Задачка это школьная, но, несмотря на то, почти 100% встретится в вашем курсе высшей математики. Поэтому со всей серьёзностью отнесёмся ко ВСЕМ примерам, и первое, что нужно сделать – это ознакомиться с Приложением Графики функций, чтобы освежить в памяти технику построения элементарных графиков. …Есть? Отлично! Типовая формулировка задания звучит так:
Пример 10
Вычислить площадь фигуры, ограниченной линиями .
И первый важнейший этап решения состоит как раз в построении чертежа. При этом я рекомендую следующий порядок: сначала лучше построить все прямые (если они есть) и только потом – параболы, гиперболы, графики других функций.
В нашей задаче: прямая определяет ось , прямые параллельны оси и парабола симметрична относительно оси , для неё находим несколько опорных точек:
Искомую фигуру желательно штриховать:
Второй этап состоит в том, чтобы правильно составить и правильно вычислить определённый интеграл. На отрезке график функции расположен над осью , поэтому искомая площадь:
Ответ:
После того, как задание выполнено, полезно взглянуть на чертёж
и прикинуть, реалистичный ли получился ответ.
И мы «на глазок» подсчитываем количество заштрихованных клеточек – ну, примерно 9 наберётся, похоже на правду. Совершенно понятно, что если бы у нас получилось, скажем, 20 квадратных единиц, то, очевидно, где-то допущена ошибка – в построенную фигуру 20 клеток явно не вмещается, от силы десяток. Если ответ получился отрицательным, то задание тоже решено некорректно.
Пример 11
Вычислить площадь фигуры, ограниченной линиями и осью
Быстренько разминаемся (обязательно!) и рассматриваем «зеркальную» ситуацию – когда криволинейная трапеция расположена под осью :
Пример 12
Вычислить площадь фигуры, ограниченной линиями , и координатными осями.
Решение: найдём несколько опорных точек для построения экспоненты:
и выполним чертёж, получая фигуру площадью около двух клеток:
Если криволинейная трапеция расположена не выше оси , то её площадь можно найти по формуле: .
В данном случае:
Ответ: – ну что же, очень и очень похоже на правду.
На практике чаще всего фигура расположена и в верхней и в нижней полуплоскости, а поэтому от простейших школьных задачек мы переходим к более содержательным примерам:
Пример 13
Найти площадь плоской фигуры, ограниченной линиями , .
Решение: сначала нужно выполнить чертеж, при этом нас особо интересуют точки пересечения параболы и прямой , поскольку здесь будут находиться пределы интегрирования. Найти их можно двумя способами. Первый способ – аналитический. Составим и решим уравнение:
таким образом:
Достоинство аналитического способа состоит в его точности, а недостаток – в длительности (и в этом примере нам ещё повезло). Поэтому во многих задачах бывает выгоднее построить линии поточечно, при этом пределы интегрирования выясняются как бы «сами собой».
С прямой всё понятно, а вот для построения параболы удобно найти её вершину, для этого возьмём производную и приравняем её к нулю:
– именно в этой точке и будет находиться вершина. И, в силу симметрии параболы, остальные опорные точки найдём по принципу «влево-вправо»:
Выполним чертеж:
А теперь рабочая формула: если на отрезке некоторая непрерывная функция больше либо равна непрерывной функции , то площадь фигуры, ограниченной графиками этих функций и отрезками прямых , можно найти по формуле:
Здесь уже не надо думать, где расположена фигура – над осью или под осью, а, грубо говоря, важно, какой из двух графиков ВЫШЕ.
В нашем примере очевидно, что на отрезке парабола располагается выше прямой, а поэтому из нужно вычесть
Завершение решения может выглядеть так:
На отрезке : , по соответствующей формуле:
Ответ:
Следует отметить, что простые формулы, рассмотренные в начале параграфа – это частные случаи формулы . Поскольку ось задаётся уравнением , то одна из функций будет нулевой, и в зависимости от того, выше или ниже лежит криволинейная трапеция, мы получим формулу либо
А сейчас пара типовых задач для самостоятельного решения
Пример 14
Найти площадь фигур, ограниченных линиями:
а) , .
б) , ,
Решение с чертежами и краткими комментариями в конце книги
В ходе решения рассматриваемой задачи иногда случается забавный казус. Чертеж выполнен правильно, интеграл решён правильно, но по невнимательности… найдена площадь не той фигуры, именно так несколько раз ошибался ваш покорный слуга. Вот реальный случай из жизни:
Пример 15
Вычислить площадь фигуры, ограниченной линиями
Решение: выполним бесхитростный чертёж,
хитрость которого состоит в том, что искомая площадь заштрихована зелёным цветом (внимательно смотрИте на условие – чем ограничена фигура!). Но на практике по невнимательности нередко возникает «глюк», что нужно найти площадь фигуры, которая заштрихована серым цветом! Особое коварство состоит в том, что прямую можно недочертить до оси , и тогда мы вовсе не увидим нужную фигуру.
Этот пример ещё и полезен тем, что в нём площадь фигуры считается с помощью двух определённых интегралов. Действительно:
1) на отрезке над осью расположен график прямой ;
2) на отрезке над осью расположен график гиперболы .
Совершенно понятно, что площади можно (и нужно) сложить:
Ответ:
И познавательный пример для самостоятельного решения:
Пример 16
Вычислить площадь фигуры, ограниченной линиями , , и координатными осями.
Итак, систематизируем важные моменты этой задачи:
На первом шаге ВНИМАТЕЛЬНО изучаем условие – КАКИЕ функции нам даны? Ошибки бывают даже здесь, в частности, арккотангенс зачастую принимают за арктангенс. Это, кстати, относится и к другим заданием, где встречается арккотангенс.
Далее следует ПРАВИЛЬНО выполнить чертёж. Сначала лучше построить прямые (если они есть), затем графики других функций (если они есть J). Последние во многих случаях выгоднее строить поточечно – найти несколько опорных точек и аккуратно соединить их линией.
Но здесь могут подстерегать следующие трудности. Во-первых, из чертежа не всегда понятны пределы интегрирования – так бывает, когда они дробные. На mathprofi.ru в соответствующей статье я рассмотрел пример с параболой и прямой , где из чертежа не понятна одна из точек их пересечения. В таких случаях следует использовать аналитический метод, составляем уравнение:
и находим его корни:
– нижний предел интегрирования, – верхний предел.
Во-вторых, не всегда понятен «внешний вид» линии, и функция (Пример 16) – яркий тому пример. Я и сам «с ходу» не представляю, как выглядит график этой функции. Здесь можно воспользоваться специализированными программами или онлайн сервисами (а-ля «построить график онлайн»), а в экстремальной ситуации найти побольше опорных точек (штук 10-15), чтобы поточнее провести «неизвестную» кривую.
Ну и, конечно, я призываю вас повышать свои знания и навыки в графиках, в частности, приведу прямую ссылку на особо полезную статью:
http://mathprofi.ru/kak_postroit_grafik_funkcii_s_pomoshyu_preobrazovanii.html
После того, как чертёж построен, анализируем полученную фигуру – ещё раз окидываем взглядом предложенные функции и перепроверяем, ТА ЛИ это фигура. Затем анализируем её форму и расположение, бывает, что площадь достаточно сложнА и тогда её следует разделить на две, а то и на три части.
Составляем определённый интеграл или несколько интегралов по формуле , все основные вариации мы разобрали выше.
Решаем определённый интеграл (ы). При этом он может оказаться достаточно сложным, и тогда применяем поэтапный алгоритм: 1) находим первообразную и проверяем её дифференцированием, 2) используем формулу Ньютона-Лейбница.
Результат полезно проверить с помощью программного обеспечения / онлайн сервисов или просто «прикинуть» по чертежу по клеточкам. Но и то, и другое не всегда осуществимо, поэтому крайне внимательно относимся к каждому этапу решения!
1.9. Объём тела вращения
1.7. Геометрический смысл определённого интеграла
| Оглавление |
Полную и свежую версию данного курса в pdf-формате,
а также курсы по другим темам можно найти здесь.
Также вы можете изучить эту тему подробнее – просто, доступно, весело и бесплатно!
С наилучшими пожеланиями, Александр Емелин
1. Основная формула для вычисления площади плоских фигур с помощью определенного интеграла
Рассмотрим постановку задачи о площади криволинейной трапеции.
Вычислить площадь криволинейной трапеции, ограниченной линиями (рис. 1).
.
Рис. 1. Площадь криволинейной трапеции
Как мы пытались ее решить:
Первый способ.
Разбили отрезок на одинаковых отрезков, заменили искомую площадь площадью поступенчастой линии, легко ее сосчитали и получили приближенное решение нашей задачи. Далее устремили в пределе и
получили искомую площадь S. Ввели обозначение .
Это определенный интеграл. Вот таким образом мы пытались решить задачу. Мы знаем теперь, как приближенно ее решить, знаем обозначения для точного решения, но точного решения еще не знаем.
Затем мы получили точное решение задачи следующим образом: рис. 2:
Рис. 2. Функция S (x)
Ввели функцию . Каждому площадь под соответствующей частью кривой . Так, введенная функция удовлетворяет единственному закону, а именно:
Каждому соответствует единственное значение .
Мы доказали, что производная этой же функции и доказали, что точная площадь вычисляется следующим образом. Надо найти любую первообразную от функциии взять приращение этих первообразных. То есть взять первообразную в точке и отнять первообразную в точке И в результате мы получили формулу, которой мы будем пользоваться для вычисления площадей.
.
2. Методика нахождения площади на примере
Методику нахождения площади рассмотрим сначала на относительно простом примере.
Пример 1.
Найти площадь фигуры, ограниченной линиями
Решение.
Вот искомая площадь:
Рис. 3. Площадь
Вот формула:
Это общая формула. Конкретно к нашему случаю она применима так:
Пределы интегрирования .
=.
Вычислили площадь криволинейной фигуры.
Ответ:
В следующей задаче площадь искомой фигуры образовывается с помощью А именно:
3. Пример 2
Найти площадь фигуры, ограниченной линиями
Решение.
Посмотрим, как выглядит фигура (рис. 4).
Рис. 4. Фигура, ограниченная линиями
Формула та же самая:
В нашем случае . Итак, надо найти определенный интеграл
=-(-1)+1=1+1=2.
Искомая площадь найдена, и ответ получен.
Ответ: 2
4. Пример 3
Найти площадь фигуры, ограниченной линиями
Решение.
Рис. 5. Площадь фигуры, ограниченной линиями
Формула для площади та же самая:
В нашем случае .
Ответ:
В следующем примере ищется площадь под параболой.
5. Пример 4
Найти площадь фигуры, ограниченной линиями
Решение.
Схематически изобразим параболу Корни
Рис. 6. Парабола
Применим известную формулу
И применим ее для данной функции и пределов интегрирования
Искомая площадь найдена.
Ответ:
В предыдущих задачах площадь образовывалась с помощью разных кривых, но эта площадь находилась над осью . В следующей задаче наоборот.
6. Пример 5. Случай, если фигура находится под осью
Найти площадь фигуры, ограниченной линиями.
Решение.
Посмотрим, что это за фигура. График в пределах от Π до 2Π расположен под осью Ox (рис. 7).
Рис. 7. График в пределах от Π до 2Π
Ясно, что если возьмем определенный интеграл, то мы получим отрицательное число.
Вычисляем.
1. Сначала вычисляем определенный интеграл от π до 2π от подынтегральной функции
Надо найти первообразную.
По таблице первообразных: .
=-1-1=-2.
2. Для того чтобы найти площадь, надо взять модуль =2.
Ответ: 2.
7. Пример. Общий случай для нахождения площади плоской фигуры, ограниченной двумя кривыми. Выводы
Следующее усложнение – искомая площадь расположена между двумя кривыми.
А именно:
Найти площадь фигуры, ограниченной линиями (рис.
Рис. 8. Площадь фигуры, ограниченной линиями
Решение.
Итак, площадь образуют 2 кривые, одна из них может находиться под осью .
Каким образом мы будем решать эту задачу?
Во-первых, мы можем сдвинуть фигуру на такое положительное , что площадь находится над осью . Рис. 9.
Рис. 9. Сдвиг фигуры
Затем мы возьмем соответствующий определенный интеграл и найдем площадь. Искомая площадь равна разности двух площадей.
Площадь под верхней кривой минус площадь под нижней кривой .
Каждую из площадей мы умеем находить.
Таким образом, в общем виде была поставлена задача, в общем виде получен ответ.
Ответ:
Обсудим и постановку задачи, и полученный важный результат.
Нам надо было найти площадь фигуры, ограниченной линиями
.
Мы использовали известный прием: эту площадь подняли на некоторое , и это Так вот, эту площадь теперь можно считать без введения . Правило следующее:
Площадь фигуры, ограниченной прямыми линиями непрерывных на отрезке и таких, что для всех из отрезка вычисляется по формуле, которую мы вывели:
Рассмотрим первый конкретный пример на нахождение площади между двумя линиями.
8. Пример 6
Найти площадь фигуры, ограниченную линиями
.
Решение. Для начала построим графики этих линий и поймем, где та площадь, которую нам надо искать.
График квадратичной функции – парабола. Корни – 0, 4, ветви вниз. График
– биссектриса первого координатного угла. Вот площадь, которую надо найти:
Рис. 10. Искомая площадь
Но для этого сначала надо найти точки пересечения и решить стандартную задачу.
1. Находим точки пересечения. Для этого решаем систему: .
Отсюда получаем квадратное уравнение относительно :
Мы нашли , то есть, пределы интегрирования. Это первое важное действие.
Теперь стандартное действие:
2. = =()
Искомая площадь равна 4,5
Ответ: 4,5
9. Пример 7. Случай, когда часть площади плоской фигуры лежит под осью
Во втором примере часть площади находится под осью , но на методику это не влияет.
Пример 6.
Итак, требуется найти площадь фигуры, ограниченной линиями
Решение.
Сначала построим графики, посмотрим, какую площадь нам нужно найти. Рис. 11.
Первая функция – парабола, ветви вниз. График второй функции – прямая линия.
Есть две точки пересечения, их придется найти, а именно взять пределы интегрирования, и тогда будем решать задачу по знакомому нам плану.
Рис. 11. Площадь фигуры, ограниченной линиями
Первое действие – найти пределы интегрирования и второе – найти площадь.
Пределы интегрирования найдем из системы.
То есть, пределы интегрирования найдены.
= ()
Ответ:
Итак, мы показали, каким образом можно вычислять площади плоских фигур с помощью определенного интеграла.
Список литературы
- Мордкович А.Г. Алгебра и начала математического анализа. – М.: Мнемозина.
- Муравин Г.К., Муравина О.В. Алгебра и начала математического анализа. – М.: Дрофа.
- Колмогоров А.Н., Абрамов А.М., Дудницын Ю.П. и др. Алгебра и начала математического анализа. – М.: Просвещение.
Дополнительные рекомендованные ссылки на ресурсы сети Интернет
- Ru.scribd.com (Источник).
- Math4you.ru (Источник).
- Dok.opredelim.com (Источник).
Домашнее задание
- Найти площадь фигуры, ограниченной линиями , , ,
- Найти площадь фигуры, ограниченной линиями
- Алгебра и начала анализа, Мордкович А.Г.: № 1030, 1033, 1037, 1038.
Вычисление площади фигуры – это, пожалуй, одна из наиболее сложных задач теории площадей. В школьной геометрии учат находить площади основных геометрических фигур таких как, например, треугольник, ромб, прямоугольник, трапеция, круг и т.п. Однако зачастую приходится сталкиваться с вычислением площадей более сложных фигур. Именно при решении таких задач очень удобно использовать интегральное исчисление.
Определение.
Криволинейной трапецией называют некоторую фигуру G, ограниченную линиями y = f(x), у = 0, х = а и х = b, причем функция f(x) непрерывна на отрезке [а; b] и не меняет на нем свой знак (рис. 1). Площадь криволинейной трапеции можно обозначить S(G).
Определенный интеграл ʃаb f(x)dx для функции f(x), являющийся непрерывной и неотрицательной на отрезке [а; b], и есть площадь соответствующей криволинейной трапеции.
То есть, чтобы найти площадь фигуры G, ограниченной линиями y = f(x), у = 0, х = а и х = b, необходимо вычислить определенный интеграл ʃаb f(x)dx.
Таким образом, S(G) = ʃаb f(x)dx.
В случае, если функция y = f(x) не положительна на [а; b], то площадь криволинейной трапеции может быть найдена по формуле S(G) = -ʃаb f(x)dx.
Пример 1.
Вычислить площадь фигуры, ограниченной линиями у = х3; у = 1; х = 2.
Решение.
Заданные линии образуют фигуру АВС, которая показана штриховкой на рис. 2.
Искомая площадь равна разности между площадями криволинейной трапеции DACE и квадрата DABE.
Используя формулу S = ʃаb f(x)dx = S(b) – S(a), найдем пределы интегрирования. Для этого решим систему двух уравнений:
{у = х3,
{у = 1.
Таким образом, имеем х1 = 1 – нижний предел и х = 2 – верхний предел.
Итак, S = SDACE – SDABE = ʃ12 x3 dx – 1 = x4/4|12 – 1 = (16 – 1)/4 – 1 = 11/4 (кв. ед.).
Ответ: 11/4 кв. ед.
Пример 2.
Вычислить площадь фигуры, ограниченной линиями у = √х; у = 2; х = 9.
Решение.
Заданные линии образуют фигуру АВС, которая ограничена сверху графиком функции
у = √х, а снизу графиком функции у = 2. Полученная фигура показана штриховкой на рис. 3.
Искомая площадь равна S = ʃаb(√x – 2). Найдем пределы интегрирования: b = 9, для нахождения а, решим систему двух уравнений:
{у = √х,
{у = 2.
Таким образом, имеем, что х = 4 = а – это нижний предел.
Итак, S = ∫49 (√x – 2)dx = ∫49 √x dx –∫49 2dx = 2/3 x√х|49 – 2х|49 = (18 – 16/3) – (18 – = 2 2/3 (кв. ед.).
Ответ: S = 2 2/3 кв. ед.
Пример 3.
Вычислить площадь фигуры, ограниченной линиями у = х3 – 4х; у = 0; х ≥ 0.
Решение.
Построим график функции у = х3 – 4х при х ≥ 0. Для этого найдем производную у’:
y’ = 3x2 – 4, y’ = 0 при х = ±2/√3 ≈ 1,1 – критические точки.
Если изобразить критические точки на числовой оси и расставить знаки производной, то получим, что функция убывает от нуля до 2/√3 и возрастает от 2/√3 до плюс бесконечности. Тогда х = 2/√3 – точка минимума, минимальное значение функции уmin = -16/(3√3) ≈ -3.
Определим точки пересечения графика с осями координат:
если х = 0, то у = 0, а значит, А(0; 0) – точка пересечения с осью Оу;
если у = 0, то х3 – 4х = 0 или х(х2 – 4) = 0, или х(х – 2)(х + 2) = 0, откуда х1 = 0, х2 = 2, х3 = -2 (не подходит, т.к. х ≥ 0).
Точки А(0; 0) и В(2; 0) – точки пересечения графика с осью Ох.
Заданные линии образуют фигуру ОАВ, которая показана штриховкой на рис. 4.
Так как функция у = х3 – 4х принимает на (0; 2) отрицательное значение, то
S = |ʃ02 (x3 – 4x)dx|.
Имеем: ʃ02 (x3 – 4х)dx =(x4/4 – 4х2/2)|02= -4, откуда S = 4 кв. ед.
Ответ: S = 4 кв. ед.
Пример 4.
Найти площадь фигуры, ограниченной параболой у = 2х2 – 2х + 1, прямыми х = 0, у = 0 и касательной к данной параболе в точке с абсциссой х0 = 2.
Решение.
Сначала составим уравнение касательной к параболе у = 2х2 – 2х + 1 в точке с абсциссой х₀ = 2.
Так как производная y’ = 4x – 2, то при х0 = 2 получим k = y’(2) = 6.
Найдем ординату точки касания: у0 = 2 · 22 – 2 · 2 + 1 = 5.
Следовательно, уравнение касательной имеет вид: у – 5 = 6(х – 2) или у = 6х – 7.
Построим фигуру, ограниченную линиями:
у = 2х2 – 2х + 1, у = 0, х = 0, у = 6х – 7.
Гу = 2х2 – 2х + 1 – парабола. Точки пересечения с осями координат: А(0; 1) – с осью Оу; с осью Ох – нет точек пересечения, т.к. уравнение 2х2 – 2х + 1 = 0 не имеет решений (D < 0). Найдем вершину параболы:
xb = -b/2a;
xb = 2/4 = 1/2;
yb = 1/2, то есть вершина параболы точка В имеет координаты В(1/2; 1/2).
Итак, фигура, площадь которой требуется определить, показана штриховкой на рис. 5.
Имеем: SОAВD = SOABC – SADBC.
Найдем координаты точки D из условия:
6х – 7 = 0, т.е. х = 7/6, значит DC = 2 – 7/6 = 5/6.
Площадь треугольника DBC найдем по формуле SADBC = 1/2 · DC · BC. Таким образом,
SADBC = 1/2 · 5/6 · 5 = 25/12 кв. ед.
Далее:
SOABC = ʃ02(2x2 – 2х + 1)dx = (2x3/3 – 2х2/2 + х)|02 = 10/3 (кв. ед.).
Окончательно получим: SОAВD = SOABC – SADBC = 10/3 – 25/12 = 5/4 = 1 1/4 (кв. ед).
Ответ: S = 1 1/4 кв. ед.
Мы разобрали примеры нахождения площадей фигур, ограниченных заданными линиями. Для успешного решения подобных задач нужно уметь строить на плоскости линии и графики функций, находить точки пересечения линий, применять формулу для нахождения площади, что подразумевает наличие умений и навыков вычисления определенных интегралов.
© blog.tutoronline.ru,
при полном или частичном копировании материала ссылка на первоисточник обязательна.
Общие сведения
Вычислить площадь фигуры на плоскости считается довольно простой операцией. Для ее выполнения необходимо знать только формулу. Существенно усложняет задачу фигура, ограниченная прямыми.
Одной из них считается криволинейная трапеция. Ее площадь можно определить только при нахождении значений определенного интеграла.
Операция интегрирования считается довольно сложной, поскольку необходимо знать основные правила. Перед нахождением площади криволинейной трапеции специалисты рекомендуют внимательно изучить и освоить правила интегрирования основных функций.
Разбирается неопределенный интеграл, а затем осуществляется переход к более сложным операциям.
Информация об интегралах
С понятием интеграла связано много направлений научных отраслей. Обозначается он символом «∫». С помощью интеграла открываются большие возможности по быстрому и эффективному нахождению значений следующих величин: площади криволинейной трапеции, объема тела вращения, поверхности, пути при неравномерном движении, массы неоднородного физического тела и так далее.
Упрощенный вариант представления и определения интеграла — сумма бесконечно малых слагаемых. Интеграл бывает нескольких типов: одинарный, двойной, тройной, криволинейный и так далее. Для любого элемента он может быть двух типов:
- Неопределенный.
- Определенный.
Операция нахождения первого типа значительно проще второго. Это объясняется тем, что во втором случае следует не только найти первообразную, но и выполнить правильную подстановку значений.
Неопределенным интегралом функции вида f(х) называется такая первообразная функция F(х), производная которой равна подинтегральному выражению. Записывается это таким образом: ∫(f(x)) = F(х) + С.
Последняя величина является константой, поскольку при выполнении операции нахождения производной константа равна 0.
Для нахождения первообразной используется специальная таблица интегралов:
Рисунок 1. Таблица интегралов и их первообразные.
В таблице приведены простые функции. Для нахождения площади фигуры, которая ограничена линиями, достаточно значений первообразных на рисунке 1. Вычисление определенного интеграла заключается в получении первообразной и подстановке начального и конечного значений. Следует отметить, что константа при этом не берется. Существует способ, чтобы найти определенный интеграл. Формула Ньютона-Лейбница позволяет быстро и эффективно вычислить площадь фигуры. Для этого нужно подставить значения ее границ (a и b) в первообразные: F(x)|(a;b) = F(b) — F(a).
Криволинейные фигуры
Криволинейная фигура (трапеция) — класс плоских фигур, которые ограничены графиком неотрицательной и непрерывной функции, а также осью ОУ и прямыми (х = а, х = b). Она изображена на рисунке 2. Для нахождения ее площади следует использовать определенный интеграл.
Рисунок 2. Фигуры с криволинейными сторонами.
Интегрирование разбивает фигуру на прямоугольные части. Длина каждой из них равна ординате y = f(х) через промежутки, которые очень малы, по оси декартовой системы координат (есть еще и полярная) ОХ на отрезке [a;b]. Ширина является бесконечно малым значением. При интегрировании находятся площади прямоугольников и складываются. Для того чтобы не путаться в графиках, геометрическую фигуру следует заштриховать.
Криволинейная трапеция — геометрическая фигура с неровными сторонами, которые образовались в результате пересечения графика непрерывной функции с осями абсцисс и ординат.
Применение обыкновенных методов нахождения площади этой фигуры невозможно, поскольку она обладает одной или несколькими неровными сторонами (кривыми линиями).
Способы вычисления и рекомендации
Для расчетов площади криволинейной трапеции используется несколько методов. Их условно можно разделить на следующие: автоматизированные и ручные. Первый из них выполняется при помощи специализированного программного обеспечения (ПО). Примером является онлайн-калькулятор, который не только находит площадь заданной фигуры, но и изображает ее в декартовой системе координат.
Существует и другое ПО, которое является более «мощным». К нему можно отнести наиболее популярные среды: Maple и Matlab. Однако существует множество программ, написанных на языке программирования Python. Программы нужны также при освоении темы интегрирования. Если необходимо рассчитать множество интегралов и площадей криволинейных фигур, то без них не обойтись.
Новичку для автоматизированных вычислений рекомендуется применять различные онлайн-калькуляторы. Однако следует выделить неплохую программу, которая обладает довольно неплохими функциональными возможностями.
Она называется Integral calculator и представляет собой очень удобное приложение для Android-устройств. Кроме того, можно скачать подобное ПО для Linux, Mac и Windows.
Программа — это калькулятор, который используется для нахождения интегралов и производных, а также его можно применять для решения уравнений интегрального и дифференциального типов. Integral calculator обладает такими функциональными возможностями:
- Вычисление производных.
- Нахождения первообразных для определенных и неопределенных интегралов.
- Решение систем уравнений.
- Выполнения операций над матрицами и определителями.
- Построение графиков заданных функций в 2D и 3D.
- Расчет точек перегиба.
- Вычисление рядов Фурье.
- Решение дифференциальных уравнений линейного типа первого и второго порядков.
Однако специалисты не рекомендуют использовать приложения такого типа, поскольку нужно уметь решать подобные задачи самостоятельно. Любые математические операции развивают мышление, а злоупотребление ПО приводит к значительной деградации. Решать какие-либо задачи рекомендуется также людям, которые не имеют отношения к математической сфере.
Основной алгоритм
При нахождении площади криволинейной трапеции рекомендуется следовать определенному алгоритму. Он поможет избежать ошибок, поскольку задача разбивается на несколько простых подзадач, решение которых довольно просто контролировать. Алгоритм имеет следующий вид:
- Нужно прочитать и понять условие задачи.
- Начертить декартовую систему координат.
- Построить график заданной функции.
- Изобразить линии, ограничивающие фигуру.
- После определения границ нужно аккуратно заштриховать фигуру.
- Вычислить неопределенный интеграл функции, которая дана в условии.
- Посчитать площадь, подставив значения ограничивающих прямых в первообразную.
- Проверить решение задачи при помощи программы.
Первый пункт — внимательное чтение условия задачи. Этап считается очень важным, поскольку формирует дальнейший алгоритм. Необходимо выписать все известные данные, а затем подумать над дальнейшим решением задачи. Следует обратить особое внимание на график функции, который при возможности нужно упростить. Далее следует выписать линии, которые будут ограничивать фигуру.
Следующий пункт считается наиболее простым, поскольку нужно начертить обыкновенную систему координат. В условии должен быть указан ее тип. Если обозначена полярная система, то следует ее начертить. Во всех остальных случаях изображается декартовая система координат.
Третий пункт алгоритма — правильное построение графика функции. В этом случае нет необходимости составлять таблицу зависимости значения функции от аргумента. График должен быть схематичным. Например, если это парабола, то нужно ее изобразить. В этом случае необходимо ознакомиться с основными базовыми функциями и их графиками.
Следующим шагом является правильное изображение прямых. Если ее уравнение имеет следующий вид «x = 5» или что-то подобное, то она будет проходить параллельно оси ОУ. Например, при y = 10 прямая проходит параллельно оси ОХ. В других случаях нужно составить таблицу зависимостей значений уравнения прямой от переменной. Следует брать всего два значения аргумента, поскольку их достаточно для проведения прямой.
После всех операций образуется фигура, которая ограничена линиями. Ее необходимо заштриховать. После этого вычисляется неопределенный интеграл заданной функции. Необходимо воспользоваться табличными значениями первообразных на рисунке 2. Однако здесь есть небольшой нюанс: константу записывать нет необходимости. Она «уничтожается» при подстановке в формулу Ньютона-Лейбница.
В полученное значение следует подставить значения границ. Кроме того, необходимо обратить особое внимание на знак формулы. При отрицательном значении границы формула принимает следующий вид: F(x)|(-a;b) = F(b) — F(-a) = F(b) + F(a). Проверка правильности решения выполняется с помощью ПО.
Примеры решения
Для закрепления теоретического материала специалисты рекомендуют решить несколько задач. В качестве примера можно взять криволинейные трапеции, изображенные на рисунке 2.
Разновидность параболы
В первом примере функция вида y = -x^2 + 2x и ось ОХ образуют фигуру. Необходимо найти ее площадь. Из функции видно, что ветви параболы направлены вниз (отрицательный знак перед квадратом). Точки пересечения находятся следующим образом:
- Тело функции приравнивается к 0: -х^2 + 2x = 0.
- Выносится общий множитель: -x(x-2) = 0.
- Решаются обе части уравнения.
- Первый корень: -х1 = 0 или х1 = 0.
- Для нахождения второго нужно решить другую часть уравнения: х2-2 = 0. Отсюда, х2 = 2.
Ветви параболы проходят через координаты по ОХ: 0 и 2 соответственно. Координата «х» вершины точки параболы находится с помощью подстановки в формулу: x = -b/(2*a) = -2 / -2 = 1. В этом случае координата «у» вычисляется следующим образом: y = -(1^2) + 2 * 1 = -1 + 2 = 1. Точка с координатами (1;1) является вершиной параболы. Границы интегрирования — координаты по ОХ, через которые проходят ветви параболы.
После всех операций следует вычислить неопределенный интеграл функции, воспользовавшись таблицей на рисунке 1: ∫ (-х^2 + 2x) dx = — (x^3 / 3 + x^2) + C = x^2 — x^3 / 3 + C. После этого следует подставить начальное и конечное значения (константа убирается): S = x^2 — x^3 / 3 = (2^2 — 2^3 / 3) — (0^2 — 0^3 / 3) = 4 — 8/3 = 4 / 3 (кв. ед.). Последняя запись является единицей измерения площади. Она обозначается в условных единицах, так как в условии задачи размерность сторон фигуры не указана.
Гипербола, степенная и прямая
На следующем рисунке изображен график функции гиперболы (у = 1 / х). Прямые, которые ограничивают график, описываются следующими законами: у1 = -2 и у2 = -1. Для вычисления площади заданной фигуры следует взять интеграл: ∫(1/х) dx = ln (|x|) + С. Для окончательного решения необходимо подставить значения в натуральный логарифм: S = ln (2) — ln (1) = 0,6931 — 0 = 0,6931 (кв. ед.).
Фигура, которая ограничена прямыми y1 = -1 и y2 = 1, и представлена функцией вида y = 3^x. Площадь находится следующим образом: S = ∫ (3^x) dx = 3^x / (ln(|3|)) = [3^1 / (ln(3))] — [3^(-1) / (ln(3))] = (3 / 1,0986) — ((1/3) / 1,0986) = 2,7307 — 0,3034 = 2,4273 (кв. ед.).
Последняя фигура представлена графиком прямой y = 0,5х + 1, которую ограничивают прямые х1 = -1 и х2 = 2. Значение площади можно найти таким способом: S = ∫ (0,5х + 1) dx = (0,5 * х^2) / 2 + x = [((0,5 * 2^2) / 2) + 2] — [((0,5 * (-1)^2) / 2) + (-1)] = 3 — 0,75 = 2,25 (кв. ед.).
Для определения значения площади криволинейной фигуры (трапеции) необходимо использовать определенные интегралы. При решении нужно внимательно следить за знаками и первообразными из таблицы на рисунке 1.
Определение значения площади фигуры, ограниченной линиями y=f(x), x=g(y)
При помощи основных формул и значений интегралов, можно определить площадь криволинейной трапеции G. Для этого используются следующий перечень формул:
[ S(G)=int_{a}^{b} f(x) d x ]
Формула, для определения непрерывной и положительной функции, следующего вида: y=f(x) на промежутке [a;b].
[ S(G)=-int_{a}^{b} f(x) d x ]
Для непрерывной и функции с отрицательными показателями, вида: y=f(x) на числовом промежутке [a;b].
Однако, когда необходимо решить задачи с определением площади фигур, очень часто возникает необходимость применять более сложные фигуры.
Для этого используют фигуры, площади которых ограничены линиями, которые представлены в виде функций следующего типа: как y=f(x) или x=g(y).
Доказательство данных функций подробно описывается для трех случаев, параллельно изображая весь процесс решения графиками на координатной прямой.
Первый вариант:
В данной ситуации, обе функции имеют положительные характеристики, в силу свойства целостности площади. Следовательно, сумма для площадей исходной фигуры, обозначенной G и криволинейной геометрической трапеции G1 равняется значению площади фигуры G2. Из этого следует:
[ S(G)=Sleft(G_{2}right)-Sleft(G_{1}right)=int_{a}^{b} f_{2}(x) d x-int_{a}^{b} f_{1}(x) d x=int_{a}^{b}left(f_{2}(x)-f_{1}(x)right) d x ]
Второй вариант:
Таким же образом, как и в первом случае, можно доказать равенство, которое характерно для второго варианта.
[ S(G)=Sleft(G_{2}right)+Sleft(G_{1}right)=int_{a}^{b} f_{2}(x) d x+left(-int_{a}^{b} f_{1}(x) d xright)=int_{a}^{b}left(f_{2}(x)-f_{1}(x)right) d x ]
Графически данная ситуация будет выглядеть следующим образом.
Третий вариант:
Для данного варианта характерно две функции, отрицательные по своим значениям.
Формула, которая применяется для доказательства, выглядит следующим образом:
[ S(G)=Sleft(G_{1}right)-Sleft(G_{2}right)=-int_{a}^{b} f_{1}(x) d x-left(-int_{a}^{b} f_{2}(x) d xright)=int_{a}^{b}left(f_{2}(x)-f_{1}(x)right) d x ]
Для более понятно и доступного восприятия, лучше всего данное доказательство изображать в виде графического рисунка.
Нет времени решать самому?
Наши эксперты помогут!
Общий случай, для определения площади фигуры
Общий случай для фигуры, когда функция имеет вид: [y=f_{1}(x) text{ и } y=f{2}(x)] и пересекают ось значений на координатной прямой.
Точки, которые пересекают вышеуказанные функции, можно обозначать следующими показателями: [x_{i}, quad i=1,2, ldots, n-1]. Данные точки, разделяют промежуток значений (a и b) на несколько частей, которые можно обозначить как n. Значение а всегда равняется b. Заданную фигуру, площадь которой нужно определить, можно обозначить как объединение двух фигур. На интервале, где располагается геометрическая фигура, она попадает под один из трех вариантов, которые были рассмотрены ранее.
[ Sleft(G_{i}right)=int_{x_{i-1}}^{x_{i}}left(f_{2}(x)-f_{1}(x)right) d x, quad i=1,2, ldots, n ]
Следовательно, можно составить и записать следующее выражение:
[S(G)=sum_{i=1}^{n} Sleft(G_{i}right)=sum_{i=1}^{n} int_{x_{i-1}}^{x_{i}}left(f_{2}(x)-f_{i}(x)right) d x=int_{x_{0}}^{x_{0}}left(f_{2}(x)-f_{1}(x)right) d x=int_{a}^{b}left(f_{2}(x)-f_{1}(x)right) d x]
Для последнего перехода функции справедливо пятое свойство интегральных значений.
Из этого следует, что заданная формула: [S(G)=int_{a}^{b}left(f_{2}(x)-f_{1}(x)right) d x] является доказанной.
Примеры вычисления площади стороны фигуры
Необходимо определить вычислить площадь фигуры ограниченной линиями геометрической фигуры, которая ограничена параболой:
[y=-x^{2}+6 x-5] и прямыми линиями: [y=-frac{1}{3} x-frac{1}{2}], [, x=1, x=4].
На протяжении всего отрезка [1;4] график в виде параболы равен функции:
[y=-x^{2}+6 x-5] и расположен выше прямой: [y=-frac{1}{3} x-frac{1}{2}]
Следователь, применяя все известные формула и используя алгоритм решения, для определения площади фигуры. Можно определить значение определенного интеграла по формуле Ньютона-Лейбница:
Определим значение площади фигуры, которая ограничена линиями, со следующими значениями:
[ y=sqrt{x+2}, quad y=x, quad x=7 ]
Для вычисления необходимо выяснить предел интегрирования. Так как дана только одна прямая равная 7.
Для этого необходимо построить график, со всеми известными данными.
Согласно графику, можно сделать вывод, что нижний предел интегрирования, для определения площади, будет являться точка пересечения графика прямой
y=x и значения половины параболы [y=sqrt{x+2}]
Значение данной точки можно вычислить из следующего равенства:
Исходя из вычислений, приведенных выше, можно сделать вывод, что абсциссой точки, где происходит пересечение, будет являться значение 2.
В данном примере и графике видно, что все линии пересекаются в точках на промежутке (2;2).
График функции y=x располагается выше графической функции [y=sqrt{x+2}], которой характерен интервал (2;7).
Для определения площади используем формулу: