Как найти площадь множества

Определение меры (площади) открытых множеств

Определение меры (площади) открытых множеств

Определение меры (площади) открытых множеств

Определение меры (площади) открытых множеств

Определение меры (площади) открытых множеств

Определение меры (площади) открытых множеств. Рассмотрим плоскость, в которой зафиксированы некоторые Декартовы системы. T0 делает эту плоскость всевозможными прямыми линиями x = p, y = t, p= 0、±1、±2、…Это достигается путем рисования замкнутого квадрата и деления его на квадраты. 7 = 0、±1、±2、такой раздел называется прямоугольником Плоскость ранга 0, указанный квадрат является квадратом нулевого ранга. Разделите каждый квадрат нулевого ранга на 100 равных квадратов с прямыми линиями, параллельными координатным осям (2 смежные параллельные линии находятся на расстоянии 1/10 друг от друга).

Если он конечен, то (31.2) является монотонно возрастающей последовательностью, поэтому существует конечный предел .
Людмила Фирмаль

  • Покажите весь полученный квадрат с T!•Если мы продолжим этот процесс дальше, то получим плоскость, состоящую из квадрата Tm, m = 1, 2 и квадрата, образованного в результате различных прямых линий. И, следовательно, длина 1/10 «*со сторонами. Квадраты, принадлежащие четырехугольной призме ТМ, ранжируются m, m-1, 2,…Называется площадь O-плоский открытый набор. 50 = = 50 (0) и ранг указывает на множество точек всех квадратов нуля. Ложиться с границей в множестве O, после 51 = 51(0) множество всех квадратных точек первого ранга, находящихся в O вместе с page. In в общем случае, by = 5m (0) показывает множество всех квадратов ранга m вместе с множествами 0, m = 0, 1 и их границами(рис. 112).

Набор 50, 5b …3m… Is „многоугольник“, состоящий из конечного или бесконечного числа квадратов соответствующего ранга. Если 3m состоит из конечного числа квадратов, то площадь 8-метрового многоугольника обозначается квадратом. Если 3m, 3m состоит из бесконечного числа квадратов, поместите pl. СФ = + со. Если некоторая rm состоит из бесконечного числа квадратов, то вся rm, m> m0 также состоит из бесконечного числа квадратов. Из включений (31.1), по соглашению об использовании символов+ oo (см.§ 2.5), всегда Есть 2 возможных случая. 1.Все ПЛ.

  • Этот предел в данном случае называется открытой областью набора 0 или мерой、 * Французское слово tezige от измерения, размера. 2. ЛП, если существует такое число М0. 5м » = + со, ВР. 5m = + co и все числа m> m0.In это дело、 Определение ограничения последовательности элементов расширенных числовых строк (см.§ 3.2), последовательности элементов, принадлежащих расширенному набору вещественных чисел an, n = 1, 2,…, Существует предел+ oo, так что все, начиная с числа, равно+ oo. Золото » + ко. Оба из вышеперечисленных используют эту концепцию Вы можете сгруппировать случаи в 1.Окончательное определение.

Определение 1.Ограничьте золотую квадратную форму. 3 (0) (конечная или бесконечная n) называется областью или мерой открытого множества O и обозначается бумагой O. Множество множеств w, m = 0, 1,…Другими словами, для любой точки P∈C существует полигон 5mn, который выглядит следующим образом: Действительно, какой бы ни была точка PeO, из-за открытости множества 0 существует сферическая окрестность II (P e) c. Oh, e0.Я заметил, что диаметр квадрата ранга m равен] / 2 / 10t, выберите m0.

Такое определение меры открытого множества естественно, поскольку оно исчерпывает открытое множество.
Людмила Фирмаль

  • Каждая точка в плоскости имеет по крайней мере 1 квадрат каждого ранга, включая эту точку. Пусть квадрат ранг М0, содержащих точку P. By неравенство(31.4) (), и я(Р; Е), поэтому、 C5t » но(?Поэтому Re5я, » Т » (рис. 113).Я не уверен. Сетка o + co всякий раз, когда открытое множество O restricted. In дело в том, что если 0 ограничено, то существует замкнутый квадрат φ, содержащий множество 0 (0 (Ос)), которое является объединением квадратов 0 ранга, а если M = 0, то km (0) C 2. 3Т(0)^ ЛП.2. Таким образом, последовательность (31.2) ограничена вершиной, поэтому предел (31.3) конечен.

Смотрите также:

Предмет математический анализ

Инфоурок


Внеурочная деятельность

ПрезентацииПрезентация по занимательной математике «Площадь множеств» (по программе О.А.Холодовой). 3 класс. Занятие 17

Скачать материал

Площадь множествЗанятие 17Заниматика - 3

Скачать материал

  • Сейчас обучается 21 человек из 15 регионов

Описание презентации по отдельным слайдам:

  • Площадь множествЗанятие 17Заниматика - 3

    1 слайд

    Площадь множеств
    Занятие 17
    Заниматика — 3

  • Орешки для умаДумай, размышляй,
На вопросы отвечай!

    2 слайд

    Орешки для ума
    Думай, размышляй,
    На вопросы отвечай!

  • Для ЮЛМов!

  • Для ЮЛМов!

  • Задачи МАКОНГУРУ

    15 слайд

    Задачи МАКОНГУРУ

  • Задачи МАКОНГУРУ

    16 слайд

    Задачи МАКОНГУРУ

  • Задачи МАКОНГУРУ

    17 слайд

    Задачи МАКОНГУРУ

  • Задачи МАКОНГУРУ

    18 слайд

    Задачи МАКОНГУРУ

  • Занятие окончено

    19 слайд

    Занятие окончено

Найдите материал к любому уроку, указав свой предмет (категорию), класс, учебник и тему:

6 267 310 материалов в базе

  • Выберите категорию:

  • Выберите учебник и тему

  • Выберите класс:

  • Тип материала:

    • Все материалы

    • Статьи

    • Научные работы

    • Видеоуроки

    • Презентации

    • Конспекты

    • Тесты

    • Рабочие программы

    • Другие методич. материалы

Найти материалы

Другие материалы

  • 21.01.2021
  • 102
  • 0
  • 21.01.2021
  • 281
  • 9
  • 21.01.2021
  • 191
  • 3
  • 21.01.2021
  • 443
  • 10
  • 21.01.2021
  • 129
  • 0
  • 21.01.2021
  • 128
  • 0
  • 21.01.2021
  • 647
  • 4
  • 21.01.2021
  • 97
  • 0

Вам будут интересны эти курсы:

  • Курс повышения квалификации «Подростковый возраст — важнейшая фаза становления личности»

  • Курс профессиональной переподготовки «Логистика: теория и методика преподавания в образовательной организации»

  • Курс повышения квалификации «Разработка бизнес-плана и анализ инвестиционных проектов»

  • Курс профессиональной переподготовки «Организация менеджмента в туризме»

  • Курс повышения квалификации «Организация маркетинга в туризме»

  • Курс профессиональной переподготовки «Управление ресурсами информационных технологий»

  • Курс повышения квалификации «Источники финансов»

  • Курс повышения квалификации «Мировая экономика и международные экономические отношения»

  • Курс повышения квалификации «Финансовые инструменты»

  • Скачать материал


    • 21.01.2021


      568
    • PPTX
      14.7 мбайт
    • 28
      скачиваний
    • Рейтинг:
      1 из 5
    • Оцените материал:





  • Настоящий материал опубликован пользователем Фролкина Светлана Павловна. Инфоурок является
    информационным посредником и предоставляет пользователям возможность размещать на сайте
    методические материалы. Всю ответственность за опубликованные материалы, содержащиеся в них
    сведения, а также за соблюдение авторских прав несут пользователи, загрузившие материал на сайт

    Если Вы считаете, что материал нарушает авторские права либо по каким-то другим причинам должен быть удален с
    сайта, Вы можете оставить жалобу на материал.

    Удалить материал

  • Фролкина Светлана Павловна

    • На сайте: 6 лет и 7 месяцев
    • Подписчики: 4
    • Всего просмотров: 501377
    • Всего материалов:

      142

Let $T_1=[P_1,P_2,P_3]$ be a triangle. Choose a point $P_4$ on $T_1$ such that the area of triangle $T_2=[P_2,P_3,P_4]$ is half the area of $T_1$. Repeat this process in the natural way. It is not too difficult to see the resulting sequence of triangles converges to a point.

One can ask:

What the area of the set of possible convergents as compared to the area of $T_1$?

A quick hack when $P_1=(1,1)$, $P_2=(2,0)$ and $P_3=(0,0)$ yields the following graph of 30,000 random convergents:

enter image description here

A reasonable estimate of the area of the triangle containing these convergents would be $2/9$. Experimentally, at least, this type of simulation quickly finds an answer to the first question.

Now suppose $P_{k+3}$ (and each following point) is chosen randomly either half way between $P_k$ and $P_{k+1}$ or one-third of the way from $P_k$ to $P_{k+2}$. Here is a graph of a few of these convergents:

enter image description here

What is the area of the set of possible convergents in this case?

Finally, suppose we choose the next point to lie half way on the left side three times as frequently as half way on the right side. Here is the resulting rather weird graph of 100,000 or so such convergents:

enter image description here

It seems to my untrained eyes as though asking questions about area no longer makes much sense, so I won’t.

Вычисление площадей плоских фигур

Внешние, внутренние и граничные точки плоских множеств

Ранее мы неоднократно использовали понятие площади плоской фигуры, опираясь на его интуитивное толкование. Здесь мы дадим определение понятия площади плоской фигуры, установим свойства площадей и опишем класс фигур, имеющих площадь. Для этого введем несколько понятий, относящихся к плоским фигурам, т. е. к множествам, состоящим из точек плоскости.

Напомним, что открытым кругом с центром a и радиусов r называют множество U(a,r) точек плоскости, расстояние которых от точки a меньше r. Любой открытый круг с центром a называют окрестностью точки a.

Пусть на плоскости задано некоторое множество X. Назовем точку a этого множества внутренней, если существует окрестность этой точки, целиком содержащаяся в X. Точку плоскости называют внешней точкой для этого множества, если у нее есть окрестность, не содержащая ни одной точки множества X. Наконец, точки плоскости, не являющиеся ни внутренними, ни внешними для множества X, называют граничными точками этого множества. Граничные точки могут как принадлежать множеству X, так и не принадлежать ему. Совокупность граничных точек множества X образует границу этого множества. Если все граничные точки множества X принадлежат этому множеству, то его называют замкнутым, а если ни одна граничная точка не принадлежит множеству X, то его называют открытым.

На рисунке 20 изображен квадрат. Точка е является внутренней для этого квадрата, точка f — внешней, а точка g — граничной. Граница квадрата состоит из отрезков ab,,bc,,cd и da.

В дальнейшем будем говорить, что фигуры F и G налегают друг на друга, если у них есть хоть одна общая внутренняя точка (рис. 21). Если фигура F является объединением попарно не налегающих друг на друга фигур F_1,F_2,ldots,F_n, то говорят, что F разбита на фигуры F_1,F_2,ldots,F_n; при этом не исключается, что некоторые из них имеют общие граничные точки (рис. 22).

Внешние, внутренние и граничные точки плоских множеств


Квадрируемые области

Перейдем к определению понятия площади. Выберем на плоскости прямоугольную декартову систему координат Oxy. Назовем прямоугольник допустимым, если его стороны параллельны осям координат, причем не будем исключать и вырожденные прямоугольники, т. е. прямоугольники, у которых длина одной или обеих сторон равна нулю. Подмножество F плоскости, которое можно разбить на конечное число допустимых прямоугольников, назовем ступенчатой фигурой (рис. 23). Очевидно, что объединение и пересечение двух ступенчатых фигур являются ступенчатыми фигурами.

Разбиение фигуры на области

Назовем площадью допустимого прямоугольника F произведение длин его сторон a и b:

S(F)=S_F=acdot b,.

При этом площадь вырожденного прямоугольника равна нулю. Очевидно, что если прямоугольник разбит на два прямоугольника (рис. 24), F=F_1cup F_2 это площадь всего прямоугольника равна сумме площадей его частей:

Разбиение прямоугольника на две фигуры

S(F)=S(F_1)+S(F_1),.

Вообще, если прямоугольник F разбит на конечное число прямоугольников F_1,F_2,ldots,F_n, то

S(F)=S(F_1)+ S(F_2)+ ldots+ S(F_n)= sum_{i=1}^{n}S(F_i).

Кроме того, если прямоугольник F_1 получается из прямоугольника F параллельным переносом, то S(F_1)=S(F).

Отметим, что квадрат со стороной, равной 1, имеет площадь, равную 1.

Определим далее площадь ступенчатой фигуры. Пусть ступенчатая фигура F разбита на прямоугольники F_1,F_2, ldots,F_n. Положим тогда S(F)= sum_{i=1}^{n}S(F_i).

Одна и та же ступенчатая фигура может разбиваться на прямоугольники различными способами. Легко доказать, что ее площадь не зависит от способа разбиения.

Мы определили функцию S(F) на множестве ступенчатых фигур. Она обладает следующими свойствами:

а) Если ступенчатые фигуры F_1 и F_2 не имеют общих внутренних точек, то

Sbigl(F_1cup F_2bigr)= Sbigl(F_1bigr)+ Sbigl(F_2bigr).

б) Если ступенчатая фигура F_1 получается из ступенчатой фигуры F_2 параллельным переносом, то S(F_1)=S(F_2).

Из свойства а), в частности, следует, что если F_1 и F_2 — ступенчатые фигуры и F_1subset F_2, то S(F_1)leqslant S(F_2). В самом деле, если присоединить к F_2setminus F_1 граничные точки, то получится ступенчатая фигура G, не налегающая на F_1 и такая, что F_2=F_1cup G. Значит,

S(F_2)= S(F_1)+S(G)geqslant S(F_1).

Совокупность ступенчатых фигур не охватывает таких фигур, как, например, треугольник, параллелограмм общего вида, круг, эллипс. Даже повернутый прямоугольник уже не является ступенчатой фигурой (стороны ступенчатой фигуры параллельны осям координат). Поэтому надо распространить понятие площади на более широкий класс фигур.

Возьмем на плоскости фигуру A и поставим ей в соответствие два числовых множества. Множество X_A состоит из площадей ступенчатых фигур, все точки которых принадлежат фигуре A, а множество Y_A — из площадей ступенчатых фигур, содержащих фигуру A. Очевидно, что множество X_A расположено слева от множества Y_A. Поэтому существует хотя бы одно число, разделяющее эти множества.

Введем следующее определение.

Фигура A называется квадрируемой (имеющей площадь), если соответствующие ей числовые множества разделяются единственным числом. Это единственное число S(A), разделяющее X_A и Y_A, назовем площадью фигуры A.

Применяя критерий единственности разделяющего числа, получаем необходимое и достаточное условие квадрируемости фигуры A:

Для того чтобы фигура A была квадрируемой, необходимо и достаточно, чтобы для любого varepsilon>0 нашлись такие ступенчатые фигуры F_1 и F_2, что F_1subset Asubset F_2, причем S(F_2)-S(F_1)< varepsilon.

Отметим, что граница фигуры A лежит в области, заключенной между границами ступенчатых фигур F_1 и F_2. Эта область сама является ступенчатой фигурой (рис. 25). Поэтому указанное условие можно сформулировать и так:

Для того чтобы фигура A была квадрируемой, необходимо и достаточно, чтобы для любого varepsilon>0 границу фигуры A можно было заключить в ступенчатую фигуру, площадь которой меньше varepsilon.

Аппроксимация кривых прямоугольниками


Достаточное условие квадрируемости

Отметим следующее достаточное условие квадрируемости.

Теорема 1. Для того чтобы фигура A была квадрируемой, достаточно, чтобы ее граница состояла из конечного числа дуг Gamma_k, являющихся графиками непрерывных функций y=varphi_k(x) или x=psi_k(y).

Доказательство. Покажем сначала, что дугу Gammacolon begin{cases} y=f(x),\ aleqslant xleqslant b,end{cases} можно заключить в ступенчатую фигуру, имеющую сколь угодно малую площадь. Зададим varepsilon>0. Так как функция y=f(x) непрерывна на отрезке [a;b], найдется разбиение a=x_0<x_1< ldots< x_n=b этого отрезка такое, что для любого k выполняется неравенство

max_{xin[x_k,x_{k+1}]}f(x)-min_{xin[x_k,x_{k+1}]}f(x)< frac{varepsilon}{b-a}quad left(M_k-m_k< frac{varepsilon}{b-a}right)!,

где m_k,M_k — соответственно наименьшее и наибольшее значения функции y=f(x) на отрезке [x_k,x_{k+1}]. Но тогда дуга целиком содержится в объединении прямоугольников, имеющих основания Delta x_k и высоты bigl(M_k-m_kbigr) (рис. 26). Общая площадь этих прямоугольников не превосходит числа

sum_{k}bigl(M_k-m_kbigr)Delta x_k< frac{varepsilon}{b-a} sum_{k}Delta x_k= frac{varepsilon}{b-a}cdot(b-a)= varepsilon,.

Объединение этих прямоугольников образует ступенчатую фигуру, содержащую дугу Gamma и имеющую площадь, меньшую, чем varepsilon.

Поскольку граница фигуры A состоит из конечного числа таких дуг, ее тоже можно накрыть ступенчатой фигурой сколь угодно малой площади, и потому область квадрируема.

Например, круг квадрируем, так как его граница состоит из двух дуг, задаваемых уравнениями y=sqrt{R^2-x^2} и y=-sqrt{R^2-x^2} при -Rleqslant xleqslant R, а эти функции непрерывны.

Иногда оказывается полезным следующее достаточное условие квадрируемости фигур.

Теорема 2. Если для любого varepsilon>0 найдутся такие квадрируемые фигуры A_1 и A_2, что A_1subset Asubset A_2 и S(A_2)-S(A_1)< varepsilon, то фигура A тоже квадрируема.

Доказательство. Зададим varepsilon>0 и выберем такие квадрируемые фигуры A_1 и A_2, что A_1subset Asubset A_2 и S(A_2)-S(A_1)< frac{varepsilon}{3}. Так как A_1 и A_2 квадрируемы, то найдутся такие ступенчатые фигуры F_1 и F_2, что F_1subset A_1, A_2subset F_2, причем

S(A_1)-S(F_1)< frac{varepsilon}{3},,qquad S(F_2)-S(A_2)< frac{varepsilon}{3},.

Но тогда F_1subset Asubset F_2 и

S(F_2)-S(F_1)= bigl[S(F_2)-S(A_2)bigr]+ bigl[S(A_2)-S(A_1)bigr]+ bigl[S(A_1)-S(F_1)bigr]< frac{varepsilon}{3}+ frac{varepsilon}{3}+ frac{varepsilon}{3}= varepsilon,.

Это и доказывает квадрируемость плоской фигуры A.


Свойства площадей квадрируемых фигур

Покажем, что площади квадрируемых фигур обладают свойствами, похожими на свойства площадей ступенчатых фигур. Сначала докажем следующее утверждение:

1. Пусть квадрируемые фигуры A и B не имеют общих внутренних точек и C=Acup B. Тогда фигура C тоже квадрируема, причем ее площадь равна сумме площадей фигур A и B:

Sbigl(Acup Bbigr)= Sbigl(Abigr)+ Sbigl(Bbigr).

(1)

В самом деле, из квадрируемости фигур A и B вытекает, что для любого varepsilon>0 существуют такие ступенчатые фигуры F_1,F_2, G_1,G_2, что F_1subset Asubset F_2, G_1subset Bsubset G_2, причем

S(F_2)-S(F_1)< frac{varepsilon}{2},,qquad S(G_2)-S(G_1)< frac{varepsilon}{2},.

Положим H_1=F_1cup G_1 и H_2=F_2cup G_2. Тогда H_1 — ступенчатая фигура, содержащаяся в Acup B, а H_2 — ступенчатая фигура, содержащая Acup B: H_1subset Acup Bsubset H_2. При этом фигуры F_1 и G_1 не имеют общих внутренних точек (рис. 27), и потому

S(H_1)= S(F_1)+S(G_1).

(2)

Свойства площадей квадрируемых фигур

Фигуры F_2 и G_2 могут иметь общие внутренние точки (рис. 28), а потому можно утверждать лишь, что

S(H_2)leqslant S(F_2)+S(G_2).

(3)

Отсюда следует, что

begin{gathered} S(H_2)-S(H_1)leqslant bigl[S(F_2)+S(G_2)bigr]- bigl[S(F_1)+ S(G_1)bigr]=\ = bigl[S(F_2)-S(F_1)bigr]+ bigl[S(G_2)-S(G_1)bigr]< frac{varepsilon}{2}+ frac{varepsilon}{2}= varepsilon,.end{gathered}

Итак, для любого varepsilon>0 нашлись ступенчатые фигуры H_1 и H_2 такие, что H_1subset Acup Bsubset H_2, причем S(H_2)-S(H_1)< varepsilon. Поэтому фигура C=Acup B квадрируема.

Из неравенств S(F_1)leqslant S(A)leqslant S(F_2) и S(G_1)leqslant S(B)leqslant S(G_2) вытекает, что

S(F_1)+S(G_1)leqslant S(A)+S(B)leqslant S(F_1)+S(F_2).

С другой стороны, S(H_1)leqslant S(Acup B)leqslant S(H_2), а потому в силу соотношений (2) и (3) имеем

S(F_1)+S(G_1)leqslant S(Acup B)leqslant S(F_2)+S(G_2).

Мы видим, что числа S(A)+S(B) и S(Acup B) разделяют одни и те же множества bigl{S(F_1)+S(G_1)bigr}, bigl{S(F_2)+S(G_2)bigr}. При этом, как было показано, для любого varepsilon>0 найдутся такие F_1,F_2,G_1,G_2, что

bigl[S(F_2)+S(G_2)bigr]- bigl[S(F_1)+S(G_1)bigr]< varepsilon,.

Поэтому указанные множества могут разделяться лишь одним числом. Это и доказывает соотношение (1).

Доказанное свойство называют аддитивностью площади.

Второе свойство площадей состоит в том, что площадь квадрируемой фигуры не изменяется при параллельном переносе. Это следует из того, что при этом переносе каждая внутренняя ступенчатая фигура для A переходит во внутреннюю ступенчатую фигуру для образа фигуры A, и то же самое верно для внешних ступенчатых фигур. Но это значит, что при параллельном переносе не изменяются ни множество X_A, ни множество Y_A, а потому неизменным остается и разделяющее их число, т. е. площадь фигуры.

Недостатком данного выше определения площади является то, что оно связано с выбором системы координат на плоскости. Мы доказали лишь, что площадь не изменяется (инвариантна) при параллельных переносах, но не доказали такого же утверждения относительно других перемещений (симметрии, поворотов и т. д.). Справедливо более общее утверждение:

2. Если фигура A квадрируема и A_1 — конгруэнтная ей фигура, то A_1 тоже квадрируема, причем S(A_1)= S(A).

В курсе геометрии доказывают, что любое перемещение является композицией осевых симметрии. Поэтому достаточно доказать наше утверждение для случая, когда A_1 получается из A с помощью осевой симметрии.

Прямоугольники, параллельные оси симметрии

Рассмотрим сначала случай, когда A — прямоугольник, одна из сторон которого параллельна оси симметрии ell (рис. 29). В этом случае образ A_1 этого прямоугольника может быть получен из A не только с помощью осевой симметрии, но и с помощью параллельного переноса. Поэтому S(A)=S(A_1). Но любую квадрируемую фигуру можно с любой степенью точности заменить фигурой, состоящей из прямоугольников, одна из сторон которых параллельна оси симметрии. Применяя доказанное утверждение для каждого из этих прямоугольников и складывая полученные равенства, убеждаемся, что равенство S(A)=S(A_1) верно для любых квадрируемых фигур.

Мы доказали, что в классе квадрируемых фигур площадь обладает следующими свойствами:

1°. Для любой фигуры F ее площадь S(F) — неотрицательное число (неотрицательность площади).

2°. Площади конгруэнтных фигур равны (инвариантность площади относительно перемещений).

3°. Если фигуры F и G не имеют общих внутренних точек, то

S(Fcup G)=S(F)+S(G) (аддитивность площади).

4°. Площадь единичного квадрата равна единице (условие нормировки).

Можно доказать, что условия 1°–4° однозначно определяют площадь в классе квадрируемых фигур. Это позволяет понятию площади дать аксиоматическое определение, сказав, что на совокупности фигур M определено понятие площади, если на M задана числовая функция S(F), удовлетворяющая условиям 1°–4° (при этом, разумеется, требуется, чтобы совокупность M вместе с двумя не налегающими друг на друга фигурами содержала их объединение).

Математический форум (помощь с решением задач, обсуждение вопросов по математике).

Кнопка "Поделиться"

Если заметили ошибку, опечатку или есть предложения, напишите в комментариях.

Понравилась статья? Поделить с друзьями:
  • Как составить таблицу бюджета организации
  • Как найти частоту вещания цифрового телевидения
  • Мангалиб как найти человека
  • Как найти энергию взрыва
  • Как найти размер массива си шарп