Как найти площадь описанного вокруг окружности четырехугольника

Как рассчитать площадь четырехугольника

На данной странице калькулятор поможет рассчитать площадь четырехугольника онлайн. Для расчета задайте длину сторон, длины диагоналей и угол между ними, противолежащие углы, радиус окружности.

Четырёхугольник — многоугольник, состоящий из четырех точек (вершин) и четырёх отрезков (сторон), попарно соединяющих эти точки.

Через диагонали и угол между ними

Формула для нахождения площади четырехугольников через диагонали и угол между ними:

Через стороны и противолежащие углы

Формула для нахождения площади четырехугольников через стороны и противолежащие углы:

Площадь вписанного четырехугольника в окружность

Формула Брахмагупты для нахождения площади вписанного четырехугольника в окружность:

Площадь описанного четырехугольника около окружности через радиус

Формула для нахождения площади описанного четырехугольника около окружности через радиус:

Площади четырехугольников

Формулы для площадей четырехугольников
Вывод формул для площадей четырехугольников
Вывод формулы Брахмагупты для площади вписанного четырехугольника

В данном разделе рассматриваются только выпуклые фигуры, и считается известной формула:

которая позволяет найти площадь прямоугольника прямоугольника с основанием a и высотой b.

Формулы для площадей четырехугольников

a и b – смежные стороны

d – диагональ,
φ – любой из четырёх углов между диагоналями

Получается из верхней формулы подстановкой d=2R

R – радиус описанной окружности,
φ – любой из четырёх углов между диагоналями

a – сторона,
ha – высота, опущенная на эту сторону

a и b – смежные стороны,
φ – угол между ними

φ – любой из четырёх углов между ними

a – сторона квадрата

Получается из верхней формулы подстановкой d = 2R

a – сторона,
ha – высота, опущенная на эту сторону

a – сторона,
φ – любой из четырёх углов ромба

r – радиус вписанной окружности,
φ – любой из четырёх углов ромба

a и b – основания,
h – высота

φ – любой из четырёх углов между ними

a и b – основания,
c и d – боковые стороны

a и b – неравные стороны,
φ – угол между ними

a и b – неравные стороны,
φ1 – угол между сторонами, равными a ,
φ2 – угол между сторонами, равными b .

a и b – неравные стороны,
r – радиус вписанной окружности

φ – любой из четырёх углов между ними

,

a, b, c, d – длины сторон четырёхугольника,
p – полупериметр,

Формулу называют «Формула Брахмагупты»

Четырехугольник Рисунок Формула площади Обозначения
Прямоугольник S = ab
Параллелограмм
Квадрат S = a 2
S = 4r 2
Ромб
Трапеция
S = m h
Дельтоид S = ab sin φ
Произвольный выпуклый четырёхугольник
Вписанный четырёхугольник

где
a и b – смежные стороны

где
d – диагональ,
φ – любой из четырёх углов между диагоналями

где
R – радиус описанной окружности,
φ – любой из четырёх углов между диагоналями

Формула получается из верхней формулы подстановкой d = 2R

где
a – сторона,
ha – высота, опущенная на эту сторону

где
a и b – смежные стороны,
φ – угол между ними

φ – любой из четырёх углов между ними

Получается из верхней формулы подстановкой d = 2R

где
a – сторона,
ha – высота, опущенная на эту сторону

где
a – сторона,
φ – любой из четырёх углов ромба

где
r – радиус вписанной окружности,
φ – любой из четырёх углов ромба

где
a и b – основания,
h – высота

φ – любой из четырёх углов между ними

где
a и b – основания,
c и d – боковые стороны

где
a и b – неравные стороны,
φ – угол между ними

где
a и b – неравные стороны,
r – радиус вписанной окружности

φ – любой из четырёх углов между ними

,

где
a, b, c, d – длины сторон четырёхугольника,
p – полупериметр

Формулу называют «Формула Брахмагупты»

Прямоугольник
Параллелограмм
Квадрат
S = a 2

где
a – сторона квадрата

S = 4r 2
Ромб
Трапеция
Дельтоид

где
a и b – неравные стороны,
φ1 – угол между сторонами, равными a ,
φ2 – угол между сторонами, равными b .

Произвольный выпуклый четырёхугольник
Вписанный четырёхугольник

где
a и b – смежные стороны

где
d – диагональ,
φ – любой из четырёх углов между диагоналями

где
R – радиус описанной окружности,
φ – любой из четырёх углов между диагоналями

Формула получается из верхней формулы подстановкой d = 2R

Параллелограмм

где
a – сторона,
ha – высота, опущенная на эту сторону

где
a и b – смежные стороны,
φ – угол между ними

φ – любой из четырёх углов между ними

Квадрат

где
a – сторона квадрата

Получается из верхней формулы подстановкой d = 2R

Ромб

где
a – сторона,
ha – высота, опущенная на эту сторону

где
a – сторона,
φ – любой из четырёх углов ромба

где
r – радиус вписанной окружности,
φ – любой из четырёх углов ромба

Трапеция

где
a и b – основания,
h – высота

φ – любой из четырёх углов между ними

где
a и b – основания,
c и d – боковые стороны ,

Дельтоид

где
a и b – неравные стороны,
φ – угол между ними

где
a и b – неравные стороны,
φ1 – угол между сторонами, равными a ,
φ2 – угол между сторонами, равными b .

где
a и b – неравные стороны,
r – радиус вписанной окружности

Произвольный выпуклый четырёхугольник

φ – любой из четырёх углов между ними

Вписанный четырёхугольник

где
a, b, c, d – длины сторон четырёхугольника,
p – полупериметр

Формулу называют «Формула Брахмагупты»

Вывод формул для площадей четырехугольников

Утверждение 1 . Площадь выпуклого четырёхугольника можно найти по формуле

Доказательство . В соответствии с рисунком 1 справедливо равенство:

что и требовалось доказать.

Утверждение 2 . Площадь параллелограмма параллелограмма можно найти по формуле

где a – сторона параллелограмма, а ha – высота высота высота , опущенная на эту сторону (рис. 2).

Доказательство . Поскольку прямоугольный треугольник DFC равен прямоугольному треугольнику AEB (рис.26), то четырёхугольник AEFB – прямоугольник. Поэтому

что и требовалось доказать.

Утверждение 3 .Площадь параллелограмма параллелограмма можно найти по формуле

где a и b – смежные стороны параллелограмма, а φ – угол между ними (рис. 3).

то, в силу утверждения 2, справедлива формула

что и требовалось доказать.

Утверждение 4 . Площадь ромба ромба можно найти по формуле

,

где r – радиус вписанной в ромб окружности, а φ – любой из четырёх углов ромба (рис.4).

что и требовалось доказать.

Утверждение 5 . Площадь трапеции можно найти по формуле

,

где a и b – основания трапеции, а h – высота высота высота (рис.5).

Доказательство . Проведём прямую BE через вершину B трапеции и середину E боковой стороны CD . Точку пересечения прямых AD и BE обозначим буквой F (рис. 5). Поскольку треугольник BCE равен треугольнику EDF (по стороне и прилежащим к ней углам), то площадь трапеции ABCD равна площади треугольника ABF . Поэтому

что и требовалось доказать.

Утверждение 6 . Площадь трапеции трапеции можно найти по формуле

где a и b – основания, а c и d – боковые стороны трапеции ,

(рис.6).

Доказательство . Воспользовавшись теоремой Пифагора, составим следующую систему уравнений с неизвестными x, y, h (рис. 6):

,

что и требовалось доказать.

Утверждение 7 . Площадь дельтоида, дельтоида, можно найти по формуле:

где a и b – неравные стороны дельтоида, а r – радиус вписанной в дельтоид окружности (рис.7).

Доказательство . Докажем сначала, что в каждый дельтоид можно вписать окружность. Для этого заметим, что треугольники ABD и BCD равны в силу признака равенства треугольников «По трём сторонам» (рис. 7). Отсюда вытекает, что диагональ BD является биссектрисой углов B и D , а биссектрисы углов A и C пересекаются в некоторой точке O , лежащей на диагонали BD . Точка O и является центром вписанной в дельтоид окружности.

Если r – радиус вписанной в дельтоид окружности, то

Калькулятор расчета площади четырехугольника

В публикации представлены онлайн-калькуляторы и формулы для расчета площади выпуклого четырехугольника по разным исходным данным: через диагонали и угол между ними, по всем сторонам (если вокруг можно описать окружность), по полупериметру и радиусу вписанной окружности.

Расчет площади

Инструкция по использованию: введите известные значения, затем нажмите кнопку “Рассчитать”. В результате будет вычислена площадь фигуры с учетом указанных данных.

1. Через диагонали и угол между ними

Формула расчета

2. По всем сторонам (формула Брахмагупты)

Примечание: Если вокруг четырехугольника можно описать окружность.

Формула расчета

p – полупериметр четырехугольника, равняется:

источники:

Как рассчитать площадь четырехугольника

На данной странице калькулятор поможет рассчитать площадь четырехугольника онлайн. Для расчета задайте длину сторон, длины диагоналей и угол между ними, противолежащие углы, радиус окружности.

Четырёхугольник — многоугольник, состоящий из четырех точек (вершин) и четырёх отрезков (сторон), попарно соединяющих эти точки.

Через диагонали и угол между ними


Площадь четырехугольника через диагонали


Формула для нахождения площади четырехугольников через диагонали и угол между ними:

d1, d2 — диагонали; α — угол между диагоналями.


Через стороны и противолежащие углы


Площадь четырехугольника через стороны и противолежащие углы


Формула для нахождения площади четырехугольников через стороны и противолежащие углы:

p — полупериметр четырехугольника; a, b, c, d — стороны четырехугольника; α, β — противолежащие углы.


Площадь вписанного четырехугольника в окружность


Площадь вписанного четырехугольника в окружность


Формула Брахмагупты для нахождения площади вписанного четырехугольника в окружность:

p — полупериметр четырехугольника; a, b, c, d — стороны четырехугольника.


Площадь описанного четырехугольника около окружности через радиус


Площадь описанного четырехугольника около окружности


Формула для нахождения площади описанного четырехугольника около окружности через радиус:

p — полупериметр четырехугольника; r — радиус вписанной окружности; a, b, c, d — стороны четырехугольника.


Площадь описанного четырехугольника около окружности через стороны и противолежащие углы


Площадь описанного четырехугольника около окружности


Формула для нахождения площади описанного четырехугольника около окружности через стороны и противолежащие углы:

p — полупериметр четырехугольника; a, b, c, d — стороны четырехугольника; α, β — противолежащие углы.

Свойства вписанных и описанных четыехугольников

Содержание:

  • Вписанный четырехугольник, особенности, основные свойства фигуры
  • Описанный четырехугольник, особенности, основные свойства фигуры
  • Площадь четырехугольника связана с радиусом вписанной в него окружности формулой
  • Чему равна сумма противоположных углов вписанного в окружность четырехугольника
  • Как найти радиус вписанного в окружность четырехугольника, формула

Вписанный четырехугольник, особенности, основные свойства фигуры

Вписанный в окружность четырехугольник является таким четырехугольником, каждая из вершин которого принадлежит описанной около него окружности.

Вписанный в окружность четырехугольник изображен на рисунке:

Вписанный в окружность четырехугольник изображен на рисунке

Источник: www.treugolniki.ru

Здесь около четырехугольника ABCD описана окружность, а сам этот четырехугольник можно назвать вписанным в данную окружность. Этот вывод можно сделать на основании определения, рассмотренного ранее, так как точки A, B, C, D являются одновременно и вершинами четырехугольника, и принадлежат описанной около него окружности.

Осторожно! Если преподаватель обнаружит плагиат в работе, не избежать крупных проблем (вплоть до отчисления). Если нет возможности написать самому, закажите тут.

Теорема 1

Какой-либо четырехугольник может быть вписан в некую окружность при условии, что его противолежащие углы в сумме дают 180°.

Теорема 2

В том случае, когда противолежащие углы некого четырехугольника в сумме составляют 180°, данный четырехугольник может быть вписан в окружность.

противолежащие углы некого четырехугольника в сумме составляют 180°

Источник: www.treugolniki.ru

На примере рисунка запишем смысл изложенной теоремы:

(left. begin{array}{l} angle A + angle C = {180^o}\ angle B + angle D = {180^o} end{array} right} Leftrightarrow ABCD) треугольник вписан в окружность.

Следствие 1

Не каждый параллелограмм допустимо вписывать в окружность, лишь прямоугольники — в том числе квадраты.

окружность

Источник: www.treugolniki.ru

Если какой-то четырехугольник вписан в окружность, то ее центральная точка совпадет с точкой, в которой пересекаются диагонали вписанного четырехугольника. При этом радиус описанной около четырехугольника окружности составит половину от длины его диагонали, то есть:

(R = frac{1}{2}BD)

Радиус, окружности, описанной около некого четырехугольника с прямыми углами, можно вычислить с помощью следующей формулы, содержащей стороны прямоугольника:

(R = frac{1}{2}sqrt {A{B^2} + A{D^2}}.)

Представим, что прямоугольник имеет стороны, которые равны a и b. Тогда справедливо следующее соотношение:

(R = frac{1}{2}sqrt {{a^2} + {b^2}})

Следствие 2

Допустимо вписать в окружность лишь такую трапецию, которая является равнобедренной.

окружность

Источник: www.treugolniki.ru

Выведем формулу для вычисления радиуса окружности, которая описана около равнобедренной трапеции. Искомая величина равна радиусу окружности, описанной около одного из треугольников, имеющего те же вершины, что и рассматриваемая трапеция:

ABC, ABD, ACD или BCD.

Описанный четырехугольник, особенности, основные свойства фигуры

Описанным четырехугольником называют такую геометрическую фигуру с четырьмя углами, каждая из сторон которой является касательной к окружности. Данная окружность считается вписанной в рассматриваемый четырехугольник.

Теорема 3

В любой четырехугольник допустимо вписать какую-либо окружность при условии, что его противолежащие стороны в сумме равны.

В любой четырехугольник допустимо вписать какую-либо окружность

Источник: www.treugolniki.ru

Заметим, что в данном случае соблюдено условие:

AB+CD=BC+AD

На основе теоремы можно сформулировать обратное утверждение. В том случае, когда противоположные стороны четырехугольника в сумме равны, то есть AB+CD=BC+AD, в такой четырехугольник ABCD допустимо вписать какую-либо окружность.

Теорема 4

Центральная точка окружности, вписанной в четырехугольник, совпадает с точкой, в которой пересекаются биссектрисы данной геометрической фигуры.

Центральная точка окружности

Источник: www.treugolniki.ru

Заметим, что на рисунке биссектрисами углов, которые имеет четырехугольник ABCD, являются следующие отрезки:

  • AO;
  • BO;
  • CO;
  • DO.

В результате:

(angle BAO = angle DAO)

(angle ABO = angle CBO) и так далее.

Теорема 5

Точки, в которых вписанная окружность касается описанного четырехугольника, расположены на сторонах с началом, совпадающим с одной вершиной, и находятся на одинаковом удалении от данной вершины.

Точки, в которых вписанная окружность касается описанного четырехугольника

Источник: www.treugolniki.ru

Рассмотрим рисунок. Заметим, что:

BM=BK;

CK=CF;

DF=DN.

Записанные равенства вытекают из того факта, что это отрезки касательных, которые проведены из одной точки.

Записанные равенства вытекают из того факта

Источник: www.treugolniki.ru

Запишем следующие соотношения:

(OM bot AB);

(OK bot BC);

(OF bot CD);

(ON bot AD).

Данные соотношения верны, так как включают в себя радиусы, которые проведены в точки касания окружности и описанного четырехугольника.

Площадь четырехугольника связана с радиусом вписанной в него окружности формулой

В том случае, когда в четырехугольник вписана окружность, его площадь определяется по формуле:

(S = p cdot r)

Здесь p обозначает полупериметр четырехугольника.

Вспомним, что противолежащие стороны четырехугольника, в который вписана окружность, в сумме равны. Исходя из данного утверждения, можно сделать вывод: полупериметр такого четырехугольника равен какой-либо из пар сумм противолежащих сторон.

Если рассмотреть некий четырехугольник ABCD, то можно записать формулу для вычисления полупериметра этой геометрической фигуры:

p=AD+BC

p=AB+CD.

Тогда площадь четырехугольника, в который вписана окружность, будет вычислена таким образом:

({S_{ABCD}} = (AD + BC) cdot r;)

({S_{ABCD}} = (AB + CD) cdot r.)

В результате для определения радиуса окружности, которая вписана в некий четырехугольник, можно воспользоваться следующей формулой:

(r = frac{S}{p}.)

В том случае, если рассматривается описанная около четырехугольника ABCD окружность, то формула для вычисления ее радиуса примет вид:

(r = frac{{{S_{ABCD}}}}{{AD + BC}};)

(r = frac{{{S_{ABCD}}}}{{AB + CD}}.)

Чему равна сумма противоположных углов вписанного в окружность четырехугольника

Теорема 6

Если четырехугольник вписан в некую окружность, то его противолежащие углы в сумме дают .

четырехугольник вписан в некую окружность

Источник: www.treugolniki.ru

Заметим, что на рисунке изображен четырехугольник ABCD, вписанный в окружность (O; R). Требуется доказать, что:

(angle A+angle C=180^o;)

(angle B+angle D=180^o.)

Представим доказательства. По условию:

(angle A) — угол вписанного четырехугольника, опирается на дугу BCD;

(angle C) — угол, который опирается на дугу DAB.

Зная, что вписанный угол составляет ½ часть дуги, которая является его опорой, запишем:

(angle A = frac{1}{2} cup BCD,)

(angle C = frac{1}{2} cup DAB.)

В результате:

(angle A + angle C = frac{1}{2} cup BCD + frac{1}{2} cup DAB = frac{1}{2}( cup BCD + cup DAB) = frac{1}{2} cdot 360^o = 180^o.)

Аналогичным образом запишем, что:

(angle B + angle D = frac{1}{2}( cup CDA + cup ABC) = frac{1}{2} cdot 360^o = 180^o.)

Теорема доказана.

Теорема 7

Если имеется такой четырехугольник, в котором противолежащие углы в сумме составляют (180^o), то около него можно описать окружность.

Представим, что имеется некий четырехугольник ABCD.

Сумма его противолежащих углов равна: (angle B+angle D=180^o).

Попробуем доказать, что около рассматриваемого четырехугольника можно описать окружность.

В первую очередь построим окружность около треугольника ABC таким образом, чтобы точка D принадлежала данной окружности. Построим доказательства, двигаясь «от обратного».

Допустим, что точка D не принадлежит окружности, которая описана около треугольника ABD. В таком случае точка D должна располагаться во внутренней области, ограниченной данной окружностью, или за пределами окружности.

В том случае, когда точка D расположена во внутреннем пространстве, ограниченном окружностью, какой-то луч AD имеет точку пересечения с окружностью. Обозначим ее, как Е. Заметим, что если вокруг четырехугольника ABCE описана окружность, то его противолежащие углы в сумме составляют (180^o):

(angle B+angle E = 180^o.)

Согласно данным из условия задачи:

(angle B+angle D=180^o.)

Таким образом:

(angle D=angle E.)

С другой стороны, угол D является внешним углом треугольника DCE при его вершине D. Исходя из этого, запишем:

(angle ADC=angle DEC+angle DCE.)

В результате получается, что угол D не равен углу E. Это утверждение противоречиво. Таким образом, точка D не расположена во внутреннем пространстве, ограниченном окружностью, описанной около треугольника ABC.

угол D не равен углу E

Источник: www.treugolniki.ru

Луч AD имеет точку пересечения с окружностью, обозначенную буквой Е. В таком случае, ABCE представляет собой вписанный в окружность четырехугольник, а также:

(angle B+angle E=180^o)

Согласно условию задачи:

(angle B+angle D=180^o.)

Тогда:

(angle D=angle E.)

Однако угол Е является внешним углом треугольника ECD и расположен при вершине E.

Таким образом: (angle AEC=angle EDC+angle DCE.)

В результате недопустимо равенство углов D и E. В том случае, когда точка D расположена за пределами окружности, возникает противоречие. Таким образом, остается единственно верный вариант расположения этой точки, согласно которому она принадлежит окружности, описанной около четырехугольника. Теорема доказана.

Согласно свойству и признаку четырехугольника, вписанного в окружность, необходимым и достаточным условием вписанного четырехугольника является следующая теорема.

Теорема 7

Около четырехугольника допустимо описать окружность лишь в том случае, когда его противолежащие углы в сумме составляют 180 градусов.

Как найти радиус вписанного в окружность четырехугольника, формула

Допустим, что имеется некий четырехугольник, стороны которого обозначены, как a, b, c, d, а полупериметр равен p. В таком случае описанная около данного четырехугольника окружность имеет радиус, который можно рассчитать по формуле как отношение:

(R={frac {1}{4}}{sqrt {frac {(ab+cd)(ac+bd)(ad+bc)}{(p-a)(p-b)(p-c)(p-d)}}}.)

Примечание 

Формулу радиуса окружности, которая описана около четырехугольника, ввел индийский математик Ватассери Парамешвара в XV веке.

Рассмотрим еще одну закономерность, которую называют формулой Брахмагупты. С ее помощью можно определить площадь S четырехугольника, который вписан в окружность и имеет стороны, равные a, b, c, d:

(S={sqrt {(p-a)(p-b)(p-c)(p-d)}}.)

В данном случае p является полупериметром, то есть в два раза меньше, чем периметр, и определяется как:

(p={tfrac {1}{2}}(a+b+c+d).)

С помощью формулы Брахмагупты представляется возможным изменить форму записи формулы Парамешвары:

(4SR={sqrt {(ab+cd)(ac+bd)(ad+bc)}}.)

Здесь S определяется, как площадь четырехугольника, вписанного в окружность. Диаметр равен двум радиусам и проходит через центр окружности.

Понравилась статья? Поделить с друзьями:
  • Как найти активное сопротивление сети
  • Как в электронном дневнике найти мцко
  • Как найти эту девушку в соц сетях
  • Как найти хозяина airpods pro
  • Производственный заказ на изготовление как составить