Как найти площадь кольца зная диаметр

Как рассчитать площадь кольца

На данной странице калькулятор поможет рассчитать площадь кольца онлайн. Для расчета задайте внутренние и внешние радиусы или диаметры.

Через радиусы


Кольцо с указанием внешнего и внутреннего радиуса


Формула для нахождения площади кольца через внешний и внутренний радиус:

π — константа равная (3.14); r1 — внешний радиус; r2 — внутренний радиус.


Через диаметры


Кольцо с указанием внешнего и внутреннего диаметра


Формула для нахождения площади кольца через внешний и внутренний диаметр:

π — константа равная (3.14); d1 — внешний диаметр; d2 — внутренний диаметр.

Площадь кольца через радиусы

{S = pi (R^2 — r^2)}

С помощью приведенных калькулятора и формул можно рассчитать площадь кольца через радиусы или диаметры онлайн.

Кольцо — плоская геометрическая фигура, ограниченная двумя концентрическими окружностями.

Содержание:
  1. калькулятор площади кольца
  2. формула площади кольца через радиусы
  3. формула площади кольца через диаметры
  4. примеры задач

Формула площади кольца через радиусы

Площадь кольца через радиусы

{S = pi (R^2 — r^2)}

R — внешний радиус кольца

r — внутренний радиус кольца

Формула площади кольца через диаметры

Площадь кольца через диаметры

{S= dfrac{pi}{4}(D^2 — d^2)}

D — внешний диаметр кольца

d — внутренний диаметр кольца

Примеры задач на нахождение площади кольца

Задача 1

Найдите площадь кольца ограниченного двумя окружностями с общим центром и радиусами 3 см и 7 см.

Решение

В условии задачи даны радиусы ограничивающих кольцо окружностей, поэтому воспользуемся первой формулой.

S = pi (R^2 — r^2) = pi (7^2 — 3^2) = pi (49 — 9) = 40pi approx 125.66371 : см^2

Ответ: 108 cdot 0.866 approx 93.53074 : см^2

Полученный ответ можно проверить с помощью калькулятора .

Задача 2

Найдите площадь кольца, ограниченного концентрическими окружностями, радиусы которых равны dfrac{4}{sqrt{pi}} и dfrac{2}{sqrt{pi}}.

Решение

Задача похожа на предыдущую, поэтому алгоритм ее решения будет тот же.

S = pi (R^2 — r^2) = pi ({Big(dfrac{4}{sqrt{pi}} Big) }^2 — {Big(dfrac{2}{sqrt{pi}} Big) }^2) = pi (dfrac{16}{pi} — dfrac{4}{pi}) = pi dfrac{12}{pi} = 12 : см^2

Ответ: 12 : см^2

Наш калькулятор может производить вычисления с выражениями. Для того, чтобы ввести радиусы из условия их нужно записать в понятном для калькулятора формате:

dfrac{4}{sqrt{pi}} : rarr : 4/sqrt(pi)

dfrac{2}{sqrt{pi}} : rarr : 2/sqrt(pi)

Если ввести данные в таком формате, можно проверить ответ .

Задача 3

Найдите площадь кольца образованного двумя окружностями с общим центром если радиусы равны 15 и 13.

Решение

Задача аналогична предыдущим.

S = pi (R^2 — r^2) = pi (15^2 — 13^2) = pi (225 — 169) = 56pi approx 175.92919 : см^2

Ответ: 56pi approx 175.92919 : см^2

Проверка .

Задача 4

Найдите площадь кольца ограниченного двумя окружностями с общим центром и радиусами 13 и 12 см.

Решение

Задача аналогична предыдущим.

S = pi (R^2 — r^2) = pi (13^2 — 12^2) = pi (169 — 144) = 25pi approx 78.53982 : см^2

Ответ: 25pi approx 78.53982 : см^2

Проверка .

При помощи нашего калькулятора вы легко сможете узнать площадь кольца.

Для того что бы вычислить площадь кольца необходимо знать его внутренний и внешний радиус или внутренний и внешний диаметр. Если нам известны указанные величины, для нас не составит труда вычислить площадь кольца.
Площадь кольца рассчитывается по следующим формулам:

  1. Если нам известен радиус:

    Формула для расчета площади кольца через радиус:
    S=π(R2-r2)

    Вычислить площадь кольца через радиус

  2. Если нам известен диаметр:

    Формула для расчета площади кольца через диаметр:
    S=π/4(D2-d2)

    Вычислить площадь кольца через радиус

Где S – площадь кольца, R — внешний радиус кольца, r – внутренний радиус кольца, D – внешний диаметр кольца, d — внутренний диаметр кольца, π – число Пи которое всегда примерно равно 3,14.

Площадь кольца

  1. Главная
  2. /
  3. Математика
  4. /
  5. Геометрия
  6. /
  7. Площадь кольца

Чтобы найти площадь кольца, ограниченного двумя концентрическими окружностями, воспользуйтесь нашим очень удобным онлайн калькулятором:

Онлайн калькулятор

Площадь кольца по радиусам или диаметрам

Прощать кольца
Чему равна площадь кольца ограниченного двумя окружностями, если:

у внешней окружности

=

у внутренней окружности

=

Ответ: S =

0

Округление числа π: Округление ответа:

Просто введите радиусы или диаметры окружностей, и получите ответ.

Площадь кольца по толщине и любому другому параметру

Прощать кольца по толщине
Чему равна площадь кольца ограниченного двумя окружностями, если:

толщина кольца t =

=

Ответ: S =

0

Округление числа π: Округление ответа:

Просто введите толщину кольца и любой другой известный вам параметр, и получите ответ.

Теория

Площадь кольца через радиусы

Чему равна площадь кольца S ограниченного двумя окружностями, если известны радиус внешней окружности R и радиус внутренней окружности r ?

Формула

S = π ⋅ (R² — r²)

Пример

К примеру, определим площадь кольца, у которого внешний радиус R = 3 см, а внутренний радиус r = 2 см:

S = 3.14 ⋅ (3² — 2²) = 3.14 ⋅ (9 — 4) = 3.14 ⋅ 5 = 15.7 см²

Ответ: S = 15.7 см²

Площадь кольца через диаметры

Чему равна площадь кольца S ограниченного двумя окружностями, если известны диаметр внешней окружности D и диаметр внутренней окружности d ?

Формула

S = π/4 ⋅ (D² — d²)

Пример

К примеру, определим площадь шайбы, внешний диаметр которой D = 4 см, а внутренний – d = 2 см:

S = 3.14 / 4 ⋅ (4² — 2²) = 0.785 ⋅ (16 — 4) = 9.42 см²

Ответ: S = 9.42 см²

Площадь кольца через толщину

Чтобы посчитать площадь кольца S зная его толщину t, необходимо знать ещё какой-нибудь из следующих параметров:

  • внешний диаметр D
  • внутренний диаметр d
  • радиус внешней окружности R
  • радиус внутренней окружности r

Формулы

S = π/4 ⋅ (D² — (D — 2t)²)

S = π/4 ⋅ ((d + 2t)² — d²)

S = π ⋅ (R² — (R — t)²)

S = π ⋅ ((r + t)² — r²)

Пример

Для примера, найдём чему равна площадь кольца толщиной t = 2 см и внешним диаметром D = 5 см:

S = 3.14/4 ⋅ (5² — (5 — 2 ⋅ 2)²) = 0.785 ⋅ (25 — 1) = 18.84 см²

См. также

  • Все калькуляторы
  • /

  • Учеба и наука
  • /

  • Математика
  • /   Площадь кольца

    Площадь кольца

    Площадь кольца вычисляется как разность площадей кругов с радиусами R и r. Также площадь кольца через диаметры находится как произведение одной четвертой числа π на разность квадратов внешнего и внутреннего диаметров кольца.

    Установить Площадь кольца на мобильный

    Площадь кольца через радиусы

    площадь кольца через радиусы формула Площадь кольца через радиусы
    Внешний радиус кольца R
    Внутренний радиус кольца r
    Результат

    Площадь кольца через диаметры

    Площадь кольца через диаметры формула Площадь кольца через диаметры
    Внешний диаметр кольца D
    Внутренний диаметр кольца d
    Результат

    Скачать калькулятор

    Рейтинг: 2.9 (Голосов 18)

    ×

    Пожалуйста напишите с чем связна такая низкая оценка:

    ×

    Для установки калькулятора на iPhone — просто добавьте страницу
    «На главный экран»

    Для установки калькулятора на Android — просто добавьте страницу
    «На главный экран»

    Сообщить об ошибке

    Смотрите также

    Площадь фигур Объем фигур Периметр фигур Радиус фигур Единицы измерения площади
    Конвертеры Время для пробуждения Теоремы Угол Калькулятор Моей жизни

    Понравилась статья? Поделить с друзьями:
  • Как найти проктолога в москве
  • Как найти мотивацию на учебу подростку
  • Как составить сводный отчет за квартал
  • Как по построенной логической схеме составить логическое выражение
  • Тонька пулеметчица как ее нашли