой
      ,
      осью абсцисс и прямыми
      .

§3. Приложение определенного интеграла к решению физических задач

Рассмотрим решение
следующих задач.

1.
Через участок тела животного проходит
импульс тока, который изменяется со
временем по закону

мА. Длительность импульса 0,1 с. Определить
работу, совершаемую током за это время,
если сопротивление участка равно 20
кОм.

За
малый интервал времени dt,
когда ток практически не меняется, на
сопротивлении R
совершается работа
.
За время всего импульса будет совершена
работа

.

Подставляя в
полученное выражение значение тока,
получим.

2.
Скорость точки равна

(м/с). Найти путь S,
пройденный точкой за время t=4с,
прошедшее от начала движения.

Найдем
путь
,
пройденный точкой за бесконечно малый
промежуток времени
.
Так как в течение этого времени скорость
можно считать постоянной, то
.
Интегрируя, имеем

3.
Найти силу давления жидкости на
вертикальную треугольную пластину с
основанием a
и высотой h,
погруженную в жидкость так, что ее
вершина лежит на поверхности.

Систему координат
расположим, как показано на рис. 5.

Рис.
5

Рассмотрим
горизонтальную бесконечно малую полоску
толщиной dx,
находящуюся на произвольной глубине
x.
Принимая эту полоску за прямоугольник,
найдем ее основание EF.
Из подобия треугольников ABC
и AEF
получаем

.

Отсюда

.

Тогда площадь
полоски равна

.

Так
как сила P
давления жидкости на площадку S,
глубина погружения которой r,
по закону Паскаля равна

,

где
-
плотность жидкости, g
ускорение силы тяжести, то искомая сила
давления на рассматриваемую площадку
dS
вычисляется по формуле

.

Следовательно,
сила давления P
жидкости на площадку ABC

.

Решить
задачи
.

  1. Скорость
    движения точки определяется уравнением

    см/с. Найти путь, пройденный точкой за
    время t=5с,
    протекшее от начала движения.

  2. Скорость
    тела выражается формулой

    м/с. Найти путь, пройденный телом за
    первые три секунды после начала
    движения.

  3. Скорость
    движения тела определяется уравнением

    см/с. Какой путь пройдет тело за третью
    секунду движения?

  4. Два
    тела начинают двигаться одновременно
    из одной и той же точки: одно со скоростью

    (м/мин), а другое со скоростью

    (м/мин). На каком расстоянии друг от
    друга они будут через 10 мин, если
    двигаются по одной линии в одном
    направлении?

  5. На
    тело массой 5 г, движущееся прямолинейно,
    действует сила
    (дин).
    Найти расстояние, пройденное телом в
    течение третьей секунды движения.

  6. Скорость
    колеблющейся точки изменяется по
    закону

    (см/с). Определить смещение точки через
    0,1 с после начала движения.

  7. Какую работу
    нужно совершить, чтобы растянуть
    пружину на 0,06 м, если сила в 1Н растягивает
    ее на 0,01 м?

  8. Скорость
    колеблющейся точки изменяется по
    закону

    (м/с). Определить путь, пройденный точкой
    за
    с
    от начала движения.

  9. Азот,
    масса которого 7 г, расширяется при
    неизменной температуре, равной 300К
    так, что его объем увеличивается вдвое.
    Определить работу, совершаемую газом.
    Универсальная газовая постоянная
    Дж/кмоль.

  10. Какую
    работу надо совершить, чтобы растянуть
    пружину длиной в 25 см до длины в 35 см,
    если известно, что коэффициент жесткости
    пружины равен 400 Н/м?

  11. Через
    тело животного проходит импульс тока,
    который изменяется со временем по
    закону

    (мА). Длительность импульса равна 0,1с.
    Определить заряд, протекающий через
    тело животного.

  12. Какая
    работа совершается при растяжении
    мышцы на l
    мм, если известно, что при нагрузке P0
    мышца растягивается на l0
    мм? Считать, что сила, необходимая для
    растяжения мышц, пропорциональна ее
    удлинению.

  13. Тело
    двигается в некоторой среде прямолинейно
    по закону
    .
    Сопротивление среды пропорционально
    квадрату скорости
    .
    Найти работу, произведенную силой
    сопротивления среды при передвижении
    тела от S=0
    до S=a
    метров.

Соседние файлы в предмете Физика

  • #
  • #
  • #

Понравилась статья? Поделить с друзьями:
  • Как найти характеристику ноутбука на виндовс 10
  • Как найти кота на андроид
  • Как найти тангенс угла 150 градусов
  • Ошибка err no launcher gta 5 как исправить
  • Как составить штатное расписание если нет сотрудников