Как найти площадь многогранника через объем

Формулы объёма и площади поверхности. Многогранники.

Изучение стереометрии начинается со знания формул. Для решения задач ЕГЭ по стереометрии нужны всего две вещи:

  1. Формулы объёма — например, объём куба, объём призмы, объем пирамиды — и формулы площади поверхности.
  2. Элементарная логика.

Все формулы объёма и формулы площади поверхности многогранников есть в нашей таблице.


Куб
V=a^3 S = 6a^2
d=asqrt{3}, d- диагональ

Параллелепипед
V=S_text{OCH}h, h - высота

Прямоугольный параллелепипед
V=abc S = 2ab+2bc+2ac
d=sqrt{a^2+b^2+c^2}

Призма
V=S_text{OCH}h S = 2S_text{OCH}+

Пирамида
V=frac{1}{3}S_text{OCH}h S = S_text{OCH}+

Проще всего найти объём куба — это куб его стороны. Вот, оказывается, откуда берётся выражение «возвести в куб».

Объём параллелепипеда тоже легко найти. Надо просто перемножить длину, ширину и высоту.

Объём призмы — это произведение площади её основания на высоту. Если в основании треугольник — находите площадь треугольника. Если квадрат — ищите площадь квадрата. Напомним, что высота — это перпендикуляр к основаниям призмы.

Объём пирамиды — это треть произведения площади основания на высоту. Высота пирамиды — это перпендикуляр, проведенный из её вершины к основанию.

Некоторые задачи по стереометрии решаются вообще без формул! Например, эта.

Задача 1.Объём куба равен 12. Найдите объём четырёхугольной пирамиды, основанием которой является грань куба, а вершиной — центр куба.

Решение:

Пирамида в кубе
Обойдёмся без формул! Просто посчитайте, сколько нужно таких четырёхугольных пирамидок, чтобы сложить из них этот куб :-)

Очевидно, их 6, поскольку у куба 6 граней.

Стереометрия — это просто! Для начала выучите формулы объёма и площади поверхности многогранников и тел вращения. А дальше — читайте о приемах решения задач по стереометрии.

Разберем задачи, где требуется найти площадь поверхности многогранника.

Мы рассмотрим призмы и пирамиды. Начнем с призмы.

Площадь полной поверхности призмы можно найти как сумму площадей всех ее граней. А это площади верхнего и нижнего оснований плюс площадь боковой поверхности.

Площадь боковой поверхности призмы – это сумма площадей боковых граней, которые являются прямоугольниками. Она равна периметру основания, умноженному на высоту призмы.

Задача 2. Найдите площадь поверхности многогранника, изображенного на рисунке (все двугранные углы прямые).

Пирамида в кубе

Решение.

Многогранник на рисунке – это прямая призма с высотой 12.

P_text{OCH}=8+6+6+2+2+4=28.

Пирамида в кубе

Чтобы найти площадь основания, разделим его на два прямоугольника и найдем площадь каждого:

S_1=6cdot 6=36 (больший квадрат), S_2=2cdot 4=8 (маленький прямоугольник), S_text{OCH}=36+8=44

Подставим все данные в формулу: и найдем площадь поверхности многогранника:

S=28cdot12+2cdot44=336+88=424.

Ответ: 424.

Задача 3. Найдите площадь поверхности многогранника, изображённого на рисунке (все двугранные углы прямые).

Пирамида в кубе

Решение.

Пирамида в кубе

Перевернем многогранник так, чтобы получилась прямая призма с высотой 1.
Площадь поверхности этой призмы находится по формуле:

P_text{OCH}=4+5+2+1+2+4=18.

Пирамида в кубе

Найдем площадь основания. Для этого разделим его на два прямоугольника и посчитаем площадь каждого:

S_1=4cdot4=16;~S_2=2cdot1=2 (большой прямоугольник), S_text{OCH}=16+2=18 (маленький прямоугольник).

Найдем площадь полной поверхности: =18cdot1+2cdot18=54

Ответ: 54

Задача 4.Найдите площадь поверхности многогранника, изображенного на рисунке (все двугранные углы прямые).

Пирамида в кубе

Решение.

Покажем еще один способ решения задачи.

Посмотрим, как получился такой многогранник. Можно сказать, что к «кирпичику», то есть прямоугольному параллелепипеду со сторонами 4, 1 и 3, сверху приклеен «кубик», все стороны которого равны 1.

И значит, площадь поверхности данного многогранника равна сумме площадей поверхностей прямоугольного параллелепипеда со сторонами 4,1,3 и
куба со стороной 1, без удвоенной площади квадрата со стороной 1:

S=((4+1+4+1)cdot 3+2cdot 4 cdot 1)+6cdot 1-2cdot 1=42.

Почему мы вычитаем удвоенную площадь квадрата? Представьте себе, что нам надо покрасить это объемное тело. Мы красим все грани параллелепипеда, кроме квадрата на верхней его грани, где на него поставлен кубик. И у куба мы покрасим все грани, кроме этого квадрата.

Ответ: 42

Задача 5. . Основание прямой призмы – треугольник со сторонами 5 см и 3 см и углом 120° между ними. Наибольшая из площадей боковых граней равна 35 см². Найдите площадь боковой поверхности призмы.

Пирамида в кубе

Решение.

Пусть АВ = 5 см, ВС = 3 см, тогда angle{ABC}=120^{circ}

Из Delta ABC по теореме косинусов найдем ребро АС:

AC^2=AB^2+BC^2-2cdot ABcdot BC cdot cos120^{circ}

AC^2=25+9-2cdot5cdot3cdotleft(-frac{1}{2}right)=47, ~AC = 7

Отрезок АС – большая сторона Delta ABC, следовательно, ACC_1A_1 - большая боковая грань призмы.

Поэтому ACcdot CC_1=35, или 7cdot h=35, откуда h=5.

(5+3+7)cdot5=75.

Ответ: 75

Теперь две задачи на площадь боковой поверхности пирамиды.

Задача 6. Основанием пирамиды DАВС является треугольник АВС, у которого АВ = АС = 13, ВС = 10; ребро АD перпендикулярно к плоскости основания и равно 9. Найдите площадь боковой поверхности пирамиды.

Пирамида в кубе

Решение.

Площадь боковой поверхности пирамиды – это сумма площадей всех ее боковых граней.

Проведем AKperp BC, тогда BC perp DK (по теореме о 3-х перпендикулярах), то есть DК – высота треугольника DВС.

Delta ABC – равнобедренный (по условию АВ = АС), то высота АК, проведенная к основанию ВС, является и медианой, то есть ВК = КС = 5.

Из прямоугольного Delta ABK получим:

AK=sqrt{AB^2-BK^2}=sqrt{13^2-5^2}=sqrt{169-25}=sqrt{144}=12.

Из прямоугольного Delta DAK имеем:

DK=sqrt{DA^2+AK^2}=sqrt{9^2+12^2}=sqrt{81+144}=sqrt{225}=15.

Delta ADB=Delta ADC (по двум катетам), тогда S_{ADB}=S_{ADC}, следовательно

=2S_{ADB}+S_{BDC},=2cdotfrac{1}{2}cdot13cdot9+frac{1}{2}cdot10cdot15=117+75=192.

Ответ: 192

Задача 8. Стороны основания правильной четырехугольной пирамиды равны 24, боковые ребра равны 37. Найдите площадь поверхности пирамиды.

Пирамида в кубе

Решение:

Так как четырехугольная пирамида правильная, то в основании лежит квадрат, а все боковые грани — равные равнобедренные треугольники.

Площадь поверхности пирамиды равна

=pcdot h+a^2, где р – полупериметр основания, h — апофема (высота боковой грани правильной пирамиды), a – сторона основания.

Значит, полупериметр основания p = 24 cdot 2 = 48.

Апофему найдем по теореме Пифагора:

h=sqrt{37^2-12^2}=sqrt{(37-12)(37+12)}=sqrt{25cdot49}=5cdot7=35

S = 48cdot 35+24^2=1680+576=2256.

Ответ: 2256

Как решать задачи на нахождение объема многогранника сложной формы?

Покажем два способа.

Первый способ

1.Составной многогранник достроить до полного параллелепипеда или куба.
2.Найти объем параллелепипеда.
3.Найти объем лишней части фигуры.
4.Вычесть из объема параллелепипеда объем лишней части.

Второй способ.

1.Разделить составной многогранник на несколько параллелепипедов.
2.Найти объем каждого параллелепипеда.
3.Сложить объемы.

Задача 9. Найдите объем многогранника, изображенного на рисунке (все двугранные углы прямые).

Пирамида в кубе

Решение.

Пирамида в кубе

1) Достроим составной многогранник до параллелепипеда.

2) Найдем объем параллелепипеда – для этого перемножим его длину, ширину и высоту: V=9cdot 4cdot10=360

3) Найдем объем лишней части, то есть маленького параллелепипеда.

Его длина равна 9 – 4 = 5, ширина 4, высота 7, тогда его объем V_1=5cdot4cdot7=140.

4) Вычтем из объема параллелепипеда объем лишней части и получим объем заданной фигуры: V=360-140=220.

Ответ: 220.

Задача 10. Основанием прямой треугольной призмы служит прямоугольный треугольник с катетами 6 и 7, боковое ребро равно 6. Найдите объем призмы.

Пирамида в кубе

Объем призмы равен V=S_{OCH}cdot h, а так как призма прямая, то ее боковое ребро является и высотой, то есть h=6.

Основанием призмы является прямоугольный треугольник c катетами 6 и 7, тогда площадь основания

S_{OCH}=frac{1}{2}cdot ab=frac{1}{2}cdot6cdot7=21.

V=21cdot6=126.

Ответ: 126

Задача 11. В сосуд, имеющий форму правильной треугольной призмы, налили воду. Уровень воды достигает 324 см. На какой высоте будет находиться уровень воды, если ее перелить в другой сосуд, у которого сторона в 9 раз больше, чем у первого? Ответ выразите в сантиметрах.

Пирамида в кубе

Решение.

Объем призмы равен V = S_{OCH}cdot h

Воду перелили в другой такой же сосуд. Это значит, что другой сосуд также имеет форму правильной треугольной призмы, но все стороны основания второго сосуда в 9 раз больше, чем у первого.

Основанием второго сосуда также является правильный треугольник. Он подобен правильному треугольнику в основании первого сосуда. Отношение площадей подобных фигур равно квадрату коэффициента подобия.

Если все стороны треугольника увеличить в 9 раз, его площадь увеличится в 9^2 = 81 раз. Мы получили, что площадь основания второго сосуда в 81 раз больше, чем у первого.

Объем воды не изменился, V=S_1cdot h_1=S_2 cdot h_2. Так как S_2=81S_1, высота воды h_2 должна быть в 81 раз меньше, чем h_1. Она равна 324:81 = 4 (см).

Ответ: 4

Задача 12. Объем параллелепипеда ABCDA_1B_1C_1D_1. Найдите объем треугольной пирамиды ABDA_1.

Пирамида в кубе

Решение.
Опустим из вершины A_1 высоту A_1H Н на основание ABCD.

=S_{ABCD}cdot A_1H

=frac{1}{3}S_{ABD}cdot A_1H

Пирамида в кубе

Диагональ основания делит его на два равных треугольника, следовательно, S_{ABD}=frac{1}{2}S_{ABCD}.

Имеем:

ABDA_1=frac{1}{3}S_{ABD}cdot A_1H=frac{1}{3}cdotfrac{1}{2}S_{ABCD}cdot A_1H=frac{1}{6}V_{ABCDA_1B_1C_1D_1}=frac{1}{6}cdot21=3,5.

Ответ: 3,5

Задача 13. Найдите объем правильной треугольной пирамиды, стороны основания которой равны 8, а высота равна 6sqrt{3}.

Пирамида в кубе

Решение.
По формуле объема пирамиды, .

В основании пирамиды лежит правильный треугольник. Его площадь равна S_{OCH}=frac{a^2sqrt{3}}{4}.

S_{OCH}=frac{8^2sqrt{3}}{4}=frac{64sqrt{3}}{4}=16sqrt{3}.

Объем пирамиды V=frac{1}{3}cdot16sqrt{3}cdot6sqrt{3}=16cdot6=96.

Ответ: 96

Задача 14. Через середины сторон двух соседних ребер основания правильной четырехугольной призмы проведена плоскость, параллельная боковому ребру. Найдите объем меньшей из частей, на которые эта плоскость делит призму, если объем призмы равен 32.

Пирамида в кубе

Решение.

По условию, призма правильная, значит, в ее основании лежит квадрат, а высота равна боковому ребру.

Пусть AD=x, тогда S_{OCH}=x^2.

Так как точки М и К – середины АD и DС соответственно, то DM=DK=frac{x}{2}.

S_{MDK}=frac{1}{2}MDcdot DK=frac{1}{2}cdotfrac{x}{2}cdotfrac{x}{2}=frac{1}{8}x^2.

Площадь треугольника MDK, лежащего в основании новой призмы, составляет frac{1}{8} часть площади квадрата в основании исходной призмы.
Высоты обеих призм одинаковые. Согласно формуле объема призмы: V=S_{OCH}cdot h, и значит, объем маленькой призмы в 8 раз меньше объема большой призмы. Он равен 32:8=4.

Ответ: 4

Докажем полезную теорему.

Теорема: Площадь боковой поверхности наклонной призмы равна произведению периметра перпендикулярного сечения на боковое ребро.

Доказательство:

Пирамида в кубе

Плоскость перпендикулярного сечения призмы перпендикулярна к боковым ребрам, поэтому стороны перпендикулярного сечения призмы являются высотами параллелограммов.

S=a_1l+a_2l+dots+a_nl,

S=(a_1+a_2+dots+a_n)l,

S=P_{perp}cdot l.

Больше задач на формулы объема и площади поверхности здесь.

Спасибо за то, что пользуйтесь нашими материалами.
Информация на странице «Формулы объёма и площади поверхности. Многогранники.» подготовлена нашими редакторами специально, чтобы помочь вам в освоении предмета и подготовке к экзаменам.
Чтобы успешно сдать нужные и поступить в высшее учебное заведение или техникум нужно использовать все инструменты: учеба, контрольные, олимпиады, онлайн-лекции, видеоуроки, сборники заданий.
Также вы можете воспользоваться другими статьями из данного раздела.

Публикация обновлена:
08.05.2023

Площади и объемы многогранников

Что такое многогранник

Простейшей геометрической фигурой является прямая. Ею называется линия, которая имеет свое продолжение вправо и влево. Если эту прямую ограничить с двух сторон, получится отрезок. Для определения его величины достаточно одного измерения — длины. Прямая, ограниченная с одной стороны, имеет свое название. Это отрезок.

луч

Источник: rusinfo.info

Осторожно! Если преподаватель обнаружит плагиат в работе, не избежать крупных проблем (вплоть до отчисления). Если нет возможности написать самому, закажите тут.

В пределах одной плоскости, кроме прямой, которую можно измерить одной величиной, существуют геометрические фигуры, измеряемые длиной и шириной. Это многоугольники.

много

Источник: sun9-19.userapi.com

Они могут иметь различное количество углов и характеризуются таким понятием как площадь.

Фигура, которая располагается в нескольких плоскостях, характеризуется пространственными величинами или трехмерным измерением. К таким фигурам относят многогранники.

Многогранник — геометрическая фигура, имеющая замкнутую поверхность, которую можно представить совокупностью многоугольников.

Для полной характеристики многогранника необходимо назвать следующие свойства:

  • стороны обязательно являются смежными с одной соседней стороной;
  • при необходимости можно, начав движение от одного из многоугольников, достигнуть любого другого, используя принцип смежности;
  • площадь поверхности многогранника равна сумме площадей многоугольников, ограничивающих фигуру.

При этом каждый многоугольник — это грань, сторона — ребро, а вершина — вершина многогранника.

 Многогранник, как геометрическое тело, может быть представлен несколькими параллелепипедами, которые соединены по одной из граней. В таком случае их площадь будет равна сумме площадей свободных сторон и одной стороны, по которой произошло соединение. Объем такого тела будет равен сумме объемов каждого из параллелепипедов.

куб

Источник: examer.ru

Многогранники бывают:

  • выпуклыми (каждая из точек фигуры находится по одну сторону от плоскости);
  • невыпуклыми (не все точки располагаются по одну сторону плоскости).

Проще говоря, выпуклый многогранник можно поставить на одну из сторон, и он будет на ней «уверенно стоять». С невыпуклым такого действия совершить нельзя.

Примечание 1

Важно помнить, что многогранник — это не только поверхность, состоящая из нескольких многоугольников. Это еще и тот внутренний объем, который ограничивает данная поверхность. Именно поэтому в стереометрии отделяют два понятия: площадь многогранника и его объем.

Как найти площадь: формулы

В зависимости от того, какой фигурой представлен многогранник, выбирают формулу для расчета площади его поверхности. Рассмотрим примеры.

1. Дана призма (многогранник, у которого в параллельных плоскостях расположены два многоугольника, являющихся гранями. Прочие грани представлены параллелограммами).

призма

Источник: osiktakan.ru

Найти площадь данной фигуры можно следующим образом:

фрмула

Источник: osiktakan.ru

2. Дан параллелепипед (один из вариантов призмы, все шесть граней которой являются параллелограммами).

параллел

Источник: osiktakan.ru

В этом случае S=2(ab+bc+ac)

3.Дана пирамида (вид многогранника с основанием в виде n-угольника и боковыми гранями по форме треугольниками. Обязательное условие: все треугольники имеют одну общую вершину, у которой есть свое название — вершина пирамиды).

пирамида

Источник: osiktakan.ru

Площадь пирамиды можно найти по формуле:

формула2

Источник: osiktakan.ru

Примечание 2

Особый случай, когда у пирамиды нет вершины. Такая фигура носит название усеченной. Ее можно себе представить, если мысленно параллельно основанию провести сечение (см. рисунок).

нет

Источник: osiktakan.ru

 Sбок усеченной пирамиды находят по формуле:

формула3

Источник: osiktakan.ru

В стереометрии существует понятие правильного многогранника. Его вводят для фигур, у которых:

  • все грани представлены правильными многоугольниками;
  • число граней у всех углов идентично;
  • ребра являются равными отрезками;
  • величины плоских углов идентичны.

Перечисленным требованиям отвечают 5 видов многогранников, представленных в таблице:

  Наименование фигуры Пример
1 Правильный четырехгранник Правильный тетраэдр
2 Правильный шестигранник Куб
3 Правильный восьмигранник Правильный октаэдр
4 Правильный двенадцатигранник Правильный додекаэдр
5 Правильный двадцатигранник Правильный икосаэдр

Определить площадь правильных многогранников также несложно, зная следующие формулы (нумерация согласно строке таблицы):

1. S=a2√3

2. S=6a2

3. S=2a2√3

4. формула4

Источник: osiktakan.ru

5. S=5a2√3

Использовать данный формулы нужно в задачах, требующих определить площадь поверхности многогранника, без учета его внутреннего объема.

Объем многогранника: формулы

Объем многогранника, в отличие от площади его поверхности, не может быть определен только касательно поверхности. Ведь он представляет собой все внутреннее пространство, которое ограничивается имеющейся поверхностью. На практике говорят, что объем является величиной, с помощью которой описывают размер трехмерных фигур. Эти фигуры так и называют: объемные (тела). У объемной фигуры имеется не только длина и ширина, но и высота – параметр, измеряемый в третьей плоскости.

Решить задачи по определению объема многогранника также можно с использованием формул.

Рассмотрим следующий рисунок:

рисунок

Источник: interneturok.ru

Объем такого тела определяется по формуле:

V=a*b*c

Поскольку по рисунку видно, что a*b=S, а c является высотой (h), то формулу можно записать в виде: V=S*h

Рассмотренный вариант касается прямоугольного параллелепипеда. Если же произвольный параллелепипед имеет наклонные вертикальные грани, то данная формула также верна, однако проведенная высота отличается от бокового ребра, и, возможно, лежит внутри либо вне самого тела:

2

Источник: interneturok.ru

Формула определения объема через площадь и высоту подходит и для такого трехмерного тела, как призма (причем как для прямой, так и наклонной):

3

Источник: interneturok.ru

В быту часто происходит образование новых многогранников в процессе обрезания кусков от старых и приставления их к уже имеющимся. Как же вычислить объем такого геометрического тела? В геометрии используется принцип Кавальери. Суть его в следующем. Площади прямоугольника и параллелограмма равны потому что они в своей структуре имеют отрезки одинакового размера. Проще говоря, если представить рассечение обеих фигур плоскостями, параллельными основанию, величина отрезка слева всегда будет равна величине отрезка справа. Если третья фигура имеет такое же строение, по ее площадь будет такой же.

4

Источник: interneturok.ru

Объем многогранника, который может быть разделен на два и более многогранников, может определяться суммой их объемов.

найдите

Источник: image2.slideserve.com

Для систематизации формул, применяемых для определения объемов многогранников, рассмотрим таблицу:

  Наименование фигуры Формула объема
1 Параллелепипед непрямоугольный, призма V=S*h
  Параллелепипед прямоугольный V=a*b*c
2 Куб V=a3
3 Пирамида S=1/3(Sh)

На практике определить объем трехмерного тела можно и без формулы. Например, найти объем призмы можно, если умножить площадь ее основания на высоту фигуры. При этом вариант, когда в основании призмы лежит треугольник, предполагает, что нужно найти его площадь. Если основание квадрат, на первом этапе — нахождение площади квадрата. Величину высоты определяем, опуская перпендикуляр к основанию.

Примеры решения задач

Задача 1

Треугольник ABC — основание пирамиды DABC. При этом AC=AB=13см, BC=10см. AD=9см, это перпендикуляр к основанию. Найти S боковой поверхности.

задача1

Источник: ege-study.ru

Искомая величина равна сумме площадей боковых граней этой пирамиды. 

Из вершин A и D проведем перпендикуляры к стороне BC. Тогда высота треугольника DBC — DK. 

Треугольник ABC является равнобедренным, поскольку AB=AC. Тогда высота AK, которую провели по направлению основания BC, совпадает с медианой. Соответственно BK=KC=5см.

решение

Источник: ege-study.ru

Ответ: 192 см3

Задача 2

Имеется выпуклый многогранник. У него 8 граней, в т.ч. 4 пятиугольника и 4 четырехугольника. Определить, сколько у данного тела ребер и вершин. Определим сумму всех граней: 4*4+4*5=36

Поскольку смежные ребра посчитаны дважды, найденное количество необходимо разделить на два: 36/2=18

В+Г-Р=2

В+12-30=2

В+12-2=30

В+10=30

В=20

Ответ: вершин — 20, ребер — 30.

Задача 3

Если переплавить три куба из латуни, у которых ребра равны соответственно 3, 4, 5см, в один куб, какая величина ребра получится у нового куба?

Решение.

решение2

Источник: famiredo.ru

Содержание:

Площади поверхностей геометрических тел:

Под площадью поверхности многогранника мы понимаем сумму площадей всех его граней. Как же определить площадь поверхности тела, не являющегося многогранником? На практике это делают так. Разбивают поверхность на такие части, которые уже мало отличаются от плоских. Тогда находят площади этих частей, как будто они являются плоскими. Сумма полученных площадей является приближенной площадью поверхности. Например, площадь крыши здания определяется как сумма площадей кусков листового металла. Еще лучше это видно на примере Земли. Приблизительно она имеет форму шара. Но площади небольших ее участков измеряют так, как будто эти участки являются плоскими. Более того, под площадью поверхности тела будем понимать предел площадей полных поверхностей описанных около него многогранников. При этом должно выполняться условие, при котором все точки поверхности этих многогранников становятся сколь угодно близкими к поверхности данного тела. Для конкретных тел вращения понятие описанного многогранника будет уточнено.

Понятие площади поверхности

Рассмотрим периметры Площади поверхностей геометрических тел - определение и примеры с решением

Применим данные соотношения к обоснованию формулы для площади боковой поверхности цилиндра.

При вычислении объема цилиндра были использованы правильные вписанные в него призмы. Найдем при помощи в чем-то аналогичных рассуждений площадь боковой поверхности цилиндра.

Опишем около данного цилиндра радиуса R и высоты h правильную n-угольную призму (рис. 220).

Площади поверхностей геометрических тел - определение и примеры с решением

Площадь боковой поверхности призмы равна

Площади поверхностей геометрических тел - определение и примеры с решением

где Площади поверхностей геометрических тел - определение и примеры с решением — периметр основания призмы.

При неограниченном возрастании n получим:

Площади поверхностей геометрических тел - определение и примеры с решением

так как периметры оснований призмы стремятся к длине окружности основания цилиндра, то есть к Площади поверхностей геометрических тел - определение и примеры с решением

Учитывая, что сумма площадей двух оснований призмы стремится к Площади поверхностей геометрических тел - определение и примеры с решением, получаем, что площадь полной поверхности цилиндра равна Площади поверхностей геометрических тел - определение и примеры с решением. Но сумма площадей двух оснований цилиндра равна Площади поверхностей геометрических тел - определение и примеры с решением. Поэтому найденную величину S принимают за площадь боковой поверхности цилиндра.

Итак, площадь боковой поверхности цилиндра вычисляется по формуле

Площади поверхностей геометрических тел - определение и примеры с решением

где R — радиус цилиндра, h — его высота.

Заметим, что эта формула аналогична соответствующей формуле площади боковой поверхности прямой призмы Площади поверхностей геометрических тел - определение и примеры с решением

За площадь полной поверхности цилиндра принимается сумма площадей боковой поверхности и двух оснований:

Площади поверхностей геометрических тел - определение и примеры с решением

Если боковую поверхность цилиндра радиуса R и высоты h разрезать по образующей АВ и развернуть на плоскость, то в результате получим прямоугольник Площади поверхностей геометрических тел - определение и примеры с решением который называется разверткой боковой поверхности цилиндра (рис. 221).

Очевидно, что сторона Площади поверхностей геометрических тел - определение и примеры с решением этого прямоугольника есть развертка окружности основания цилиндра, следовательно, Площади поверхностей геометрических тел - определение и примеры с решением. Сторона АВ равна образующей цилиндра, то есть АВ = h. Значит, площадь развертки боковой поверхности цилиндра равна Площади поверхностей геометрических тел - определение и примеры с решением. Таким образом, площадь боковой поверхности цилиндра равна площади ее развертки.

Площади поверхностей геометрических тел - определение и примеры с решениемПлощади поверхностей геометрических тел - определение и примеры с решением

Площади поверхностей геометрических тел - определение и примеры с решением

Пример:

Параллельно оси цилиндра на расстоянии d от нее проведена плоскость, отсекающая от основания дугу Площади поверхностей геометрических тел - определение и примеры с решением. Диагональ полученного сечения наклонена к плоскости основания под углом а. Определите площадь боковой поверхности цилиндра.

Решение:

Пусть дан цилиндр, в основаниях которого лежат равные круги с центрами Площади поверхностей геометрических тел - определение и примеры с решениемПлощади поверхностей геометрических тел - определение и примеры с решением — ось цилиндра. Рассмотрим плоскость, параллельную Площади поверхностей геометрических тел - определение и примеры с решением. Сечение цилиндра данной плоскостью представляет собой прямоугольник Площади поверхностей геометрических тел - определение и примеры с решением (рис. 222).

Пусть хорда АВ отсекает от окружности основания дугу Площади поверхностей геометрических тел - определение и примеры с решением. Тогда, по определению, Площади поверхностей геометрических тел - определение и примеры с решением. Так как образующие цилиндра перпендикулярны основаниям, Площади поверхностей геометрических тел - определение и примеры с решением. Значит, АВ — проекция Площади поверхностей геометрических тел - определение и примеры с решением на плоскость АОВ, тогда угол между Площади поверхностей геометрических тел - определение и примеры с решением и плоскостью АОВ равен углу Площади поверхностей геометрических тел - определение и примеры с решением. По условию Площади поверхностей геометрических тел - определение и примеры с решением.

В равнобедренном треугольнике Площади поверхностей геометрических тел - определение и примеры с решением проведем медиану ОК. Тогда OПлощади поверхностей геометрических тел - определение и примеры с решением Площади поверхностей геометрических тел - определение и примеры с решениемТак как Площади поверхностей геометрических тел - определение и примеры с решением то Площади поверхностей геометрических тел - определение и примеры с решением по признаку перпендикулярных плоскостей. Но тогда Площади поверхностей геометрических тел - определение и примеры с решением по свойству перпендикулярных плоскостей. Значит, ОК — расстояние между точкой О и плоскостью Площади поверхностей геометрических тел - определение и примеры с решением. Учитывая, что Площади поверхностей геометрических тел - определение и примеры с решением, по определению расстояния между параллельными прямой и плоскостью получаем, что ОК равно расстоянию между Площади поверхностей геометрических тел - определение и примеры с решением и плоскостью Площади поверхностей геометрических тел - определение и примеры с решением. По условию OK = d. Из прямоугольного треугольника АКО

Площади поверхностей геометрических тел - определение и примеры с решением имеем: Площади поверхностей геометрических тел - определение и примеры с решением

откуда Площади поверхностей геометрических тел - определение и примеры с решением Из прямоугольного треугольника Площади поверхностей геометрических тел - определение и примеры с решением

Площади поверхностей геометрических тел - определение и примеры с решением

Итак, Площади поверхностей геометрических тел - определение и примеры с решением

В случае, когда Площади поверхностей геометрических тел - определение и примеры с решениемПлощади поверхностей геометрических тел - определение и примеры с решением

Площади поверхностей геометрических тел - определение и примеры с решением

Аналогично предыдущему, и в этом случае получаем тот же результат для площади боковой поверхности.

Ответ:Площади поверхностей геометрических тел - определение и примеры с решением

Площадь поверхности конуса и усеченного конуса

Связь между цилиндрами и призмами полностью аналогична связи между конусами и пирамидами. В частности, это касается формул для площадей их боковых поверхностей.

Опишем около данного конуса с радиусом основания R и образующей I правильную л-угольную пирамиду (рис. 223). Площадь ее боковой поверхности равна

Площади поверхностей геометрических тел - определение и примеры с решением

где Площади поверхностей геометрических тел - определение и примеры с решением — периметр основания пирамиды, Площади поверхностей геометрических тел - определение и примеры с решением — апофема.

Площади поверхностей геометрических тел - определение и примеры с решением

При неограниченном возрастании n получим:

Площади поверхностей геометрических тел - определение и примеры с решением

так как периметры оснований пирамиды стремятся к длине окружности основания конуса, а апофемы Площади поверхностей геометрических тел - определение и примеры с решением равны I.

Учитывая, что площадь основания пирамиды стремится к Площади поверхностей геометрических тел - определение и примеры с решением, получаем, что площадь полной поверхности конуса равна Площади поверхностей геометрических тел - определение и примеры с решением. Но площадь основания конуса равна Площади поверхностей геометрических тел - определение и примеры с решением. Поэтому найденную величину S принимают за площадь боковой поверхности конуса. Итак, площадь боковой поверхности конуса вычисляется по формуле

Площади поверхностей геометрических тел - определение и примеры с решением

где R — радиус основания, I — образующая.

За площадь полной поверхности конуса принимается сумма площадей его основания и боковой поверхности:

Площади поверхностей геометрических тел - определение и примеры с решением

Если боковую поверхность конуса разрезать по образующей РА и развернуть на плоскость, то в результате получим круговой сектор Площади поверхностей геометрических тел - определение и примеры с решением который называется разверткой боковой поверхности конуса (рис. 224).

Площади поверхностей геометрических тел - определение и примеры с решением

Очевидно, что радиус сектора развертки равен образующей конуса I, а длина дуги Площади поверхностей геометрических тел - определение и примеры с решением — длине окружности основания конуса, то есть Площади поверхностей геометрических тел - определение и примеры с решением. Учитывая, что площадь соответствующего круга равна Площади поверхностей геометрических тел - определение и примеры с решением, получаем: Площади поверхностей геометрических тел - определение и примеры с решением, значит, Площади поверхностей геометрических тел - определение и примеры с решением Таким образом, площадь боковой поверхности конуса равна площади ее развертки.

Учитывая формулу для площади боковой поверхности конуса, нетрудно найти площадь боковой поверхности усеченного конуса.

Рассмотрим усеченный конус, полученный при пересечении конуса с вершиной Р некоторой секущей плоскостью (рис. 225).

Пусть Площади поверхностей геометрических тел - определение и примеры с решением — образующая усеченного конуса Площади поверхностей геометрических тел - определение и примеры с решением точки Площади поверхностей геометрических тел - определение и примеры с решением — центры большего и меньшего оснований с радиусами R и г соответственно. Тогда площадь боковой поверхности усеченного конуса равна разности площадей боковых поверхностей двух конусов:

Площади поверхностей геометрических тел - определение и примеры с решением

Из подобия треугольников Площади поверхностей геометрических тел - определение и примеры с решением

следует, что Площади поверхностей геометрических тел - определение и примеры с решением

Тогда получаем Площади поверхностей геометрических тел - определение и примеры с решением

Таким образом, Площади поверхностей геометрических тел - определение и примеры с решением

Итак, мы получили формулу для вычисления площади боковой поверхности усеченного конуса: Площади поверхностей геометрических тел - определение и примеры с решением, где R и г — радиусы оснований усеченного конуса, I — его образующая.

Отсюда ясно, что площадь полной поверхности усеченного конуса равна Площади поверхностей геометрических тел - определение и примеры с решением

Такой же результат можно было бы получить, если найти площадь развертки боковой поверхности усеченного конуса или использовать правильные усеченные пирамиды, описанные около него. Попробуйте дать соответствующие определения и провести необходимые рассуждения самостоятельно.

Связь между площадями поверхностей и объемами

При рассмотрении объемов и площадей поверхностей цилиндра и конуса мы видели, что существует тесная взаимосвязь между этими фигурами и призмами и пирамидами соответственно. Оказывается, что и сфера (шар), вписанная в многогранник, связана с величиной его объема.

Определение:

Сфера (шар) называется вписанной в выпуклый многогранник, если она касается каждой его грани.

При этом многогранник называется описанным около данной сферы (рис. 226).

Рассмотрим, например, сферу, вписанную в тетраэдр (рис. 227).

Площади поверхностей геометрических тел - определение и примеры с решениемПлощади поверхностей геометрических тел - определение и примеры с решением

Плоскости, содержащие грани тетраэдра, являются касательными к вписанной сфере, а точки касания лежат в гранях тетраэдра. Заметим, что по доказанному в п. 14.2 радиусы вписанной сферы, проведенные в точку касания с поверхностью многогранника, перпендикулярны плоскостям граней этого многогранника.

Для описанных многоугольников на плоскости было доказано, что их площадь равна произведению полупериметра на радиус вписанной окружности. Аналогичное свойство связывает объем описанного многогранника и площадь его поверхности.

Теорема (о связи площади поверхности и объема описанного многогранника)

Объем описанного многогранника вычисляется по формуле

Площади поверхностей геометрических тел - определение и примеры с решением

где Площади поверхностей геометрических тел - определение и примеры с решением — площадь полной поверхности многогранника, г — радиус вписанной сферы.

Доказательство:

Соединим центр вписанной сферы О со всеми вершинами многогранника Площади поверхностей геометрических тел - определение и примеры с решением(рис. 228). Получим n пирамид, основаниями которых являются грани многогранника, вершины совпадают с точкой О, высоты равны г. Тогда объем многогранника, по аксиоме, равен сумме объемов этих пирамид. Используя формулу объема пирамиды, найдем объем данного многогранника:

Площади поверхностей геометрических тел - определение и примеры с решением

где Площади поверхностей геометрических тел - определение и примеры с решением — площади граней многогранника.

Теорема доказана.

Оказывается, что в любой тетраэдр можно вписать сферу, и только одну. Но не каждый выпуклый многогранник обладает этим свойством.

Рассматривают также сферы, описанные около многогранника.

Определение:

Сфера называется описанной около многогранника, если все его вершины лежат на сфере.

При этом многогранник называется вписанным в сферу (рис. 229).

Площади поверхностей геометрических тел - определение и примеры с решениемПлощади поверхностей геометрических тел - определение и примеры с решением

Также считается, что соответствующий шар описан около многогранника.

Около любого тетраэдра можно описать единственную сферу, но не каждый многогранник обладает соответствующим свойством.

Площадь сферы

Применим полученную связь для объемов и площадей поверхностей описанных многогранников к выводу формулы площади сферы.

Опишем около сферы радиуса R выпуклый многогранник (рис. 230).

Пусть S’ — площадь полной поверхности данного многогранника, а любые две точки одной грани удалены друг от друга меньше чем на е. Тогда объем многогранника равенПлощади поверхностей геометрических тел - определение и примеры с решением. Рассмотрим расстояние от центра сферы О до любой вершины многогранника, например А1 (рис. 231).

По неравенству треугольника Площади поверхностей геометрических тел - определение и примеры с решениемПлощади поверхностей геометрических тел - определение и примеры с решением где О’ — точка касания. Отсюда следует, что все вершины данного многогранника лежат внутри шара с центром О и радиусом Площади поверхностей геометрических тел - определение и примеры с решением.

Итак, объем V данного многогранника больше объема шара радиуса R и меньше объема шара радиуса Площади поверхностей геометрических тел - определение и примеры с решением, то есть Площади поверхностей геометрических тел - определение и примеры с решением

Отсюда получаем Площади поверхностей геометрических тел - определение и примеры с решением

Если неограниченно уменьшать размеры граней многогранника, то есть при е, стремящемся к нулю, левая и правая части последнего неравенства будут стремиться к Площади поверхностей геометрических тел - определение и примеры с решением, а многогранник все плотнее примыкать к сфере. Поэтому полученную величину для предела S’ принимают за площадь сферы.

Итак, площадь сферы радиуса R вычисляется по формуле Площади поверхностей геометрических тел - определение и примеры с решением

Доказанная формула означает, что площадь сферы равна четырем площадям ее большого круга (рис. 232).

Площади поверхностей геометрических тел - определение и примеры с решениемПлощади поверхностей геометрических тел - определение и примеры с решениемПлощади поверхностей геометрических тел - определение и примеры с решением

Исходя из аналогичных рассуждений, можно получить формулу для площади сферической части шарового сегмента с высотой Н:

Площади поверхностей геометрических тел - определение и примеры с решением

Оказывается, что эта формула справедлива и для площади сферической поверхности шарового слоя (пояса):

Площади поверхностей геометрических тел - определение и примеры с решением

где Н — высота слоя (пояса).

Справочный материал

Формулы объемов и площадей поверхностей геометрических тел

Площади поверхностей геометрических тел - определение и примеры с решением

Площади поверхностей геометрических тел - определение и примеры с решением

Историческая справка

Многие формулы для вычисления объемов многогранников были известны уже в Древнем Египте. В так называемом Московском папирусе, созданном около 4000 лет назад, вероятно, впервые в истории вычисляется объем усеченной пирамиды. Но четкие доказательства большинства формул для объемов появились позднее, в работах древнегреческих ученых.

Так, доказательства формул для объемов конуса и пирамиды связаны с именами Демокрита из Абдеры (ок. 460-370 гг. до н. э.) и Евдокса Книдского (ок. 408-355 гг. до н. э.). На основании их идей выдающийся математик и механик Архимед (287-212 гг. до н. э.) вычислил объем шара, нашел формулы для площадей поверхностей цилиндра, конуса, сферьГг

Дальнейшее развитие методы, предложенные Архимедом, получили благодаря трудам средневекового итальянского монаха и математика Бонавентуры Кавальери (1598-1647). В своей книге «Геометрия неделимых» он сформулировал принцип сравнения объемов, при котором используются площади сечений. Его рассуждения стали основой интегральных методов вычисления объемов, разработанных Исааком Ньютоном (1642 (1643)-1727) и Готфридом Вильгельмом фон Лейбницем (1646-1716). Во многих учебниках по геометрии объем пирамиды находится с помощью * чертовой лестницы» — варианта древнегреческого метода вычерпывания, предложенного французским математиком А. М. Лежандром (1752-1833).

Площади поверхностей геометрических тел - определение и примеры с решениемПлощади поверхностей геометрических тел - определение и примеры с решениемПлощади поверхностей геометрических тел - определение и примеры с решением

На II Международном конгрессе математиков, который состоялся в 1900 году в Париже, Давид Гильберт сформулировал, в частности, такую проблему: верно ли, что любые два равновеликих многогранника являются равносоставленными? Уже через год отрицательный ответ на этот вопрос был обоснован учеником Гильберта Максом Деном (1878-1952). Другое доказательство этого факта предложил в 1903 году известный геометр В. Ф. Каган, который в начале XX века вел плодотворную научную и просветительскую деятельность в Одессе. В частности, из работ Дена и Кагана следует, что доказательство формулы объема пирамиды невозможно без применения пределов.

Весомый вклад в развитие теории площадей поверхностей внесли немецкие математики XIX века. Так, в 1890 году Карл Герман Аман-дус Шварц (1843-1921) построил пример последовательности многогранных поверхностей, вписанных в боковую поверхность цилиндра («сапог Шварца»). Уменьшение их граней не приводит к приближению суммы площадей этих граней к площади боковой поверхности цилиндра. Это стало толчком к созданию выдающимся немецким математиком и физиком Германом Минков-ским (1864-1909) современной теории площадей поверхностей, в которой последние связаны с объемом слоя около данной поверхности.

Учитывая огромный вклад Архимеда в развитие математики, в частности теории объемов и площадей поверхностей, именно его изобразили на Филдсовской медали — самой почетной в мире награде для молодых математиков. В 1990 году ею был награжден Владимир Дрин-фельд (род. в 1954 г.), который учился и некоторое время работал в Харькове. Вот так юные таланты, успешно изучающие геометрию в школе, становятся в дальнейшем всемирно известными учеными.

Площади поверхностей геометрических тел - определение и примеры с решениемПлощади поверхностей геометрических тел - определение и примеры с решениемПлощади поверхностей геометрических тел - определение и примеры с решениемПлощади поверхностей геометрических тел - определение и примеры с решением

Площади поверхностей геометрических тел - определение и примеры с решением

Уравнения фигур в пространстве

Напомним, что уравнением фигуры F на плоскости называется уравнение, которому удовлетворяют координаты любой точки фигуры F и не удовлетворяют координаты ни одной точки, не принадлежащей фигуре F. Так же определяют и уравнение фигуры в пространстве; но, в отличие от плоскости, где уравнение фигуры содержит две переменные х и у, в пространстве уравнение фигуры является уравнением с тремя переменными х, у и z.

Выведем уравнение плоскости, прямой и сферы в пространстве. Для получения уравнения плоскости рассмотрим в прямоугольной системе координат плоскость а (рис. 233) и определим свойство, с помощью которого можно описать принадлежность произвольной точки данной плоскости. Пусть ненулевой вектор Площади поверхностей геометрических тел - определение и примеры с решением перпендикулярен а (то есть принадлежит прямой, перпендикулярной данной плоскости,— такой вектор называют вектором нормали или нормалью к плоскости а), а точка Площади поверхностей геометрических тел - определение и примеры с решением принадлежит данной плоскости.

Так как Площади поверхностей геометрических тел - определение и примеры с решением, то вектор га перпендикулярен любому вектору плоскости а. Поэтому если Площади поверхностей геометрических тел - определение и примеры с решением — произвольная точка плоскости а, то Площади поверхностей геометрических тел - определение и примеры с решением, то есть Площади поверхностей геометрических тел - определение и примеры с решением. Более того, если векторы Площади поверхностей геометрических тел - определение и примеры с решением перпендикулярны, то, поскольку плоскость, проходящая через точку М0 перпендикулярно вектору Площади поверхностей геометрических тел - определение и примеры с решением, единственна, имеем Площади поверхностей геометрических тел - определение и примеры с решением, то есть Площади поверхностей геометрических тел - определение и примеры с решением. Таким образом, уравнение Площади поверхностей геометрических тел - определение и примеры с решением — критерий принадлежности точки М плоскости а. На основании этого векторного критерия выведем уравнение плоскости в пространстве.

Теорема (уравнение плоскости в пространстве)

В прямоугольной системе координат уравнение плоскости имеет вид Площади поверхностей геометрических тел - определение и примеры с решением, где А, В, С и D — некоторые числа, причем числа А, В и С одновременно не равны нулю.

Доказательство:

Запишем в координатной форме векторное равенство Площади поверхностей геометрических тел - определение и примеры с решением, где Площади поверхностей геометрических тел - определение и примеры с решением — вектор нормали к данной плоскости, Площади поверхностей геометрических тел - определение и примеры с решением — фиксированная точка плоскости, M(x;y;z) — произвольная точка плоскости. Имеем Площади поверхностей геометрических тел - определение и примеры с решением

Следовательно, Площади поверхностей геометрических тел - определение и примеры с решением

После раскрытия скобок и приведения подобных членов это уравнение примет вид: Площади поверхностей геометрических тел - определение и примеры с решением

Обозначив числовое выражение в скобках через D, получим искомое уравнение, в котором числа А, В и С одновременно не равны нулю, так как Площади поверхностей геометрических тел - определение и примеры с решением.

Покажем теперь, что любое уравнение вида Ах + Ву +Cz+D = 0 задает в пространстве плоскость. Действительно, пусть Площади поверхностей геометрических тел - определение и примеры с решением — одно из решений данного уравнения. Тогда Площади поверхностей геометрических тел - определение и примеры с решением. Вычитая это равенство из данного, получим Площади поверхностей геометрических тел - определение и примеры с решением Так как это уравнение является координатной записью векторного равенства Площади поверхностей геометрических тел - определение и примеры с решением, то оно является уравнением плоскости, проходящей через точку Площади поверхностей геометрических тел - определение и примеры с решением перпендикулярно вектору Площади поверхностей геометрических тел - определение и примеры с решением.

Обратим внимание на то, что в доказательстве теоремы приведен способ составления уравнения плоскости по данным координатам произвольной точки плоскости и вектора нормали.

Пример:

Напишите уравнение плоскости, которая перпендикулярна отрезку MN и проходит через его середину, если М{-1;2;3), N(5;-4;-1).

Решение:

Найдем координаты точки О — середины отрезка MN:

Площади поверхностей геометрических тел - определение и примеры с решением

Значит, О (2; -1; l). Так как данная плоскость перпендикулярна отрезку MN, то вектор Площади поверхностей геометрических тел - определение и примеры с решением — вектор нормали к данной плоскости. Поэтому искомое уравнение имеет вид: Площади поверхностей геометрических тел - определение и примеры с решением.

И наконец, так как данная плоскость проходит через точку О(2;-l;l), то, подставив координаты этой точки в уравнение, получим: Площади поверхностей геометрических тел - определение и примеры с решением

Таким образом, уравнение Площади поверхностей геометрических тел - определение и примеры с решением искомое.

Ответ: Площади поверхностей геометрических тел - определение и примеры с решением

Заметим, что правильным ответом в данной задаче является также любое уравнение, полученное из приведенного умножением обеих частей на число, отличное от нуля.

Значения коэффициентов А, В, С и D в уравнении плоскости определяют особенности расположения плоскости в системе координат. В частности:

  • если Площади поверхностей геометрических тел - определение и примеры с решением, уравнение плоскости примет вид Ax+By+Cz = 0; очевидно, что такая плоскость проходит через начало координат (рис. 234, а);
  • если один из коэффициентов А, В и С равен нулю, a Площади поверхностей геометрических тел - определение и примеры с решением, плоскость параллельна одной из координатных осей: например, при условии А = 0 вектор нормали Площади поверхностей геометрических тел - определение и примеры с решением перпендикулярен оси Ох, а плоскость By + Cz + D = Q параллельна оси Ох (рис. 234, б)
  • если два из коэффициентов А, В и С равны нулю, а Площади поверхностей геометрических тел - определение и примеры с решением, плоскость параллельна одной из координатных плоскостей: например, при условиях А = 0 и В-О вектор нормали Площади поверхностей геометрических тел - определение и примеры с решением перпендикулярен плоскости Оху, а плоскость Cz+D = 0 параллельна плоскости Оху (рис. 234, в);
  • если два из коэффициентов А, В и С равны нулю и D = 0, плоскость совпадает с одной из координатных плоскостей: например, при условиях Площади поверхностей геометрических тел - определение и примеры с решением и В = С = D = 0 уравнение плоскости имеет вид Ах = О, или х= 0, то есть является уравнением плоскости Оуz (рис. 234, г).

Предлагаем вам самостоятельно составить полную таблицу частных случаев расположения плоскости Ax + By+Cz+D = 0 в прямоугольной системе координат в зависимости от значений коэффициентов А, В, С и D.

Площади поверхностей геометрических тел - определение и примеры с решением

Пример: (о расстоянии от точки до плоскости)

Расстояние от точки Площади поверхностей геометрических тел - определение и примеры с решением до плоскости а, заданной уравнением Ax + By + Cz+D = О, вычисляется по формуле

Площади поверхностей геометрических тел - определение и примеры с решением Докажите.

Решение:

Если Площади поверхностей геометрических тел - определение и примеры с решением, то по уравнению плоскости Площади поверхностей геометрических тел - определение и примеры с решениемПлощади поверхностей геометрических тел - определение и примеры с решением, откуда Площади поверхностей геометрических тел - определение и примеры с решением = 0.

Если Площади поверхностей геометрических тел - определение и примеры с решением, то проведем перпендикуляр КМ к плоскости a, Площади поверхностей геометрических тел - определение и примеры с решением.

Тогда Площади поверхностей геометрических тел - определение и примеры с решением, поэтому Площади поверхностей геометрических тел - определение и примеры с решением, то есть Площади поверхностей геометрических тел - определение и примеры с решением. Так как Площади поверхностей геометрических тел - определение и примеры с решением, то Площади поверхностей геометрических тел - определение и примеры с решением, откуда Площади поверхностей геометрических тел - определение и примеры с решением

Таким образом, Площади поверхностей геометрических тел - определение и примеры с решениемПлощади поверхностей геометрических тел - определение и примеры с решением

Рассмотрим теперь возможность описания прямой в пространстве с помощью уравнений.

Пусть в пространстве дана прямая k (рис. 235). Выберем ненулевой вектор Площади поверхностей геометрических тел - определение и примеры с решением, параллельный данной прямой или принадлежащий ей (такой вектор называют направляющим вектором прямой k), и зафиксируем точку Площади поверхностей геометрических тел - определение и примеры с решением, принадлежащую данной прямой. Тогда произвольная точка пространства М (х; у; z) будет принадлежать прямой k в том и только в том случае, когда векторы Площади поверхностей геометрических тел - определение и примеры с решением коллинеарны, то есть существует число t такое, что Площади поверхностей геометрических тел - определение и примеры с решением

Представим это векторное равенство в координатной форме. Если ни одна из координат направляющего вектора не равна нулю, из данного равенства можно выразить t и приравнять полученные результаты:

Площади поверхностей геометрических тел - определение и примеры с решением

Эти равенства называют каноническими уравнениями прямой в пространстве.

Площади поверхностей геометрических тел - определение и примеры с решением

Пример:

Напишите уравнение прямой, проходящей через точки А(1;-3;2) и В(-l;0;l).

Решение:

Так как точки А и В принадлежат данной прямой, то Площади поверхностей геометрических тел - определение и примеры с решением — направляющий вектор прямой АВ. Таким образом, подставив вместо Площади поверхностей геометрических тел - определение и примеры с решением координаты точки А, получим уравнение прямой АВ:

Площади поверхностей геометрических тел - определение и примеры с решением

Ответ:Площади поверхностей геометрических тел - определение и примеры с решением

Заметим, что ответ в этой задаче может иметь и другой вид: так, в числителях дробей можно использовать координаты точки В, а как направляющий вектор рассматривать любой ненулевой вектор, коллинеарный Площади поверхностей геометрических тел - определение и примеры с решением (например, вектор Площади поверхностей геометрических тел - определение и примеры с решением).

Вообще, если прямая в пространстве задана двумя точками Площади поверхностей геометрических тел - определение и примеры с решением, то Площади поверхностей геометрических тел - определение и примеры с решением — направляющий вектор прямой, а в случае, если соответствующие координаты данных точек не совпадают, канонические уравнения прямой Площади поверхностей геометрических тел - определение и примеры с решением имеют вид Площади поверхностей геометрических тел - определение и примеры с решением

С помощью уравнений удобно исследовать взаимное расположение прямых и плоскостей в пространстве. Рассмотрим прямые Площади поверхностей геометрических тел - определение и примеры с решением направляющими векторами Площади поверхностей геометрических тел - определение и примеры с решением соответственно. Определение угла между данными прямыми связано с определением угла между их направляющими векторами. Действительно, пусть ф — угол между прямыми Площади поверхностей геометрических тел - определение и примеры с решением. Так как по определению Площади поверхностей геометрических тел - определение и примеры с решением, а угол между векторами может быть больше 90°, то Площади поверхностей геометрических тел - определение и примеры с решением либо равен углу ср (рис. 236, а), либо дополняет его до 180° (рис. 236, б).

Площади поверхностей геометрических тел - определение и примеры с решением

Так как cos(l80°-ф) = -coscp, имеем Площади поверхностей геометрических тел - определение и примеры с решением, то есть

Площади поверхностей геометрических тел - определение и примеры с решением

Отсюда, в частности, следует необходимое и достаточное условие перпендикулярности прямых Площади поверхностей геометрических тел - определение и примеры с решением:

Площади поверхностей геометрических тел - определение и примеры с решением

Кроме того, прямые Площади поверхностей геометрических тел - определение и примеры с решением параллельны тогда и только тогда, когда их направляющие векторы коллинеарны, то есть существует число t такое, что Площади поверхностей геометрических тел - определение и примеры с решением, или, при условии отсутствия у векторов р и q нулевых координат,

Площади поверхностей геометрических тел - определение и примеры с решением

Проанализируем теперь отдельные случаи взаимного расположения двух плоскостей в пространстве. Очевидно, что если Площади поверхностей геометрических тел - определение и примеры с решением —вектор нормали к плоскости а, то все ненулевые векторы, коллинеарные л, также являются векторами нормали к плоскости а. Из этого следует, что две плоскости, заданные уравнениями Площади поверхностей геометрических тел - определение и примеры с решением:

  • совпадают, если существует число t такое, что Площади поверхностей геометрических тел - определение и примеры с решениемПлощади поверхностей геометрических тел - определение и примеры с решением, или, если числа Площади поверхностей геометрических тел - определение и примеры с решением ненулевые Площади поверхностей геометрических тел - определение и примеры с решением
  • параллельны, если существует число t такое, что Площади поверхностей геометрических тел - определение и примеры с решениемПлощади поверхностей геометрических тел - определение и примеры с решением, или, если координаты Площади поверхностей геометрических тел - определение и примеры с решением ненулевые, Площади поверхностей геометрических тел - определение и примеры с решением (на практике это означает, что уравнения данных плоскостей можно привести к виду Ax+By+Cz+D1= 0 и Ax+By+Cz+D2=0, где Площади поверхностей геометрических тел - определение и примеры с решением).

В остальных случаях данные плоскости Площади поверхностей геометрических тел - определение и примеры с решением пересекаются, причем угол между ними связан с углом между векторами нормалей Площади поверхностей геометрических тел - определение и примеры с решением и Площади поверхностей геометрических тел - определение и примеры с решением. Предлагаем вам самостоятельно обосновать формулу для определения угла между плоскостями Площади поверхностей геометрических тел - определение и примеры с решением:

Площади поверхностей геометрических тел - определение и примеры с решением

В частности, необходимое и достаточное условие перпендикулярности плоскостей Площади поверхностей геометрических тел - определение и примеры с решением выражается равенством Площади поверхностей геометрических тел - определение и примеры с решением.

Заметим также, что прямая в пространстве может быть описана как линия пересечения двух плоскостей, то есть системой уравнений

Площади поверхностей геометрических тел - определение и примеры с решением

где векторы Площади поверхностей геометрических тел - определение и примеры с решением не коллинеарны.

Пример:

Напишите уравнение плоскости, которая проходит через точку М(4;2;3) и параллельна плоскости x-y + 2z-S = 0.

Решение:

Так как искомая плоскость параллельна данной, то вектор нормали к данной плоскости Площади поверхностей геометрических тел - определение и примеры с решением является также вектором нормали к искомой плоскости. Значит, искомое уравнение имеет вид Площади поверхностей геометрических тел - определение и примеры с решением. Так как точка М принадлежит искомой плоскости, ее координаты удовлетворяют уравнению плоскости, то есть 4-2 + 2-3 + 2) = 0, D = -8. Следовательно, уравнение x-y+2z-8=0 искомое.

Ответ: x-y+2z-8 = 0.

Аналогично уравнению окружности на плоскости, в пространственной декартовой системе координат можно вывести уравнение сферы с заданным центром и радиусом.

Теорема (уравнение сферы)

В прямоугольной системе координат уравнение сферы радиуса R с центром в точке Площади поверхностей геометрических тел - определение и примеры с решением имеет вид Площади поверхностей геометрических тел - определение и примеры с решением Доказательство

Пусть Площади поверхностей геометрических тел - определение и примеры с решением — произвольная точка сферы радиуса R с центром Площади поверхностей геометрических тел - определение и примеры с решением (рис. 237). Расстояние между точками О и М вычисляется по формуле Площади поверхностей геометрических тел - определение и примеры с решением

Площади поверхностей геометрических тел - определение и примеры с решением

Так как OM=R, то есть ОМ2 = R2, то координаты точки М удовлетворяют уравнению Площади поверхностей геометрических тел - определение и примеры с решением. Если же точка М не является точкой сферы, то Площади поверхностей геометрических тел - определение и примеры с решением, значит, координаты точки М не удовлетворяют данному уравнению.

Следствие

Сфера радиуса R с центром в начале координат задается уравнением вида

Площади поверхностей геометрических тел - определение и примеры с решением

Заметим, что фигуры в пространстве, как и на плоскости, могут задаваться не только уравнениями, но и неравенствами. Например, шар радиуса R с центром в точке Площади поверхностей геометрических тел - определение и примеры с решением задается неравенством Площади поверхностей геометрических тел - определение и примеры с решением (убедитесь в этом самостоятельно).

Пример:

Напишите уравнение сферы с центром А (2;-8; 16), которая проходит через начало координат.

Решение:

Так как данная сфера проходит через точку 0(0;0;0), то отрезок АО является ее радиусом. Значит,

Площади поверхностей геометрических тел - определение и примеры с решением

Таким образом, искомое уравнение имеет вид:

Площади поверхностей геометрических тел - определение и примеры с решением

Ответ: Площади поверхностей геометрических тел - определение и примеры с решением

Доказательство формулы объема прямоугольного параллелепипеда

Теорема (формула объема прямоугольного параллелепипеда)

Объем прямоугольного параллелепипеда равен произведению трех его измерений:

Площади поверхностей геометрических тел - определение и примеры с решением

где Площади поверхностей геометрических тел - определение и примеры с решением— измерения параллелепипеда.

Доказательство:

Докажем сначала, что объемы двух прямоугольных параллелепипедов с равными основаниями относятся как длины их высот.

Пусть Площади поверхностей геометрических тел - определение и примеры с решением — два прямоугольных параллелепипеда с равными основаниями и объемами Площади поверхностей геометрических тел - определение и примеры с решением соответственно. Совместим данные параллелепипеды. Для этого достаточно совместить их основания. Теперь рассмотрим объемы параллелепипедов Площади поверхностей геометрических тел - определение и примеры с решением (рис. 238). Для определенности будем считать, что Площади поверхностей геометрических тел - определение и примеры с решением. Разобьем ребро Площади поверхностей геометрических тел - определение и примеры с решением на n равных отрезков. Пусть на отрезке Площади поверхностей геометрических тел - определение и примеры с решением лежит m точек деления. Тогда:

Площади поверхностей геометрических тел - определение и примеры с решением

проведем через точки деления параллельные основанию ABCD (рис. 239). Они разобьют параллелепипед Площади поверхностей геометрических тел - определение и примеры с решением на n равных параллелепипедов. Каждый из них имеет объем Площади поверхностей геометрических тел - определение и примеры с решением. Очевидно, что параллелепиппед Площади поверхностей геометрических тел - определение и примеры с решением содержит в себе объединение m параллелепипедов и сам содержится в объединении Площади поверхностей геометрических тел - определение и примеры с решением параллелепипедов.

Площади поверхностей геометрических тел - определение и примеры с решениемПлощади поверхностей геометрических тел - определение и примеры с решением

Таким образом, Площади поверхностей геометрических тел - определение и примеры с решением откуда Площади поверхностей геометрических тел - определение и примеры с решением или Площади поверхностей геометрических тел - определение и примеры с решением

Сравнивая выражения (1) и (2), видим, что оба отношения Площади поверхностей геометрических тел - определение и примеры с решением находятся между Площади поверхностей геометрических тел - определение и примеры с решением, то есть отличаются не больше чем на Площади поверхностей геометрических тел - определение и примеры с решениемДокажем методом от противного, что эти отношения равны.

Допустим, что это не так, то есть Площади поверхностей геометрических тел - определение и примеры с решением Тогда найдется такое натуральное число n, что Площади поверхностей геометрических тел - определение и примеры с решением Отсюда Площади поверхностей геометрических тел - определение и примеры с решением Из полученного противоречия следует, что Площади поверхностей геометрических тел - определение и примеры с решением то есть объемы двух прямоугольных параллелепипедов с равными основаниями относятся как длины их высот.

Рассмотрим теперь прямоугольные параллелепипеды с измерениями Площади поверхностей геометрических тел - определение и примеры с решением объемы которых равны V, Площади поверхностей геометрических тел - определение и примеры с решением соответственно (рис. 240).

Площади поверхностей геометрических тел - определение и примеры с решением

По аксиоме объема V3 =1. По доказанному Площади поверхностей геометрических тел - определение и примеры с решениемПлощади поверхностей геометрических тел - определение и примеры с решением Перемножив эти отношения, получим: V = abc.

Теорема доказана.

* Выберем Площади поверхностей геометрических тел - определение и примеры с решением, например, Площади поверхностей геометрических тел - определение и примеры с решением, где Площади поверхностей геометрических тел - определение и примеры с решением — целая часть дроби Площади поверхностей геометрических тел - определение и примеры с решением.

  • Вычисление площадей плоских фигур
  • Преобразование фигур в геометрии
  • Многоугольник
  • Площадь многоугольника
  • Решение задач на вычисление площадей
  • Тела вращения: цилиндр, конус, шар
  • Четырехугольник
  • Площади фигур в геометрии

Многогранники

Многогранник – это поверхность, составленная из многоугольников, ограничивающая некоторое геометрическое тело.

В данной теме мы рассмотрим составные многогранники (многогранники, состоящие обычно из нескольких параллелепипедов).

Объемы различных многогранников:

  • Призма $V=S_{осн}·h$
  • Пирамида $V={1}/{3}S_{осн}·h$
  • Параллелепипед $V=a·b·c$, где $a, b$ и $c$ — длина, ширина и высота.
  • Куб $V=а^3$, где $а$ — сторона куба

Задачи на нахождение объема составного многогранника:

  • Первый способ.
  1. Составной многогранник надо достроить до полного параллелепипеда или куба.
  2. Найти объем параллелепипеда.
  3. Найти объем лишней части фигуры.
  4. Вычесть из объема параллелепипеда объем лишней части.

Пример:

Найдите объём многогранника, изображённого на рисунке (все двугранные углы прямые).

Решение:

1. Достроим составной многогранник до параллелепипеда.

Найдем его объем. Для этого перемножим все три измерения параллелепипеда:

$V=10·9·4=360$

2. Найдем объем лишнего маленького параллелепипеда:

Его длина равна $9-4=5$

Ширина равна $4$

Высота равна $7$

$V=7·4·5=140$

3. Вычтем из объема параллелепипеда объем лишней части и получим объем заданной фигуры:

$V=360-140=220$

Ответ: $220$

  • Второй способ
  1. Разделить составной многогранник на несколько параллелепипедов.
  2. Найти объем каждого параллелепипеда.
  3. Сложить объемы.

Задачи на нахождение площади поверхности составного многогранника.

— Если можно составной многогранник представить в виде прямой призмы, то находим площадь поверхности по формуле:

$S_{полн.пов.}=P_{осн}·h+2S_{осн}$

Чтобы найти площадь основания призмы, надо разделить его на прямоугольники и найти площадь каждого.

Пример:

Найдите площадь поверхности многогранника, изображённого на рисунке (все двугранные углы прямые).

Представим данный многогранник как прямую призму с высотой равной $12$.

$S_{полн.пов.}=P_{осн}·h+2S_{осн}$

$P_{осн}=8+6+6+2+2+4=28$

Чтобы найти площадь основания, разделим его на два прямоугольника и найдем площадь каждого:

$S_1=6·6=36$

$S_2=2·4=8$

$S_осн=36+8=44$

Далее подставим все данные в формулу и найдем площадь поверхности многогранника

$S_{полн.пов.}=28·12+2·44=336+88=424$

Ответ: $424$

— Если составной многогранник нельзя представить в виде призмы, то площадь полной поверхности можно найти как сумму площадей всех граней, ограничивающих поверхность.

Задачи на нахождение расстояния между точками составного многогранника.

В данных задачах приведены составные многогранники, у которых двугранные углы прямые. Надо соединить расстояние между заданными точками и достроить его до прямоугольного треугольника. Далее остается воспользоваться теоремой Пифагора для нахождения нужной стороны.

Теорема Пифагора

В прямоугольном треугольнике сумма квадратов катетов равна квадрату гипотенузы.

$АС^2+ВС^2=АВ^2$

Задачи на нахождение угла или значения одной из тригонометрических функций обозначенного в условии угла составного многогранника.

Так как в данных задачах приведены составные многогранники, у которых все двугранные углы прямые, то достроим угол до прямоугольного треугольника и найдем его значение по тригонометрическим значениям.

Соотношение между сторонами и углами в прямоугольном треугольнике:

В прямоугольном треугольнике $АВС$, с прямым углом $С$:

Для острого угла $В: АС$ — противолежащий катет; $ВС$ — прилежащий катет.

Для острого угла $А: ВС$ — противолежащий катет; $АС$ — прилежащий катет.

  1. Синусом ($sin$) острого угла прямоугольного треугольника называется отношение противолежащего катета к гипотенузе.
  2. Косинусом ($cos$) острого угла прямоугольного треугольника называется отношение прилежащего катета к гипотенузе.
  3. Тангенсом ($tg$) острого угла прямоугольного треугольника называется отношение противолежащего катета к прилежащему катету.

Значения тригонометрических функций некоторых углов:

$α$ $30$ $45$ $60$
$sinα$ ${1}/{2}$ ${√2}/{2}$ ${√3}/{2}$
$cosα$ ${√3}/{2}$ ${√2}/{2}$ ${1}/{2}$
$tgα$ ${√3}/{3}$ $1$ $√3$
$ctgα$ $√3$ $1$ ${√3}/{3}$

Задачи на рассмотрение подобия фигур.

При увеличении всех линейных размеров многогранника в $k$ раз, площадь его поверхности увеличится в $k^2$ раз.

При увеличении всех линейных размеров многогранника в $k$ раз, его объём увеличится в $k^3$ раз.

08
Май 2013

Категория: Справочные материалыСтереометрия

Пирамида, призма. Формулы объема и площади поверхности

Елена Репина
2013-05-08
2021-06-30

объем призмы, объем пирамиды, объемы тел, площадь поверхности призмы, площадь поверхности пирамиды

Чтобы не потерять страничку, вы можете сохранить ее у себя:

Печать страницы

Добавить комментарий

  • Материалы для подготовки к ЕГЭ
  •    

  • Рубрики
    • 01 Геометрия (12)
    • 02 Стереометрия (9)
    • 03 Теория вероятностей ч.1 (1)
    • 04 Теория вероятностей ч.2 (1)
    • 05 Простейшие уравнения (5)
    • 06 Вычисления (5)
    • 07 Производная, ПО (4)
    • 08 «Прикладные» задачи (5)
    • 09 Текстовые задачи (7)
    • 10 Графики функций (7)
    • 11 Исследование функции (2)
    • 12 (С1) Уравнения (79)
    • 13 (С2) Стереометр. задачи (95)
    • 14 (С3) Неравенства (90)
    • 15 (С4) Практич. задачи (72)
    • 16 (С5) Планиметр. задачи (87)
    • 17 (С6) Параметры* (80)
    • 18 (С7) Числа, их свойства (39)
    • A1 Простейшие текст/задачи (нет в ЕГЭ-22) (3)
    • A2 Читаем графики (нет в ЕГЭ-22) (1)
    • Видеоуроки (44)
    • ГИА (11)
      • II часть (11)
    • ЕГЭ (диагностич. работы) (70)
    • Задачи (28)
    • Иррациональные выражения, уравнения и неравенства (15)
    • Логарифмы (39)
    • МГУ (12)
    • Метод интервалов (4)
    • Метод рационализации (18)
    • Модуль (9)
    • Параметр (40)
    • Переменка (5)
    • Планиметрия (59)
    • Показательные выражения, уравнения и неравенства (8)
    • Разложение на множители (1)
    • Рациональные выражения, уравнения и неравенства (10)
    • Справочные материалы (92)
    • Стереометрия (52)
    • Т/P A. Ларина (443)
    • Текстовые задачи (12)
    • Теория чисел (2)
    • Тесты по темам (80)
    • Тригонометрические выражения, уравнения и неравенства (43)
    • Функции и графики (10)
  • Дружественные сайты

    Сайт А. Ларина
    ЕгэТренер – О. Себедаш
    Математика?Легко!
    Егэ? Ок! – И. Фельдман

  • Свежие записи
    • Задания 18 ЕГЭ 2023
  • Архивы Архивы

Понравилась статья? Поделить с друзьями:
  • Как найти ютуб канал без названия
  • Как найти спрятанные деньги обряды
  • Как найти работу в сморгони
  • Как найти сопротивление эмиттера транзистора
  • Как найти свою статистику в инстаграм