- Главная
- Справочник
- Как найти площадь квадрата
Поможем решить контрольную, написать реферат, курсовую и диплом от 800р
Узнать стоимость
Как найти площадь квадрата
Поможем сделать домашку Online
Первое занятие бесплатно
Перейти
Решение задачи по геометрии
Выполнение 1-3 дня
от 150 ₽
Заказать
Подробнее
Контрольные по геометрии
Выполнение 1–4 дня
от 310 ₽
Заказать
Подробнее
Контрольные по математике
Выполнение 1–4 дня
от 260 ₽
Заказать
Подробнее
Содержание:
- Формула
- Примеры вычисления площади квадрата
Формула
Чтобы найти площадь квадрата (рис. 1), надо длину его стороны возвести в квадрат, то есть
$$S=a^2$$
Напомним, что квадратом называется правильный четырехугольник, у которого все стороны и все углы равны.
Примеры вычисления площади квадрата
Пример
Задание. Найти площадь квадрата со стороной 3 см.
Решение. Площадь квадрата равна квадрату его стороны, то есть
$S=3^2=9$(см2)
Ответ. $S=3^2=9$ (см2)
Все формулы площади
Калькулятор площади квадрата
236
проверенных автора готовы помочь в написании работы любой сложности
Мы помогли уже 4 430 ученикам и студентам сдать работы от решения задач до дипломных на отлично! Узнай стоимость своей работы за 15 минут!
Узнать стоимость
Пример
Задание. Найти площадь квадрата, диагональ которого равна 2 м.
Решение. Известно, что сторона
$a$ квадрата связана с его диагональю $d$ соотношением:
$$d=a sqrt{2}$$
тогда отсюда находим, что
$a=frac{d}{sqrt{2}}=frac{2}{sqrt{2}}=sqrt{2}$(м)
А тогда искомая площадь
$S=(sqrt{2})^{2}=2$ (м2)
Ответ. $S=2$ (м2)
Читать дальше: как найти площадь прямоугольника.
Статьи по теме
- Как найти площадь
- Как найти площадь треугольника
- Как найти площадь ромба
- Как найти площадь эллипса
- Как найти площадь прямоугольного треугольника
- Все темы раздела «Как найти площадь»
Поможем выполнить
любую работу
- Дипломные работы
- Курсовые работы
- Рефераты
- Контрольные работы
- Отчет по практике
- Эссе
Контрольные, курсовые, дипломные
Узнать подробнее
Разделы
- Формулы сокращенного умножения
- Формулы по физике
- Логарифмы
- Векторы
- Матрицы
- Комплексные числа
- Пределы
- Производные
- Интегралы
- СЛАУ
- Числа
- Дроби
Краткая теория
- Формулы
- Теоремы
- Свойства
- Таблицы
Теоретический материал
- Формулы и свойства логарифмов
- Таблица интегралов
- Тригонометрические формулы
- Таблица степеней
- Формулы и свойства степеней
- Формулы площади
- Таблица Лапласа
- Формулы объема
Все еще сложно?
Наши эксперты помогут разобраться
Все услуги
Дипломные работы
Выполнение 2-3 недели
от 7000 ₽
Курсовые работы
Выполнение 5-7 дней
от 1500 ₽
Контрольные работы
Выполнение 1–4 дня
от 260 ₽
Написание рефератов
Выполнение 2-5 дней
от 650 ₽
Решение задач
Выполнение 1–3 дня
от 90 ₽
Написание диссертаций
Выполнение 2-3 месяца
от 19 000 ₽
Как найти площадь
Как найти площадь ромба
Как найти площадь прямоугольного треугольника
Как найти площадь треугольника
Не получается написать работу самому?
Доверь это кандидату наук!
Я даю согласие на обработку своих персональных данных в соответствии с Политикой
конфиденциальности и принимаю условия Договора публичной оферты
Ищещь ответ на вопрос с которым нужна помощь?
80% ответов приходят в течение 10 минут
Прикрепить файл
250 ответов по вашей теме сегодня
2 специалиста свободны онлайн
Ответы приходят уже через 10 минут
90% ответов положительные
Квадрат – это геометрическая фигура; правильный четырехугольник, т.е. четырехугольник, имеющий равные стороны и углы (90°).
- Формула вычисления площади
- Примеры задач
Формула вычисления площади
1. По длине стороны:
Площадь квадрата (S) равняется квадрату длины его стороны:
S = a2
Данная формула следует из того, что квадрат является частным случаем прямоугольника, площадь которого находится путем умножения его смежных сторон:
S = a*b
А т.к. все стороны квадрата равны, то вместо стороны b мы снова подставляем в формулу сторону a, т.е. S = a*a = a2.
2. По по длине диагонали
Площадь квадрата равняется половине квадрата длины его диагонали:
S = d2/2
Соотношение стороны и диагонали квадрата: d=a√2.
Примеры задач
Задание 1
Найдите площадь квадрата, сторона которого равна 7 см.
Решение:
Используем формулу по длине стороны, т.е. S = 72 = 49 см2.
Задание 2
Найдите площадь квадрата, диагональ которого равняется 4 см.
Решение 1:
Воспользуемся второй формулой (по длине диагонали): S = 42/2 = 8 см2.
Решение 2:
Мы можем выразить длину стороны через диагональ: a = 4/√2. И тогда, используя первую формулу, S = (4/√2)2 = 8 см2.
Две фигуры называют равными, если одну их них можно так наложить на другую,
что эти фигуры совпадут.
Площади равных фигур равны. Их периметры тоже равны.
Площадь квадрата
Запомните!
Для вычисления площади квадрата нужно умножить его длину на саму себя.
S = a · a
Пример:
SEKFM = EK · EK
SEKFM = 3 · 3 = 9 см2
Формулу площади квадрата, зная
определение степени,
можно записать следующим образом:
S = a2
Площадь прямоугольника
Запомните!
Для вычисления площади прямоугольника нужно умножить его длину на ширину.
S = a · b
Пример:
SABCD = AB · BC
SABCD = 3 · 7 = 21 см2
Запомните!
Нельзя вычислять периметр или площадь, если длина и ширина выражены в разных единицах длины.
Обязательно проверяйте, чтобы и длина, и ширина были выражены в одинаковых единицах, то есть обе в см, м и т.д.
Площадь сложных фигур
Запомните!
Площадь всей фигуры равна сумме площадей её частей.
Задача: найти площадь огородного участка.
Так как фигура на рисунке не является ни квадратом, ни прямоугольником, рассчитать её площадь можно используя
правило выше.
Разделим фигуру на два прямоугольника, чьи площади мы можем легко рассчитать по известной формуле.
SABCE = AB · BC
SEFKL = 10 · 3 = 30 м2
SCDEF = FC · CD
SCDEF = 7 · 5 = 35 м2
Чтобы найти площадь всей фигуры, сложим площади найденных прямоугольников.
S = SABCE + SEFKL
S = 30 + 35 = 65 м2
Ответ: S = 65 м2 — площадь огородного участка.
Свойство ниже может вам пригодиться при решении задач на площадь.
Запомните!
Диагональ прямоугольника делит прямоугольник на два равных треугольника.
Площадь любого из этих треугольников равна половине площади прямоугольника.
Рассмотрим прямоугольник:
АС — диагональ прямоугольника
ABCD. Найдём площадь треугольников
ABC и
ACD
Вначале найдём площадь прямоугольника по формуле.
SABCD = AB · BC
SABCD = 5 · 4 = 20 см2
S
ABC = SABCD : 2
S
ABC = 20 : 2 = 10 см2
S
ABC =
S
ACD = 10 см2
Ваши комментарии
Важно!
Чтобы оставить комментарий, вам нужно войти на наш сайт при помощи
«ВКонтакте».
Оставить комментарий:
3 декабря 2015 в 22:54
Ирина Петренко
Профиль
Благодарили: 0
Сообщений: 1
Ирина Петренко
Профиль
Благодарили: 0
Сообщений: 1
как написать правильно площадь треугольника?
0
Спасибо
Ответить
9 декабря 2015 в 19:41
Ответ для Ирина Петренко
Тима Клюев
Профиль
Благодарили: 0
Сообщений: 8
Тима Клюев
Профиль
Благодарили: 0
Сообщений: 8
S(рисуешь мини треугольник) = ,,,,,
0
Спасибо
Ответить
Площадь квадрата через его периметр
Периметр
Формула площади квадрата через периметр
Площадь квадрата равна его периметру возведенному в квадрат и деленного на 16.
(S = p^2/16)
Пример
Периметр квадрата равен 18 см. Найдите площадь этого квадрата.
(S = p^2/16 = 18^2/16 = 20,25 см^2)
Также площадь можно найти другим способом:
Если периметр равен 18, то одна сторона квадрата будет равна 18/4=4,5 см. Тогда площадь будет равна 4,5*4,5=20,25 см2.
Площадь квадрата
Лариса Семеновна Петрова
Эксперт по предмету «Калькуляторы»
Задать вопрос автору статьи
Данная страница позволит вам не только ознакомиться со всевозможными формулами площади квадрата, но и воспользоваться нашими удобными онлайн-калькуляторами.
Также на странице есть примеры решения задач на то, как посчитать площадь квадрата через стороны, диагонали или радиус вписанной окружности.
С помощью этих примеров и калькуляторов вы сможете вспомнить забывшиеся формулы и применить их вместе с нами.
Решим пример на нахождение площади квадрата через его сторону, чтобы разобраться, как вычисляется площадь квадрата.
Пример 1
Дано:
сторона квадрата $a = 5$ см.
Найти:
площадь квадрата $S$.
Решение:
$S = 5^2 = 25 $ см$^2$.
Ответ:
$S = 25 $ см$^2$.
Площадь квадрата через его сторону
Формула площади квадрата через его сторону:
$S = a cdot a = a^2$, где
$S$ — площадь квадрата,
$a$ — сторона квадрата.
Разберем также, как быстро и просто узнать площадь квадрата через диагональ. Получившийся ответ можно сверить c ответом онлайн-калькулятора, также полезно проследить за алгоритмом решения во избежание ошибок.
Сдай на права пока
учишься в ВУЗе
Вся теория в удобном приложении. Выбери инструктора и начни заниматься!
Получить скидку 3 000 ₽
Пример 2
Дано:
диагональ квадрата $d = 6$ см.
Найти:
площадь квадрата $S$.
Решение:
$S = frac{6^2}{2} =frac{36 }{2} = 18 $ см$^2$.
Ответ:
$S = 18 $ см$^2$.
Площадь квадрата через его диагональ
Формула площади квадрата через его диагональ:
$S = frac{d^2}{2}$, где
$S$ — площадь квадрата,
$d$ — диагональ данного квадрата.
Для того, чтобы проверить своё решение, его можно сверить с решением онлайн-калькулятора.
Площадь квадрата через периметр
Формула площади квадрата через периметр:
$S = frac{P^2}{16}$, где
$S$ — площадь квадрата,
$P$ — периметр этого квадрата.
Также полезно рассмотреть пример решения задачи на нахождение площади квадрата через радиус вписанной окружности.
Пример 3
Дано:
радиус вписанной окружности $r = 6$ см.
Найти:
площадь квадрата $S$.
Решение:
$S = 4 cdot 6^2 = 4 cdot 36 = 144$ см$^2$.
Ответ:
$S = 144$ см$^2$.
Площадь квадрата через радиус вписанной окружности
Формула площади квадрата через радиус вписанной окружности:
$S = 4 cdot r^2$, где
$S$ — площадь квадрата,
$r$ — радиус вписанной окружности.
Площадь квадрата через отрезок, проведенный из вершины квадрата к середине противоположной стороны
Формула площади квадрата через отрезок, проведенный из вершины квадрата к середине противоположной стороны:
$S = frac{4 cdot k^2}{5}$, где
$S$ — площадь квадрата,
$k$ — отрезок, проведенный из вершины квадрата к середине противоположной стороны.
Площадь квадрата через радиус описанной окружности
Формула площади квадрата через радиус описанной окружности:
$S = 2 cdot R^2$, где
$S$ — площадь квадрата,
$R$ — радиус описанной окружности.
Находи статьи и создавай свой список литературы по ГОСТу
Поиск по теме
Дата написания статьи: 10.06.2019