Квадрат — определение и свойства
Квадрат — это прямоугольник, у которого все стороны равны.
Можно дать и другое определение квадрата:
квадрат — это ромб, у которого все углы прямые.
Получается, что квадрат обладает всеми свойствами параллелограмма, прямоугольника и ромба.
Квадрат относится к правильным многоугольникам. У правильного многоугольника все стороны равны и все углы равны.
Перечислим свойства квадрата:
- Все углы квадрата — прямые, все стороны квадрата — равны.
- Диагонали квадрата равны и пересекаются под прямым углом.
- Диагонали квадрата делятся точкой пересечения пополам.
- Диагонали квадрата являются биссектрисами его углов (делят его углы пополам).
- Диагонали квадрата делят его на 4 равных прямоугольных равнобедренных треугольника:
Периметр квадрата P в 4 раза больше его стороны и равен:
Площадь квадрата равна квадрату его стороны: .
Теорема 1. Диагональ квадрата равна произведению его стороны на , то есть
.
Доказательство:
Рассмотрим квадрат ABCD. Проведем диагональ квадрата AC.
Треугольник АВС – прямоугольный с гипотенузой АС. Запишем для треугольника АВС теорему Пифагора:
что и требовалось доказать.
Теорема 2. Радиус вписанной в квадрат окружности равен половине его стороны:
Доказательство:
Пусть окружность с центром в точке О и радиусом r вписана в квадрат АВСD и касается его сторон в точках
P, M, N, K.
Тогда поскольку AB параллельно CD. Через точку О можно провести только одну прямую, перпендикулярную АВ, поэтому точки Р, О и N лежат на одной прямой. Значит, PN – диаметр окружности. Поскольку АРND – прямоугольник, то PN = AD, то есть
, что и требовалось доказать.
Теорема 3. Радиус описанной около квадрата окружности равен половине его диагонали:
Доказательство:
Диагонали квадрата АС и BD равны, пересекаются в точке О и делятся точкой пересечения пополам. Поэтому OA=OB=OC=OD, т.е. точки A, B, C и D лежат на одной окружности, радиус которой R = d/2 (d=AC=BD). Это и есть описанная около квадрата АВСD окружность.
По теореме
Тогда , что и требовалось доказать.
Заметим, что периметр квадрата тоже можно связать с радиусами вписанной и описанной окружностей:
Четырехугольник является квадратом, если выполняется хотя бы одно из условий:
- Все стороны равны и среди внутренних углов есть прямой угол.
- Диагонали равны, перпендикулярны и, пересекаясь, делятся пополам.
Разберем несколько простых задач на тему «Квадрат». Все они взяты из Банка заданий ФИПИ.
Задача 1. Найдите сторону квадрата, диагональ которого равна .
Решение:
Мы знаем, что . Тогда .
Ответ: 2.
Задача 2. Найдите площадь квадрата, если его диагональ равна 1.
Первый способ решения:
Зная связь между стороной и диагональю квадрата (теорема 1), выразим сторону квадрата через его диагональ:
Тогда по формуле площади квадрата:
Второй способ решения:
Воспользуемся формулой для площади ромба:
Ответ: 0,5
Задача 3. Найдите радиус окружности, описанной около квадрата со стороной, равной .
Решение:
Радиус описанной окружности равен половине диагонали квадрата, поэтому
Ответ: 2.
Задача 4. Найдите сторону квадрата, описанного около окружности радиуса .
Решение:
Диаметр окружности равен стороне квадрата: .
Ответ: 8.
Задача 5. Радиус вписанной в квадрат окружности равен . Найдите диагональ этого квадрата.
Решение:
Сторона квадрата в два раза больше радиуса вписанной окружности:
Диагональ найдем, зная сторону квадрата:
Ответ: 56.
Задача 6. Радиус вписанной в квадрат окружности равен . Найдите радиус окружности, описанной около этого квадрата.
Решение:
Радиус окружности, вписанной в квадрат, равен половине стороны квадрата, а радиус описанной окружности равен половине диагонали квадрата:
Поэтому
Ответ: 22.
Задача 7. Найдите периметр квадрата, если его площадь равна 9.
Решение:
Найдем сторону квадрата:
Периметр квадрата со стороной 3 равен:
Ответ: 12.
Задача 8. Найдите площадь квадрата, в который вписан круг площадью .
Решение:
Площадь круга откуда радиус круга равен 2.
Сторона квадрата в два раза больше радиуса вписанного круга и равна 4. Площадь квадрата равна 16.
Ответ: 16.
Задача 9. Найдите радиус окружности, вписанной в квадрат ABCD, считая стороны квадратных клеток равными .
Решение:
Сторону квадрата найдем как диагональ другого квадрата со стороной 2 клеточки. Поскольку длина одной клеточки равна ., то сторона малого квадрата равна . А сторона квадрата ABCD равна
Радиус вписанной окружности в два раза меньше стороны квадрата и равен 2.
Ответ: 2.
Задача 10. Найдите радиус r окружности, вписанной в четырехугольник ABCD. В ответе укажите .
Решение:
Считаем стороны клеток равными единице. Четырехугольник ABCD — квадрат. Все его стороны равны, все углы — прямые. Как и в предыдущей задаче, радиус окружности, вписанной в квадрат, равен половине его стороны.
Найдем на чертеже прямоугольный треугольник. По теореме Пифагора найдем сторону, например, AB.
Она равна . Тогда радиус вписанной окружности равен . В ответ запишем .
Ответ: 5.
Благодарим за то, что пользуйтесь нашими публикациями.
Информация на странице «Квадратu0026nbsp;u0026mdash; определение иu0026nbsp;свойства» подготовлена нашими авторами специально, чтобы помочь вам в освоении предмета и подготовке к экзаменам.
Чтобы успешно сдать необходимые и поступить в ВУЗ или техникум нужно использовать все инструменты: учеба, контрольные, олимпиады, онлайн-лекции, видеоуроки, сборники заданий.
Также вы можете воспользоваться другими статьями из разделов нашего сайта.
Публикация обновлена:
08.05.2023
Квадрат, свойства и формулы, площадь и периметр.
Квадрат – это правильный четырёхугольник, то есть четырёхугольник, у которого все углы равны и все стороны равны.
Квадрат (понятие, определение), диагональ квадрата
Свойства квадрата
Формулы квадрата. Площадь квадрата. Периметр квадрата
Квадрат (понятие, определение), диагональ квадрата:
Квадрат – это правильный четырёхугольник, то есть четырёхугольник, у которого все углы равны и все стороны равны.
Квадрат – это четырехугольник, имеющий равные стороны и углы.
Рис. 1. Квадрат
Все углы квадрата прямые. Каждый из них прямой и равен 90°.
Таким образом, все квадраты отличаются друг от друга только длиной стороны.
Рис. 2. Квадрат и диагонали квадрата
Диагональ квадрата – это отрезок, соединяющий две вершины противоположных углов квадрата. AC и BD – это диагонали квадрата.
Квадрат является одновременно частным случаем других фигур: параллелограмма, ромба и прямоугольника. Поэтому квадрату присущи все свойства параллелограмма, ромба и прямоугольника.
Квадрат – это равносторонний прямоугольник.
Квадрат – это ромб с прямыми углами.
Свойства квадрата:
1. Длины всех сторон равны.
Рис. 3. Квадрат
AB = BC = CD = AD
2. Противоположные стороны квадрата параллельны.
Рис. 4. Квадрат
AB||CD, BC||AD
3. Все углы квадрата прямые. Каждый из них равен 90°.
Рис. 5. Квадрат
∠ABC = ∠BCD = ∠CDA = ∠DAB = 90°
4. Сумма углов квадрата равна 360 градусам.
∠ABC + ∠BCD + ∠CDA + ∠DAB = 360°.
5. Диагонали квадрата равны между собой.
Рис. 6. Квадрат
AC = BD
6. Диагонали квадрата взаимно перпендикулярны.
Рис. 7. Квадрат
AC ┴ BD
7. Диагонали квадрата точкой пересечения делятся пополам.
Рис. 8. Квадрат
BO = OD = AO = OC
8. Угол между диагональю и стороной квадрата равен 45 градусам.
Рис. 9. Квадрат
∠BCA = ∠ACD = ∠DAC = ∠CAB = 45°
9. Диагонали квадрата являются биссектрисами углов и делят углы пополам.
Рис. 10. Квадрат
∠ABD = ∠DBC = ∠BCA = ∠ACD = ∠CDB = ∠BDA = ∠DAC = ∠CAB = 45°
10. Каждая из диагоналей делит квадрат на два равных равнобедренных прямоугольных треугольника.
Обе диагонали делят квадрат на 4 равных равнобедренных прямоугольных треугольника.
Рис. 11. Квадрат
△ABD = △CBD = △ABC = △ACD,
△AOB = △BOC = △COD = △AOD
11. Точка пересечения диагоналей называется центром квадрата и также является центром вписанной и описанной окружности.
Рис. 12. Квадрат
Формулы квадрата. Площадь квадрата. Периметр квадрата:
Пусть a – длина стороны квадрата, d – диагональ квадрата, R – радиус описанной окружности квадрата, r – радиус вписанной окружности квадрата, P – периметр квадрата, S – площадь квадрата.
Формула диагонали квадрата:
, , , , .
Формула радиуса вписанной окружности квадрата:
Радиус вписанной окружности квадрата равен половине его стороны.
.
Формула радиуса описанной окружности квадрата:
.
Формула периметра квадрата:
, , .
Формула площади квадрата:
, , , , .
Квадрат
Прямоугольник
Прямоугольный треугольник
Равнобедренный треугольник
Равносторонний треугольник
Шестиугольник
Примечание: © Фото https://www.pexels.com, https://pixabay.com
Коэффициент востребованности
3 935
{S = a ^2}
На этой странице вы найдете удобный калькулятор для расчета площади квадрата и формулы, которые помогут найти площадь квадрата через его сторону, диагональ, периметр, а также радиусы вписанной и описанной окружности.
Квадрат — четырёхугольник, у которого все углы прямые (90 градусов) и все стороны равны между собой. Из-за своих свойств квадрат часто называют правильным четырехугольником.
Содержание:
- калькулятор площади квадрата
- формула площади квадрата через сторону
- формула площади квадрата через диагональ
- формула площади квадрата через радиус вписанной окружности
- формула площади квадрата через радиус описанной окружности
- формула площади квадрата через периметр
- примеры задач
Формула площади квадрата через сторону
S = a ^2
a — сторона квадрата
Формула площади квадрата через диагональ
S=dfrac{d^2}{2}
d — диагональ квадрата
Формула площади квадрата через радиус вписанной окружности
S = 4r^2
r — радиус вписанной окружности
Формула площади квадрата через радиус описанной окружности
S = 2R^2
R — радиус описанной окружности
Формула площади квадрата через периметр
S = dfrac{P^2}{16}
P — периметр квадрата
Примеры задач на нахождение площади квадрата
Задача 1
Найдите площадь квадрата если его диагональ равна 1.
Решение
Для решения задачи воспользуемся формулой.
S = dfrac{d^2}{2} = dfrac{1^2}{2} = dfrac{1}{2} = 0.5 : см^2
Ответ: 0.5 см²
Проверим ответ на калькуляторе .
Задача 2
Найдите площадь квадрата, описанного вокруг окружности радиуса 83.
Решение
Для решения этой задачи используем формулу площади квадрата через радиус описанной окружности.
S = 2R^2 = 2 cdot 83^2 = 2 cdot 6889 = 13778 : см^2
Ответ: 13778 см²
Проверим ответ с помощью калькулятора .
Задача 3
Найдите площадь квадрата если его сторона равна 8 см.
Решение
Используем первую формулу.
S = a ^2 = 8 ^2 = 64 : см^2
Ответ: 64 см²
Проверим результат на калькуляторе .
Задача 4
Найдите площадь квадрата периметр которого равен 456 см.
Решение
Используем формулу для площади квадрата через периметр.
S = dfrac{P^2}{16} = dfrac{456^2}{16} = dfrac{456 cdot cancel{456}^{ : 57}}{cancel{16}^{ : 2}} = dfrac{57 cdot cancel{456}^{ : 228}}{cancel{2}^{ : 1}} = 57 cdot 228 = 12996 : см^2
Ответ: 12996 см²
Проверка .
Задача 5
Найдите площадь квадрата со стороной 15 см.
Решение
Воспользуемся формулой площади квадрата через сторону.
S = a ^2 = 15 ^2 = 225 : см^2
Ответ: 225 см²
Проверка .
Квадрат. Формулы и свойства квадрата
Определение.
Квадрат — это четырехугольник у которого все четыре стороны и углы одинаковы.
Квадраты отличаются между собой только длиной стороны, но все четыре угла у них прямые, то есть по 90°.
Основные свойства квадрата
Квадратом также могут быть параллелограмм, ромб или прямоугольник если они имеют одинаковые длины диагоналей, сторон и одинаковые углы.
1. Все четыре стороны квадрата имеют одинаковую длину, то есть они равны:
AB = BC = CD = AD
2. Противоположные стороны квадрата параллельны:
AB||CD, BC||AD
3. Все четыре угла квадрата прямые:
∠ABC = ∠BCD = ∠CDA = ∠DAB = 90°
4. Сумма углов квадрата равна 360 градусов:
∠ABC + ∠BCD + ∠CDA + ∠DAB = 360°
5. Диагонали квадрата имеют одинаковой длины:
AC = BD
6. Каждая диагональ квадрата делит квадрат на две одинаковые симметричные фигуры
7. Диагонали квадрата пересекаются под прямым углом, и разделяют друг друга пополам:
AC┴BD | AO = BO = CO = DO = | d | |
2 |
8. Точка пересечения диагоналей называется центром квадрата и также является центром вписанной и описанной окружности
9. Каждая диагональ делит угол квадрата пополам, то есть они являются биссектрисами углов квадрата:
ΔABC = ΔADC = ΔBAD = ΔBCD
∠ACB = ∠ACD = ∠BDC = ∠BDA = ∠CAB = ∠CAD = ∠DBC = ∠DBA = 45°
10. Обе диагонали разделяют квадрат на четыре равные треугольника, причем эти треугольники одновременно и равнобедренные и прямоугольные:
ΔAOB = ΔBOC = ΔCOD = ΔDOA
Диагональ квадрата
Определение.
Диагональю квадрата называется любой отрезок, соединяющий две вершины противоположных углов квадрата.
Диагональ любого квадрата всегда больше его стороны в√2 раз.
Формулы определения длины диагонали квадрата
1. Формула диагонали квадрата через сторону квадрата:
d = a·√2
2. Формула диагонали квадрата через площадь квадрата:
d = √2S
3. Формула диагонали квадрата через периметр квадрата:
4. Формула диагонали квадрата через радиус описанной окружности:
d = 2R
5. Формула диагонали квадрата через диаметр описанной окружности:
d = Dо
6. Формула диагонали квадрата через радиус вписанной окружности:
d = 2r√2
7. Формула диагонали квадрата через диаметр вписанной окружности:
d = Dв√2
8. Формула диагонали квадрата через длину отрезка l:
Периметр квадрата
Определение.
Периметром квадрата называется сумма длин всех сторон квадрата.
Формулы определения длины периметра квадрата
1. Формула периметра квадрата через сторону квадрата:
P = 4a
2. Формула периметра квадрата через площадь квадрата:
P = 4√S
3. Формула периметра квадрата через диагональ квадрата:
P = 2d√2
4. Формула периметра квадрата через радиус описанной окружности:
P = 4R√2
5. Формула периметра квадрата через диаметр описанной окружности:
P = 2Dо√2
6. Формула периметра квадрата через радиус вписанной окружности:
P = 8r
7. Формула периметра квадрата через диаметр вписанной окружности:
P = 4Dв
8. Формула периметра квадрата через длину отрезка l:
Площадь квадрата
Определение.
Площадью квадрата называется пространство, ограниченное сторонами квадрата, то есть в пределах периметра квадрата.
Площадь квадрата больше площади любого четырехугольника с таким же периметром.
Формулы определения площади квадрата
1. Формула площади квадрата через сторону квадрата:
S = a2
2. Формула площади квадрата через периметр квадрата:
3. Формула площади квадрата через диагональ квадрата:
4. Формула площади квадрата через радиус описанной окружности:
S = 2R2
5. Формула площади квадрата через диаметр описанной окружности:
6. Формула площади квадрата через радиус вписанной окружности:
S = 4r2
7. Формула площади квадрата через диаметр вписанной окружности:
S = Dв2
8. Формула площади квадрата через длину отрезка l:
Окружность описанная вокруг квадрата
Определение.
Кругом описанным вокруг квадрата называется круг проходящий через четыре вершины квадрата и имеющий центр на пересечении диагоналей квадрата.
Радиус окружности описанной вокруг квадрата всегда больше радиуса вписанной окружности в√2 раз.
Радиус окружности описанной вокруг квадрата равен половине диагонали.
Площадь круга описанного вокруг квадрата большая площадь того же квадрата в π/2 раз.
Формулы определения радиуса окружности описанной вокруг квадрата
1. Формула радиуса окружности описанной вокруг квадрата через сторону квадрата:
2. Формула радиуса окружности описанной вокруг квадрата через периметр квадрата:
3. Формула радиуса окружности описанной вокруг квадрата через площадь квадрата:
4. Формула радиуса круга описанного вокруг квадрата через диагональ квадрата:
5. Формула радиуса круга описанного вокруг квадрата через диаметр описанной окружности:
6. Формула радиуса круга описанного вокруг квадрата через радиус вписанной окружности:
R = r √2
7. Формула радиуса круга описанного вокруг квадрата через диаметр вписанной окружности:
8. формула радиуса круга описанного вокруг квадрата через длину отрезка l:
Окружность вписанная в квадрата
Определение.
Кругом вписанным в квадрат называется круг, который примыкает к серединам сторон квадрата и имеет центр на пересечении диагоналей квадрата.
Радиус вписанной окружности равен половине стороны квадрата.
Площадь круга вписанного в квадрат меньше площади квадрата в 4/π раза.
Формулы определения радиуса круга вписанного в квадрат
1. Формула радиуса круга вписанного в квадрат через сторону квадрата:
2. Формула радиуса круга вписанного в квадрат через диагональ квадрата:
3. Формула радиуса круга вписанного в квадрат через периметр квадрата:
4. Формула радиуса круга вписанного в квадрат через площадь квадрата:
5. Формула радиуса круга вписанного в квадрат через радиус описанной окружности:
6. Формула радиуса круга вписанного в квадрат через диаметр, описанной окружности:
7 Формула радиуса круга вписанного в квадрат через диаметр вписанной окружности:
8. Формула радиуса круга вписанного в квадрат через длину отрезка l:
План урока:
Понятие площади многоугольника
Свойство аддитивности площади
Площадь квадрата
Соотношение между единицами измерения площадей
Площадь прямоугольника
Понятие площади многоугольника
Понятие площади уже знакомо нам из младших классов и повседневной жизни. Эта величина, которая, грубо говоря, характеризует размер плоских фигур. Она показывает, какую часть плоскости занимает та или иная фигура. Исторически понятие площади многоугольника считалось неопределяемым, так же как понятия точка, прямая, плоскость и т. д. Основная же задача геометров (а именно так называют математиков, специализирующихся на геометрии) сводилась к измерению площади.
Как известно, для проведения любых измерений должна существовать некоторая единица измерения. Так, массу измеряют в килограммах, длину – в метрах и т. д. При этом единицы измерения разных величин могут быть связаны друг с другом. С практической точки зрения удобно принять в качестве единицы измерения площади квадрат, сторона которого равна 1 метру. Принимается, что площадь такого квадрата равна 1 квадратному метру (обозначается символом м2):
Аналогично можно определить такие величины, как квадратный сантиметр (см2), квадратный километр (км2), квадратный миллиметр (мм2) и т.д.:
Как мы знаем, иногда в задачах единицу измерения длины не указывают вовсе. Например, говорят, что сторона квадрата равна единице. В таких случаях и площадь является безразмерной величиной. Принимается, что площадь квадрата со стороной, равной единице, также равна единице. Такой квадрат называется единичным.
Общепринято, что площадь фигуры обозначается буквой S.
Свойство аддитивности площади
Предположим, что нам надо найти площадь прямоугольника со сторонами 2 и 1. Его можно разбить на два квадрата со стороной 1, то есть на два единичных квадрата:
Этот прямоугольник занимает на плоскости в два раза больше места, чем единичный квадрат, поэтому логично считать, что его площадь равна 2. В данном случае мы разбили многоугольник на две фигуры, площадь каждой из которых нам была известна. Далее мы сложили площади известные нам площади и получили площадь прямоугольника.
В общем случае справедливо утверждение, что площадь всякой фигуры равна сумме площадей фигур, из которых она может быть составлена. Это свойство называют аддитивностью площади:
Площадь – не единственная величина, обладающая свойством аддитивности. Например, длина любого отрезка равна сумме длин отрезков, из которых он состоит. В классической физике считается, что масса сложного тела равна сумме масс тел, составляющих его. Аддитивность можно считать основным свойством площади.
Свойство аддитивности подсказывает нам, как измерять площадь произвольных многоугольников. Достаточно разбить такой многоугольник на несколько фигур, чья площадь нам известна, и сложить их площади.
Задание. Найдите площадь фигуры, показанной на рисунке. Длина стороны одной клеточки равна единице.
Решение. Каждая клеточка является, по сути, единичным квадратом, чья площадь равна 1. Можно видеть, что нарисованная фигура состоит 11 таких квадратов:
В силу свойства аддитивности площадь фигуры равна сумме площадей этих квадратов:
Если две фигуры можно разбить на одинаковые фигуры, то их называют равносоставленными фигурами. Покажем пример равносоставленных фигур, которые состоят из двух половинок круга:
Довольно очевидно, что равносоставленные фигуры имеют равную площадь. Также очевидно, что любые две равные фигуры являются равносоставленными, а потому их площади тоже равны.
Важно понимать разницу между равными и равносоставленными фигурами. Фигуры равны, если их можно наложить друг на друга, и при этом они полностью совпадут. Равносоставленные же фигуры могут и не накладываться друг на друга.
Ещё одно важное понятие – равновеликие фигуры. Так называют фигуры, чьи площади равны. Мы уже сказали, что любые две равносоставленные фигуры имеют одинаковую площадь, то есть являются равновеликими. Верно ли обратное? Всякие ли равновеликие фигуры являются равносоставленными? Оказывается, что нет. Можно нарисовать окружность и квадрат, имеющие равные площади, но разбить их на одинаковые фигуры не получится:
С помощью равных и равновеликих фигур можно находить площади фигур, которые невозможно разбить на единичные квадраты.
Задание. Найдите площадь прямоугольного треугольника, катеты которого равны единице.
Решение. Достроим такой прямоугольник до единичного квадрата. В результате гипотенуза треугольника окажется диагональю квадрата:
Получили, что единичный квадрат состоит из двух равных треугольников, чью площадь нам и надо найти. Обозначим площадь треугольника как S. Тогда справедливо равенство
Итак, зная свойства площади фигур, мы попытаемся дать этому понятию определение. Можно сказать, что площадь – это число, характеризующее плоскую фигуру и имеющее следующие свойства:
- площадь квадрата со стороной 1 равна единице:
- равносоставленные фигуры имеют равную площадь.
Такого описания вполне достаточно, чтобы вывести все формулы для нахождения площади многоугольников.
Площадь квадрата
Из младших классов известно, что для вычисления площади квадрата достаточно умножить его сторону саму на себя. Докажем это строго, используя лишь свойства площадей.
Попробуем вычислить площадь квадрата, если известна его сторона. Если она равна 2, то квадрат можно разбить на четыре единичных квадрата, а если она равна 3, то квадрат можно разделить уже на девять единичных квадратов:
Тогда площадь квадрата со стороной 2 равна 4, а со стороной 3 уже равна 9. В общем случае квадрат со стороной n (где n– натуральное число) можно разбить n2 единичных квадратов, поэтому его площадь будет равна n2.
Но что делать в случае, если сторона квадрата – это не целое, а дробное число? Пусть оно равно некоторой дроби 1/m, например, 1/2 или 1/3. Тогда поступим наоборот – разделим сам единичный квадрат на несколько частей. Получится почти такая же картина:
В общем случае единичный квадрат можно разбить на m2 квадратов со стороной 1/m. Тогда площадь каждого из таких квадратов (обозначим ее как S)может быть найдена из уравнения:
Снова получили, что площадь квадрата в точности равна его стороне, возведенной во вторую степень.
Наконец, рассмотрим случай, когда сторона квадрата равна произвольной дроби, например, 5/3. Возьмем квадраты со стороной 1/3 и построим из них квадрат, поставив 5 квадратов в ряд. Тогда его сторона как раз будет равна 5/3:
Площадь каждого маленького квадратика будет равна 1/9, а всего таких квадратиков 5х5 = 25. Тогда площадь большого квадрата может быть найдена так:
В общем случае, когда дробь имеет вид n/m, где m и n– натуральные числа, площадь квадрата будет равна величине
Получили, что если сторона квадрата – произвольное рациональное число, то его площадь в точности равна квадрату этой стороны. Конечно, возможна ситуация, когда сторона квадрата – это иррациональное число. Тогда осуществить подобное построение не получится. Здесь помогут значительно более сложные рассуждения, основанные на методе «от противного».
Предположим, что есть некоторое иррациональное число I, такое, что площадь квадрата (S) со стороной I НЕ равна величине I2. Для определенности будем считать, что I2<S (случай, когда I2>S, рассматривается абсолютно аналогично). Однако тогда, извлекая корень из обеих частей неравенства, можно записать, что
Далее построим два квадрата, стороны которых имеют длины I и R, и совместим их друг с другом:
Так как мы выбрали число R так, чтобы оно было больше I, то квадрат со стороной I является лишь частью квадрата со стороной R.Но часть меньше целого, значит, площадь квадрата со стороной I (а она равна S) должна быть меньше, чем площадь квадрата со стороной R (она равна R2):
из которого следует противоположный вывод – величина R2 меньше, чем S. Полученное противоречие показывает, что исходная утверждение, согласно которому площадь квадрата со стороной I НЕ равна I2, является ошибочным. А значит, площадь квадрата всегда равна его стороне, умноженной на саму себя.
Задание. Найдите площадь квадрата, если его сторона равна
Задание. Площадь квадрата равна 25. Найдите длину его стороны.
Решение. Пусть сторона квадрата обозначается буквой х (как неизвестная величина). Тогда условие, согласно которому его площадь равна 25, можно переписать в виде уравнения:
Его простейшее квадратное уравнение, для его решения надо просто извлечь квадратный корень из правой части:
Примечание. Строго говоря, записанное уравнение имеет ещё один корень – это число (– 5). Однако его можно отбросить, так как длина отрезка не может быть отрицательным числом. В более сложных геометрических задачах отрицательные корни также отбрасывают.
Задание. Численно площадь квадрата равна периметру квадрата (с учетом того, что площадь измеряется в см2, а периметр – в см). Вычислите его площадь.
Решение. Снова обозначим сторону квадрата как х, тогда площадь (S)и периметр (Р) будут вычисляться по формулам:
По условию эти величины численно равны, поэтому должно выполняться равенство, являющееся уравнением:
Естественно, сторона квадрата не может быть равна нулю, поэтому нас устраивает только ответ х = 4. Тогда и площадь, и периметр будут равны 16.
Ответ: 16 см2.
Обратите внимание, что ответ задачи зависит от единицы измерения. Если использовать миллиметры, то сторона квадрата окажется равной 40 мм, периметр будет равен 160 мм, а площадь составит 1600 мм2. Именно поэтому в условии задачи сказано, что площадь и периметр равны численно. «По-настоящему» равными бывают только величины, измеряемые в одинаковых единицах измерения.
Соотношение между единицами измерения площадей
Площадь измеряется в «квадратных» величинах: м2, см2, км2 и т.д. Как связаны эти единицы измерения? Для ответа на этот вопрос построим квадрат со стороной 1 см и разобьем каждую его сторону на отрезки длиной 1 мм. Естественно, что таких отрезков будет 10, ведь, в 1 см равен 10 мм. Далее разобьем большой квадрат на маленькие, их число будет равно 102 = 100:
Площадь большого квадрата равна 1 см2, а площадь маленьких составляет 1 мм2. Так как большой квадрат состоит из 100 маленьких, мы можем записать:
Существуют специальные единицы измерения площади, известные как ар (обозначается сокращением а) и гектар (сокращение га). Первый представляет собой квадрат со стороной 10 м, а второй – со стороной 100 м. Верны следующие соотношения:
В частности, если стороны квадратов отличаются в 10 раз, то их площади отличаются уже в 100 раз. Отсюда вытекает быстрый метод перевода единиц площади. Пусть надо перевести 1 квадратный километр в квадратные дециметры. Сначала мы считаем, во сколько раз километр длиннее дециметра:
Задание. Площадь окружности равна 24 см2. Выразите эту величину в мм2 и м2.
Решение. Миллиметр в 10 раз меньше сантиметра, а потому 1 см2 равен 100 мм2:
Площадь прямоугольника
Ещё из младшей школы известно, что площадь прямоугольника равна произведению его сторон. Докажем этот факт, используя только свойства площади и выведенную нами ранее формулу площади квадрата.
Возьмем произвольный прямоугольник со сторонами a и b. Далее достроим его до квадрата со стороной (а + b):
С одной стороны, площадь большого квадрата (со стороной а + b) равна величине (а + b)2. С другой стороны, он состоит из 4 фигур, а потому его площадь равна сумме
Итак, мы доказали следующее утверждение:
Задание. Найдите площадь прямоугольника со сторонами 5 и 8 см?
Решение. Просто перемножаем эти числа:
Задание. Найдите площадь фигуры, изображенной на рисунке:
Решение. Необходимо разбить фигуры на несколько прямоугольников:
Далее считаем площадь каждого отдельного прямоугольника:
Задание. Полкомнаты необходимо покрыть паркетом. Длина и ширина комнаты равны 6 и 5,5 метрам, а каждая дощечка паркета имеет габариты 30х5 см. Сколько дощечек паркета необходимо купить для ремонта?
Решение. В таких задачах прежде всего следует все длины выразить в одних единицах измерения. Перепишем габариты комнаты:
Важно убедиться, что пол можно полностью покрыть целым числом дощечек, не используя какие-либо дощечки наполовину. Для этого габариты дощечки должны быть кратны габаритам комнаты. Это условие соблюдается:
Получается, что для покрытия пола дощечки необходимо разместить их в 20 рядов, в каждом из которых будет 110 досок. Тогда общее количество досок будет равно
Задание. Площадь прямоугольника равна 64, а одна из его сторон имеет длину 16. Найдите вторую сторону прямоугольника.
Решение. Запишем формулу площади прямоугольника:
Задание. Найдите стороны прямоугольника, если площадь равна 500, а одна из сторон в 5 раз больше другой стороны.
Решение. Обозначим меньшую сторону переменной х. Тогда большая сторона будет в 5 раз больше, то есть она равна 5х. Площадь прямоугольника будет вычисляться как произведение этих чисел
Мы получили два значения х, 10 и (– 10). Естественно, длина отрезка не может выражаться отрицательным числом, поэтому нам подходит только значение 10. Это длина меньшей стороны. Большая же сторона в 5 раз длиннее, то есть ее длина равна
Задание. Одна сторона прямоугольника длиннее другой на 5 см, а площадь прямоугольника равна 150 см2. Вычислите обе стороны прямоугольника.
Решение. Снова обозначим длину меньшей стороны буквой х, тогда большая сторона будет иметь длину х + 5 см. По условию произведение этих сторон равно 150:
Это обычное квадратное уравнение, решаемое с помощью:
Снова получили два корня, из которых только один является положительным. Итак, меньшая сторона равна 10 см. Тогда большая сторона буде равна
Задание. Периметр прямоугольника равен 16 см, а площадь составляет 15 см2. Каковы стороны этого прямоугольника?
Решение. Обозначим смежные стороны буквами a и b. Тогда и две другие стороны также будут равны а и b. Так как периметр (его обозначают буквой Р) по определению является суммой длин всех сторон, то для прямоугольника он будет равен:
Если сюда вместо S подставить 15, а вместо а выражение 8 – b, то получим такое уравнение:
Оба полученных корня являются положительными числами, то есть устраивают нас. Зная b, легко найдем и a:
В первом случае получается, что стороны равны 3 и 5 см. Во втором случае получились те же числа, только в другом порядке: 5 и 3 см. То есть эти два ответа, по сути, идентичны друг другу.
Ответ: 5 см; 3 см.