Как найти площадь фигуры заданной полярными координатами

Площадь S криволинейного сектора, ограниченного непрерывной кривой r=r(f) и двумя лучами f=f1 и f=f2, где f1<f2 равняется половине определенного интегралу от квадрата радиуса кривой, проинтегрированного в пределах изменения угла
Задачи взяты из программы практикума для студентов мех-мата Львовского национального университета имени Ивана Франко. Первый номер в примерах отвечает номеру основного задания из сборника М. В. Заболоцький, Фединяк С.И., Филевич П.В. «Практикум из математического анализа» (рядом стоит номер из сборника Б. П. Демидовича). 

Для запоминания основных моментов схема интегрирования и нахождения площадей из примера в пример будет повторяться. Сами ррешеня по возможности  будут проиллюстрированы графиками исследуемых кривых.

Найти площади фигур, ограниченных кривыми, заданными в полярных координатах

Пример 2.106 (2418) Вычислить площадь фигуры, ограниченной кривыми r2=a2*cos(2f) (лемниската Бернулли).
Вычисление: Лемниската Бернулли — геометрическое место точек, произведение расстояний от которых до двух фиксированных точек (фокусов) остается постоянным и равняется квадрату половины расстояния между фокусами.
Запишем подинтегральную функцию: r2=a2*cos(2f) (известна за условием).
Найдем пределы интегрирования:
задана кривая замкнутая, симметричная относительно прямых r*cos(f)=0 и r*sin(f)=0.
Наведем график лемнискаты Бернулли
лемниската Бернуллі
Поскольку заданная функция осями координат делится на четыре равных части и достигает своих критических значений при f1=0 (r=a) и f2=p/4 (r=0), то площадь фигуры вычислим для одной части лемнискаты, а результат умножим на 4.
Найдем площадь фигуры интегрированиям по углу

Площадь измеряется в единицах квадратных, однако в этом и следующих примерах размерности наводить не будем, хотя о них помним.

Пример 2.107 (2419) Найти площадь фигуры, ограниченной кривыми r=a* (1+cos(f)) — кардиоида.
Вычисление: Кардиоида — плоская линия, которая описывается фиксированной точкой круга, который катится по неподвижному кругу с таким же радиусом a.
Записываем подинтегральную функцию: r2=a2*(1+cos(f))2.
Находим пределы интегрирования: кривая замкнутая, симметричная относительно прямой r*sin(f) =0.
Поскольку заданная функция осями координат делится на две равных части и достигает своих критических значений при f1=0 (r=2a) и f2=p (r=0), то площадь фигуры вычислим для половины кардиоиды, а результат умножим на 2.
График кардиоиды имеет вид

Графики кардиоиды
Вычислим площадь фигуры, которая ограничена заданной кривой, интегрированием:

Пример 2.108 (2420) Найти площадь фигуры, ограниченной кривой r=a*sin(f) -трилисник.
Вычисление: Подносим функцию к квадрату, чтобы получить подинтегральную функцию:
r2=a2*sin2(f).
График трилистника в полярной системе координат
трилистник
Установим пределы интегрирования:
Поскольку заданный график функции делится на шесть равных частей (полупелюсток) и достигает своих критических значений при f1=0 (r=0) и f2=p/6 (r=a/2) то площадь фигуры вычислим для одной его части, а результат умножим на 6.
Находим площадь фигуры интегрированием по углу

Получили простую для вычислений формулу площади трилистника S=Pi*a2/4.

Пример 2.109 ( 2421) Вычислить площадь фигуры, ограниченной кривой (парабола), f1=p/4, f2=p/2.
Вычисление: Подносим к квадрату уравнения кривой в полярной системе коринат (СК).

Пределы интегрирования известны f1=p/4, f2=p/2 за условием.
График фигуры, площадь которой нужно найти имеет вид
парабола
Интегрированием вычисляем площадь фигуры, которая ограничена параболой:

Для вычисления интеграла следует выполнить замену переменных, не забывая при этом , что изменяются пределы интегрирования.

Пример 2.110 ( 2422) Найти площадь фигуры, ограниченной кривой (эллипс)
Вычисление:
Запишем подинтегральную функцию:

Пределы интегрирования: f1=0, f2=2p (начало и конец кривой эллипса).
График эллипса имеет вид
эллипс
Находим площадь елипса, воспользовавшись следующей формулой интегрирования

При выведении этой формулы пользовались методом интегрирования частями!

Напоследок превращаем конечную формула с помощью известных формул.
Как видим, ответы задач 2.110 и 2.87 совпадают, то есть площадь эллипса S=Pi*a*b вычислена правильно.

Пример 2.111 (2422.1) Найти площадь фигуры, ограниченной кривой заданной в полярных координатах r=3+2*cos(f).
Вычисление: Сначала находим подинтегральную функцию: r2=(3+2*cos(f))2.
Дальше пределы интегрирования: задана кривая замкнутая, симметричная относительно прямой r*sin(f)=0.
Ее график приведен на рисунку ниже

Поскольку задана кривая осями координат делится на две равных части и достигает своих критических значений при углах f1=0 (r=5) и f2=p (r=1), то вычислим половину площади фигуры, а результат умножим на 2.
Находим площадь фигуры через определенный интеграл

Интеграл в данном случае не тяжелый и, возведя в квадрат подинтегральную функцию и понизив квадрат косинуса, в результате вычислений получим, что площадь равна S=11*Pi.

Пример 2.112 (2424.1) Найти площадь фигуры, ограниченной кривой заданной в полярных координатах r2+f2=1.
Вычисление: Выражаемый подинтегральную функцию: r2=1-f2 .
Найдем пределы интегрирования.
, поэтому , откуда .

Построим график кривой в математическом пакете Maple17.
Кривая состоит из двух веток корневой функции, поэтому для корректного ее отображения используем следующий код:
> restart;
> with (plots) :
> q1:=plot(sqrt(1-phi^2),phi=-1.1, color=blue, thickness=2, coords=polar):
q2:=plot(-sqrt(1-phi^2),phi=-1.1, color=blue, thickness=2, coords=polar):
> display (q1, q2);
Фрагмент программы Maple приведен ниже
лемниската Бернуллі

Находим площадь фигуры, которая ограничена кривой:

Интеграл в этом задании простей всех, что рассматривались.

Пример 2.113 ( 2422.2) Вычислить площадь фигуры, ограниченной кривыми .
Вычисление: Выписываем подинтегральные функции:

Поскольку на промежутке интегрирования между кривыми выполняется неравенство, то для нахождения площади имеем r22-r12.
Найдем пределы интегрирования: f1=0 — особенная точка (функция направляется к безграничности) f1=p/2 (известны за условием).
Находим площадь фигуры через предел от интеграла:

Данный пример хорошо разберите, чтобы не иметь трудностей на экзамене или модуле с подобными.

Пример 2.114 ( 2424) Вычислить площадь фигуры, ограниченной кривой
Вычисление: Запишем подинтегральную функцию: r2.
Запишем пределы интегрирования:
(известны за условием).
График функций имеет вид

Вычислим площадь фигуры, что приведена на графике.
Для этого сначала находим дифференциал угла f и переходим к интегрированию по радиусу.
Для нахождения интеграла применяем интегрирование частями

Интеграл достаточно трудно находится, поэтому все что содержит формула внимательно проанализируйте.

Пример 2.116 (2424.4) Найти площадь фигуры, ограниченной полярными кривыми f=r-sin(r), f=p.
Вычисление: Подинтегральную функция следующая: r2.
Пределы интегрирования: f1=0, (r=0) начало; f1=p (известно за условием).
График функции имеет вид

Находим площадь фигуры, применяя дважды интегрирование частями

Интеграл не слишком сложен, все переходы просьба проанализировать самостоятельно.

Пример 2423 Вычислить площадь фигуры, ограниченной полярными кривыми r=a*cos(f), r=a(cos(f)+sin(f)), M (a/2;0)єS.
Вычисление: Для представления фигуры, площадь которой нужно найти предварительно выполняем построение графика заданных функций

Поскольку точка M (a/2;0)єS делит искомую площадь на две части, то имеем два интеграла

Записываем уравнение подинтегральных функций:

Определяем пределы интегрирования:
, где и где (точки пересечения линий).
Вычисляем площадь изображенной фигуры интегрированием

Здесь воспользовались известные тригонометрические формулы для понижения степени косинусов и синусов под интегралом. Все остальное сводятся к применению простых формул интегрирования, и нахождения их значений.

Пример 2424.2 Найти площадь фигуры, ограниченной полярными кривыми f=sin(p*r), r пренадлежит [0;1].
Вычисление: Запишем подинтегральную функцию: r2.
Запишем пределы интегрирования: При росте r от 0 к 1/2 угол f растет от 0 к 1, при росте r от 1/2 к 1 угол f спадает от 1 к 0, поэтому величина интеграла в пределах r пренадлежит [0;1] имеет знак «минус».

Находим площадь фигуры, предварительно перейдя к новой переменной под интегралом:

Перед интегралом (после замены переменных) поставили знак «минус», поскольку интеграл является отрицательным на этом промежутке, а площадь должна быть положительной.

Перейти к полярным координатам и найти площади фигур, ограниченных кривыми

Пример 2426 Перейти к полярным координатам и найти площадь фигуры x3+y3=3a*x*y (лист Декарта)
Вычисление: Перейдем от прямоугольной системы координат к полярной системе координат за формулами перехода:

При подстановке в уравнение получим

Поднесем к квадрату, чтобы получить подинтегральную функцию:

Выпишем пределы интегрирования:
, потому что при и при .
График функции имеет вид

Найдем площадь фигуры интегрированиям:

Для получения конечной формулы площади дважды применяли замену переменных под интегралом.
Внимательно разберите, как при этом изменяются пределы и эффективность методики.

Пример 2427 Перейти к полярным координатам и найти площадь фигуры x4+y4=3a2(x2+y2)
Вычисление: Переходим от прямоугольной к полярной системе координат:

Выражаемый подинтегральную функцию делением:

Запишем пределы интегрирования:
(функция парная).
Ее график изображен на рисунку

Оси прямоугольной системы координат являются осями симметрии для фигуры, которая ограничена заданной линией, поэтому площадь найдем для симметричной части и результат умножим на 4.
Находим площадь фигуры через интеграл:

Пример 2428 Перейти к полярным координатам и найти площадь фигуры (x2+y2)2=2a2*x*y (лемниската).
Вычисление: Выполняем переход от прямоугольной к полярной системе координат:

— подинтегральная функция.
График исследуемой кривой следующий
лемниската
Запишем пределы интегрирования: учитывая симметрию точек лемнискаты относительно прямой r*sin(f) =r*cos (f) и относительно начала координат, то площадь фигуры будем искать в пределах и результат умножим на 4 (смотри пример 2.106).
Находим площадь фигуры интегрированием:

Вычислений в этом задании минимум.
В следующих публикациях Вы найдете больше примеров на применение определенного интеграла при вычислении длины дуги, объемов фигур вращения и площадей поверхностей.

Вычисление площадей фигур в различных системах координат

Площадь плоской фигуры в декартовых координатах

Напомним, что мы назвали криволинейной трапецией фигуру, ограниченную осью абсцисс, прямыми x=a и x=b и графиком функции y=f(x). В этом пункте выведем формулу для вычисления площади криволинейной трапеции.

Теорема 3. Если функция y=f(x) неотрицательна на отрезке [a;b] и непрерывна на нем, то соответствующая ей криволинейная трапеция квадрируема, причем ее площадь S выражается формулой

{ S= intlimits_{a}^{b} f(x),dx,.}

(4)

Доказательство. Криволинейная трапеция ограничена тремя отрезками и графиком непрерывной функции y=f(x). Как было показано в пункте 2 такая фигура квадрируема. Чтобы вычислить площадь этой трапеции, построим для нее внешние и внутренние ступенчатые фигуры (см. рис. 26).

Тогда, с одной стороны, имеем:

sum_{k=0}^{n-1}m_kDelta x_kleqslant Sleqslant sum_{k=0}^{n-1} M_kDelta x_k,,

где sum_{k=0}^{n-1}m_kDelta x_k — площадь внутренней ступенчатой фигуры, sum_{k=0}^{n-1}M_kDelta x_k —площадь внешней ступенчатой фигуры, m_k=min_{xin [x_k;x_{k+1}]}f(x) и M_k=max_{xin[x_k;x_{k+1}]}f(x). С другой стороны, по определению интеграла можно записать:

sum_{k=0}^{n-1}m_kDelta x_kleqslant intlimits_{a}^{b} f(x),dxleqslant sum_{k=0}^{n-1}M_kDelta x_k,.

Таким образом, числа S и intlimits_{a}^{b} f(x),dx разделяют одни и те же числовые множества: Biggl{,sum_{k=0}^{n-1}m_kDelta x_k,Biggr}, Biggl{,sum_{k=0}^{n-1}M_kDelta x_k,Biggr}. Но, как было показано при изучении определенного интеграла, эти множества разделяются лишь одним числом, и потому S=intlimits_{a}^{b} f(x),dx. Теорема доказана.

Аналогично доказывается, что если фигура ограничена снизу графиком функции y=f_1(x), сверху графиком функции y=f_2(x), а слева и справа прямыми x=a,~x=b (рис. 30), то ее площадь выражается формулой

S= intlimits_{a}^{b}bigl[f_2(x)-f_1(x)bigr]dx,.

Наглядный смысл формулы (4) состоит в том, что криволинейную трапецию можно рассматривать как объединение «бесконечно тонких полосок» с основаниями dx и высотами f(x).

Площадь фигуры между двумя графиками функций

Пусть теперь функция y=f(x) непрерывна на отрезке [a;b] и принимает на нем только неположительные значения. Выразим с помощью определенного интеграла площадь соответствующей криволинейной трапеции F.

Рассмотрим фигуру Phi, симметричную фигуре F относительно оси Ox. Эта фигура (рис. 31) представляет собой криволинейную трапецию, ограниченную сверху графиком непрерывной на отрезке [a;b] функции y=f(x), которая на [a;b] принимает только неотрицательные значения. По доказанному выше

Интегрирование знакопеременной функции

S(Phi)= intlimits_{a}^{b} bigl(-f(x)bigr)dx. Но S(Phi)=S(F).

Значит,

S(F)= intlimits_{a}^{b} bigl(-f(x)bigr)dx= -intlimits_{a}^{b} f(x),dx,.

Как мы видим, в рассматриваемом случае интеграл intlimits_{a}^{b} f(x),dx дает значение площади криволинейной трапеции F с точностью до знака. Если же функция f меняет знак на отрезке [a;b] в конечном числе точек, то значение интеграла intlimits_{a}^{b} f(x),dx дает алгебраическую сумму площадей соответствующих криволинейных трапеций, ограниченных частями графика функции y=f(x), отрезками оси Ox и, быть может, отрезками, параллельными оси Oy (рис. 32).


Пример 1. Найти площадь фигуры, ограниченной кривой y=e^x, осью абсцисс и прямыми x=1,~x=2 (рис. 33).

Решение. Имеем: S= intlimits_{1}^{2} e^x,dx= Bigl.{e^x}Bigr|_{1}^{2}= e^2-e= e(e-1) (кв. ед.).

Пример 2. Вычислить площадь фигуры, ограниченной дугой параболы y^2=4x и отрезком прямой x=2 (рис. 34).

Решение. Из рисунка видно, что трапеция, площадь которой нужно найти, расположена симметрично относительно оси абсцисс и, следовательно, искомая площадь равна

S= 2int_{0}^{2}2sqrt{x},dx= left.{frac{4x^{3/2}}{3/2}}right|_{0}^{2}= frac{8}{3}cdot 2^{3/2}= frac{16}{3}sqrt{2},.

Пример 3. Найти площадь фигуры, ограниченной графиками функций y^2=9x,~ y=3x (рис. 35).

Решение. Искомая площадь равна разности площадей криволинейного треугольника OAB и прямоугольного треугольника OAB:

S= intlimits_{0}^{1} sqrt{9x},dx- intlimits_{0}^{1} 3x,dx= left.{3cdot frac{x^{3/2}}{3/2}}right|_{0}^{1}- left.{3cdot frac{x^2}{2} }right|_{0}^{1}= 2-frac{3}{2}= frac{1}{2},.

Площадь фигуры, ограниченной кривой, осью абсцисс и двумя прямыми


Пример 4. Вычислить площадь фигуры, ограниченной петлей кривой a(y^2-x^2)+x^3=0.

Решение. Из уравнения кривой видно, что она расположена симметрично относительно оси Ox. Следовательно, можно сначала вычислить половину искомой площади (рис. 36). Рекомендуем читателю подробно исследовать и построить данную кривую.

Площадь фигуры, ограниченной петлёй кривой

Записав уравнение кривой в виде y^2=frac{x^2}{a}(a-x), найдем точки пересечения ее с осью Ox, положив y=0colon, x_1=0,~ x_2=a. Учитывая сказанное, найдем площадь половины петли:

frac{1}{2}S= frac{1}{sqrt{a}} intlimits_{0}^{a} xsqrt{a-x},dx,.

Воспользовавшись формулой из таблицы при a=-1,~ b=a, получим:

intlimits_{0}^{a} xsqrt{a-x},dx= left.{frac{2(-3x-2a)sqrt{(a-x)^3}}{15}}right|_{0}^{a}= frac{4}{15},a^{5/2},.

Значит, окончательно имеем:

frac{1}{2}S= frac{1}{sqrt{a}}cdot frac{4}{15},a^{5/2}= frac{4}{15},a^2quad Leftrightarrowquad S=frac{8}{15},a^2,.


Площадь фигуры, ограниченной кривой, заданной параметрически

Пусть кривая y=f(x),~ f(x)geqslant0,~ aleqslant xleqslant b задана в параметрической форме

begin{cases}x=varphi(t),\ y=psi(t),end{cases} alpha leqslant tleqslant b,,

где функция x=varphi(t) монотонна на отрезке [alpha;beta], причем varphi(alpha)=a, varphi(beta)=b, и имеет на этом отрезке непрерывную производную. Так как y=f(x)= fbigl(varphi(t)bigr)= psi(t), то по формуле замены переменной под знаком определенного интеграла получаем:

S= intlimits_{a}^{b} f(x),dx= intlimits_{alpha}^{beta} fbigl(varphi(t)bigr) varphi'(t),dt= intlimits_{alpha}^{beta} psi(t) varphi'(t),dt,.

Итак, площадь фигуры, ограниченной кривой, заданной параметрически, вычисляется по формуле:

S= intlimits_{alpha}^{beta} psi(t)varphi'(t),dt,.

(5)


Пример 5. Вычислить площадь эллипса, заданного параметрически begin{cases} x=acos{t},,\ y=bsin{t},,end{cases} 0leqslant tleqslant 2pi,.

Площадь фигуры, ограниченной эллипсом

Решение. Выберем ту часть эллипса (рис. 37), которая расположена в первом квадранте. Точке A(a;0) соответствует значение t=0, а точке B(0;b) — значение t=frac{pi}{2}. Поэтому

begin{aligned} S&= 4intlimits_{0}^{a}y,dx= -4intlimits_{0}^{pi/2}bsin{t}cdot(-asin{t}),dt= 4abintlimits_{0}^{pi/2} sin^2t,dt=\ &= 2abintlimits_{0}^{pi/2} bigl(1-cos2tbigr),dt= left.{2ab!left(t- frac{1}{2}sin2t right)}right|_{0}^{pi/2}= pi,ab,. end{aligned}


Площадь фигуры, заданной в полярных координатах

Вычислить площадь сектора, ограниченного лучами ell и m, выходящими из точки O, и непрерывной кривой Gamma (рис. 38). Выберем полярную систему координат, полюсом которой является точка O. Пусть rho=rho(varphi) — полярное уравнение кривой Gamma, а varphi_0 и Phi — углы между полярной осью и лучами ell и m соответственно. При этом пусть функция rho(varphi) непрерывна на [varphi_0;Phi].

Разобьем данный сектор на n частей лучами

varphi_0&lt; varphi_1&lt; varphi_2&lt; ldots&lt; varphi_k&lt; varphi_{k+1}&lt; ldots&lt; varphi_n= Phi

и рассмотрим k-й частичный сектор [varphi_k; varphi_{k+1}] (рис. 39). Пусть r_k — наименьшее значение функции rho(varphi) в [varphi_k; varphi_{k+1}], a R_k — наибольшее значение функции в этом отрезке.

Площадь в полярных координатах и разбиение сектора на n частей

Построим два круговых сектора с радиусами r_k и R_k. Обозначим через Deltavarphi_k величину угла рассматриваемого частичного сектора. Тогда площадь частичного криволинейного сектора будет заключена между площадями вписанного и описанного частичных круговых секторов

frac{1}{2}cdot r_k^2cdot Deltavarphi_k leqslant S_kleqslant frac{1}{2}cdot R_k^2cdot Deltavarphi_k,.

Построим аналогичным образом внутренние и внешние круговые секторы для всех частичных криволинейных секторов. Объединяя их, получим внутреннюю и внешнюю фигуры.

Площадь внутренней фигуры, состоящей из круговых секторов, равна frac{1}{2} sum_{k=0}^{n-1} r_k^2 Deltavarphi_k, а площадь внешней фигуры равна — frac{1}{2} sum_{k=0}^{n-1} R_k^2 Deltavarphi_k. Эти выражения являются нижней и верхней суммами Дарбу s_P и S_P для интеграла frac{1}{2} intlimits_{varphi_0}^{Phi} rho^2(varphi),dvarphi. Так как функция rho(varphi) непрерывна, то непрерывна, а потому и интегрируема функция rho^2(varphi). Поэтому для любого varepsilon найдется такое разбиение P отрезка [varphi_0,Phi], что S_P-s_P&lt;varepsilon. Из теоремы 2 пункта 2 следует, что заданный криволинейный сектор квадрируем. При этом для его площади S выполняются неравенства

Площадь, ограниченная одним лепестком полярной розы

frac{1}{2} sum_{k=0}^{n-1} r_k^2 Deltavarphi_kleqslant Sleqslant frac{1}{2} sum_{k=0}^{n-1} R_k^2 Deltavarphi_k,.

(6)

В то же время по определению определенного интеграла

frac{1}{2} sum_{k=0}^{n-1} r_k^2 Deltavarphi_kleqslant frac{1}{2} intlimits_{varphi_0}^{Phi} rho^2(varphi),dvarphi leqslant frac{1}{2} sum_{k=0}^{n-1} R_k^2 Deltavarphi_k,.

(7)

В силу единственности разделяющего числа из неравенств (6) и (7) следует, что

S= frac{1}{2} intlimits_{varphi_0}^{Phi} rho^2(varphi),dvarphi,.

(8)


Пример 6. Вычислить площадь, ограниченную одним лепестком розы rho=asin2varphi (рис. 40).

Решение. Значениям varphi=0 и varphi=frac{pi}{2} соответствует rho=0 Поэтому

S= frac{1}{2} intlimits_{0}^{pi/2} a^2sin^22varphi,dvarphi= frac{a^2}{2} intlimits_{0}^{pi/2} frac{1-cos4varphi}{2},dvarphi= left.{frac{a^2}{4}! left(varphi- frac{1}{4}sin4varphiright)}right|_{0}^{pi/2}= frac{a^2}{4}cdot frac{pi}{2}= frac{pi}{2},a^2,.

Математический форум (помощь с решением задач, обсуждение вопросов по математике).

Кнопка "Поделиться"

Если заметили ошибку, опечатку или есть предложения, напишите в комментариях.

14.1. Вычисление площадей плоских фигур в декартовых координатах

Пусть
функция

задана на отрезке

.

Рассмотрим
множество точек

,

которое
можно истолковать как криволинейную
трапецию

.

Необходимо найти
площадь этой криволинейной трапеции.

Исходя
из определения определенного интеграла
и его геометрического смысла, в том
случае, когда

площадь криволинейной трапеции равна

П
р и м е р.
Найдите
площадь фигуры, ограниченной линиями

Р
е ш е н и е.

Построим фигуру, ограниченную указанными
линиями.

Площадь заданной
фигуры вычислим по формуле (1)

Пусть
функции

и

заданы на отрезке

.
Рассмотрим множество точек

,

которое
можно истолковать как фигуру

.

Площадь
фигуры

можно рассматривать как разность
площадей

криволинейной
трапеции

и криволинейной трапеции


.

14.2. Вычисление площадей плоских фигур в полярных координатах

Пусть
положение любой точки на плоскости
однозначно определяется двумя числами

,
где


.

Пусть

неотрицательная, непрерывная на отрезке

функция,

.

Рассмотрим множество
точек


,

которое
можно истолковать как криволинейный
треугольник

Для вычисления
площади криволинейного треугольника
разобьём этот треугольник на элементарные
криволинейные треугольники.

Элементарные
криволинейные треугольники заменим
прямоугольными треугольниками.

Высоты
этих треугольников положим равными

,

а
основания соответственно –

.

Площадь

-го
элементарного треугольник очевидно
будет равна


.

Площадь
криволинейного треугольника

будет приближённо равна


.
(1)

Выражение
(1) можно рассматривать как интегральную
сумму для функции

на отрезке

.

Введём
обозначение

.

– это мелкость

разбиения


.

Тогда площадь
криволинейного треугольника

получим
при переходе в выражении (1) к пределу
при


=
.
(2)

Итак, площадь
плоской фигуры в полярной системе
координат равна


.

П
р и м е р.
Вычислите
площадь
фигуры, ограниченной кривой (кардиоидой)


.

Р
е ш е н и е.
Изобразим
график кардиоиды


Как
видим, кардиоида представляет собой
линию, симметричную относительно оси

.

Поэтому

П 15. Вычисление длины кривой

Пусть
кривая

задана параметрически


,

.

Разобьем
отрезок

на

частей точками

.

Обозначим
через

соответствующие точки на кривой

.
Соединим эти точки прямыми.

Полученную
при этом ломанную

называют ломанной, вписанной в кривую

.

Длину
элементарного звена

равна

Длина
ломанной

в таком случае будет равна


.
(1)

Обозначим
через

.
Тогда длину кривой

получим, перейдя в выражении (1) к пределу
при


.
(2)

Итак,
длина кривой

согласно выражению (2) определяется
формулой


.
(3)

Длина
пространственной кривой

,
заданной параметрически


,

,

будет равна


.

Если плоская
кривая задана в явном виде


,


,

то параметрические
уравнения кривой

можно в этом случае
представить в виде


,


,

.

В результате
выражении (3) получается в виде


.

П
р и м е р.

Найти длину
кривой, заданной
параметрически
.

Р
е ш е н и е.
Построим
график заданной кривой

Так
как кривая симметрична относительно
координатных осей, то достаточно найти

.

Поэтому длина
кривой будет равна



.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

    01.06.2015869.38 Кб130Guided Grammar III-IV.doc

Понравилась статья? Поделить с друзьями:
  • Гта вайс сити как найти все пакеты
  • Как правильно составить письмо на возврат денежных средств образец
  • Как найти кристального гордо в слайм ранчер
  • Как найти человека по геолокации смартфона
  • Если суп закис как исправить