Как найти площадь основания пирамиды ромба

Куб – правильный многогранник, каждая грань которого представляет собой квадрат. Все ребра куба равны.

Свойства куба:

1. В кубе $6$ граней и все они являются квадратами.

2. Противоположные грани попарно параллельны.

3. Все двугранные углы куба – прямые.

4. Диагонали равны.

5. Куб имеет $4$ диагонали, которые пересекаются в одной точке и делятся в ней пополам.

6. Диагональ куба в $√3$ раз больше его ребра

$B_1D=AB√3$

7. Диагональ грани куба в $√2$ раза больше длины ребра.

$DC_1=DC√2$

Пусть $а-$длина ребра куба, $d-$диагональ куба, тогда справедливы формулы:

Объем куба: $V=a^3={d^3}/{3√3}$.

Площадь полной поверхности: $S_{п.п}=6а^2=2d^2$

Радиус сферы, описанной около куба: $R={a√3}/{2}$

Радиус сферы, вписанной в куб: $r={a}/{2}$

При увеличении всех линейных размеров куба в $k$ раз, его объём увеличится в $k^3$ раз.

При увеличении всех линейных размеров куба в $k$ раз, площадь его поверхности увеличится в $k^2$ раз.

Прямоугольный параллелепипед

Параллелепипед называется прямоугольным, если его боковые ребра перпендикулярны к основанию, а основания представляют собой прямоугольники.

1. Квадрат диагонали прямоугольного параллелепипеда равен сумме квадратов трех его измерений (длины, ширины, высоты).

$B_1D^2=AD^2+DC^2+C_1C^2$

Формулы вычисления объема и площади поверхности прямоугольного параллелепипеда.

Чтобы были понятны формулы, введем обозначения:

$а$-длина;

$b$-ширина;

$с$-высота(она же боковое ребро);

$P_{осн}$-периметр основания;

$S_{осн}$-площадь основания;

$S_{п.п}$-площадь полной поверхности;

$V$-объем.

$V=a·b·c$ – объем равен произведению трех измерений прямоугольного параллелепипеда.

$S_{п.п}=2(ab+bc+ac)$.

Пирамида

Пирамидой называется многогранник, одна грань которого (основание) – многоугольник, а остальные грани (боковые) — треугольники, имеющие общую вершину.

Высотой ($h$) пирамиды является перпендикуляр, опущенный из ее вершины на плоскость основания.

$SO$ — высота.

Формулы вычисления объема и площади поверхности правильной пирамиды.

$h_a$ — высота боковой грани (апофема)

$S_{бок}={P_{осн}·h_a}/{2}$

$S_{п.п}=S_{бок}+S_{осн}$

$V={1}/{3}S_{осн}·h$

В основании лежат правильные многоугольники, рассмотрим их площади:

  1. Для равностороннего треугольника $S={a^{2}√3}/{4}$, где $а$ — длина стороны.
  2. Квадрат $S=a^2$, где $а$ — сторона квадрата.

Задачи на нахождение объема составного многогранника:

  1. Разделить составной многогранник на несколько параллелепипедов.
  2. Найти объем каждого параллелепипеда.
  3. Сложить объемы.

Задачи на нахождение площади поверхности составного многогранника.

— Если можно составной многогранник представить в виде прямой призмы, то находим площадь поверхности по формуле:

$S_{полн.пов.}=P_{осн}·h+2S_{осн}$

Чтобы найти площадь основания призмы, надо разделить его на прямоугольники и найти площадь каждого.

— Если составной многогранник нельзя представить в виде призмы, то площадь полной поверхности можно найти как сумму площадей всех граней, ограничивающих поверхность.

Параллелепипед называется прямоугольным, если его боковые ребра перпендикулярны к основанию, а основания представляют собой прямоугольники.

На рисунке изображен прямоугольный параллелепипед $ABCDA_1B_1C_1D_1$. Его основаниями являются прямоугольники $ABCD$ и $A_1B_1C_1D_1$, а боковые ребра $AA_1, BB_1, CC_1$ и $DD_1$ перпендикулярны к основаниям.

Свойства прямоугольного параллелепипеда:

  1. В прямоугольном параллелепипеде $6$ граней и все они являются прямоугольниками.
  2. Противоположные грани попарно равны и параллельны.
  3. Все двугранные углы прямоугольного параллелепипеда – прямые.
  4. Диагонали прямоугольного параллелепипеда равны.
  5. Прямоугольный параллелепипед имеет $4$ диагонали, которые пересекаются в одной точке и делятся в ней пополам.
  6. Любая грань прямоугольного параллелепипеда может быть принята за основание.
  7. Прямоугольный параллелепипед, у которого все ребра равны, называется кубом.
  8. Квадрат диагонали прямоугольного параллелепипеда равен сумме квадратов трех его измерений (длины, ширины, высоты).

$B_1D^2=AD^2+DC^2+C_1C^2$

Формулы вычисления объема и площади поверхности прямоугольного параллелепипеда.

Чтобы были понятны формулы, введем обозначения:

$а$ — длина;

$b$ — ширина;

$с$ — высота(она же боковое ребро);

$P_{осн}$ — периметр основания;

$S_{осн}$ — площадь основания;

$S_{бок}$ — площадь боковой поверхности;

$S_{п.п}$ — площадь полной поверхности;

$V$ — объем.

$V=a·b·c$ – объем равен произведению трех измерений прямоугольного параллелепипеда.

$S_{бок}=P_{осн}·c=2(a+b)·c$ – площадь боковой поверхности равна произведению периметра основания на боковое ребро.

$S_{п.п}=2(ab+bc+ac).$

Дополнительные сведения, которые пригодятся для решения задач:

Куб

$а$ — длина стороны.

$V=a^3;$

$S_{бок}=4а^2;$

$S_{п.п}=6а^2;$

$d=a√3$ – диагональ равна длине стороны, умноженной на $√3$.

Пирамида

Пирамидой называется многогранник, одна грань которого (основание) – многоугольник, а остальные грани (боковые) — треугольники, имеющие общую вершину.

Высотой ($h$) пирамиды является перпендикуляр, опущенный из ее вершины на плоскость основания.

Объем любой пирамиды равен трети произведения основания и высоты.

$V={1}/{3}S_{осн}·h$

В основании у произвольной пирамиды могут лежать различные многоугольники, рассмотрим площади некоторых из них.

В основании лежит треугольник.

Площадь треугольника.

  • $S={a·h_a}/{2}$, где $h_a$ — высота, проведенная к стороне $а$.
  • $S={a·b·sin⁡α}/{2}$, где $a,b$ — соседние стороны, $α$ — угол между этими соседними сторонами.
  • Формула Герона $S=√{p(p-a)(p-b)(p-c)}$, где $р$ — это полупериметр $p={a+b+c}/{2}$.
  • $S=p·r$, где $r$ — радиус вписанной окружности.
  • $S={a·b·c}/{4R}$, где $R$ — радиус описанной окружности.
  • Для прямоугольного треугольника $S={a·b}/{2}$, где $а$ и $b$ — катеты прямоугольного треугольника.
  • Для равностороннего треугольника $S={a^2√3}/{4}$, где $а$ — длина стороны.

В основании лежит четырехугольник.

  1. Прямоугольник.
    $S=a·b$, где $а$ и $b$ — смежные стороны.
  2. Ромб.
    $S={d_1·d_2}/{2}$, где $d_1$ и $d_2$ — диагонали ромба.
    $S=a^2·sin⁡α$, где $а$ — длина стороны ромба, а $α$ — угол между соседними сторонами.
  3. Трапеция.
    $S={(a+b)·h}/{2}$, где $а$ и $b$ — основания трапеции, $h$ — высота трапеции.
  4. Квадрат.
    $S=a^2$, где $а$ — сторона квадрата.

Пример:

Найдите объём многогранника, вершинами которого являются точки $C, A_1, B_1, C_1, D_1$ параллелепипеда $ABCDA_1B_1C_1D_1$, у которого $AB=8, AD=12, AA_1=4$.

Решение:

Изобразим прямоугольный параллелепипед и на нем отметим вершины многогранника $C, A_1, B_1, C_1, D_1$, получим в итоге четырехугольную пирамиду. В основании пирамиды лежит прямоугольник, так основание пирамиды и прямоугольного параллелепипеда совпадают.

Объем пирамиды, в основании которой лежит прямоугольник

$V={S_{прямоугольника}·h}/{3}={a·b·h}/{3}$, где $a$ и $b$ — стороны прямоугольника.

Для нашего рисунка стороны прямоугольника – это $А_1В_1$ и $A_1D_1$.

В прямоугольном параллелепипеде противоположные ребра равны и параллельны, следовательно, $AB=А_1В_1=8; AD=A_1D_1=12$.

Высотой в пирамиде $CA_1B_1C_1D_1$ будет являться ребро $СС_1$, так как оно перпендикулярно основанию (из прямоугольного параллелепипеда).

$СС_1=АА_1=4$

$V={А_1В_1·A_1D_1·СС_1}/{3}={8·12·4}/{3}=128$

Ответ: $128$

Теорема Пифагора.

В прямоугольном треугольнике сумма квадратов катетов равна квадрату гипотенузы.

$АС^2+ВС^2=АВ^2$

Призма

Призма – это многогранник, состоящий из двух равных многоугольников, расположенных в параллельных плоскостях, и $n$-го количества параллелограммов.

Многоугольники $ABCD$ и $A_1B_1C_1D_1$ – называются основаниями призмы.

Параллелограммы $АА_1В_1В, ВВ_1С_1С$ и т.д.- боковыми гранями.

Перпендикуляр, проведенный из какой-нибудь точки одного основания к плоскости другого основания, называется высотой призмы.

$С_1Н$ — высота

Если боковые ребра призмы перпендикулярны к основаниям, то призма называется прямой, в противном случае – наклонной. Высота прямой призмы равна ее боковому ребру.

Формулы вычисления объема и площади поверхности призмы:

Чтобы были понятны формулы, введем обозначения:

$P_{осн}$ — периметр основания;

$S_{осн}$ — площадь основания;

$S_{бок}$ — площадь боковой поверхности;

$S_{п.п}$ — площадь полной поверхности;

$h$ — высота призмы.

$S_{бок}=P_{осн}·h$

$S_{п.п}=S_{бок}+2S_{осн}$

$V=S_{осн}·h$

В основании призмы могут лежать различные многоугольники, рассмотрим площади некоторых из них.

В основании лежит треугольник.

  1. $S={a·h_a}/{2}$, где $h_a$ — высота, проведенная к стороне $а$
  2. $S={a·b·sin⁡α}/{2}$, где $a,b$ — соседние стороны, $α$ — угол между этими соседними сторонами.
  3. Формула Герона $S=√{p(p-a)(p-b)(p-c)}$, где $р$ — это полупериметр $p={a+b+c}/{2}$
  4. $S=p·r$, где $r$ — радиус вписанной окружности
  5. $S={a·b·c}/{4R}$, где $R$ — радиус описанной окружности
  6. Для прямоугольного треугольника $S={a·b}/{2}$, где $а$ и $b$ — катеты прямоугольного треугольника.

В основании лежит четырехугольник

1. Прямоугольник

$S=a·b$, где $а$ и $b$ — смежные стороны.

2. Ромб

$S={d_1·d_2}/{2}$, где $d_1$ и $d_2$ — диагонали ромба

$S=a^2·sin⁡α$, где $а$ — длина стороны ромба, а $α$ — угол между соседними сторонами.

3. Трапеция

$S={(a+b)·h}/{2}$, где $а$ и $b$ — основания трапеции, $h$ — высота трапеции.

Прямая призма называется правильной, если ее основания – правильные многоугольники.

Рассмотрим площади правильных многоугольников:

1. Для равностороннего треугольника $S={a^2√3}/{4}$, где $а$ — длина стороны.

2. Квадрат

$S=a^2$, где $а$ — сторона квадрата.

3. Правильный шестиугольник

Шестиугольник разделим на шесть правильных треугольников и найдем площадь как:

$S=6·S_{треугольника}={6·a^2√3}/{4}={3·a^2√3}/{2}$, где $а$ — сторона правильного шестиугольника.

Пример:

Найдите площадь поверхности прямой призмы, в основании которой лежит ромб с диагоналями, равными $10$ и $24$, а её боковое ребро равно $20$.

Решение:

Построим прямую призму, в основании которой лежит ромб.

Распишем формулу площади полной поверхности:

$S_{п.п}=S_{бок}+2S_{осн}=P_{осн}·h+2S_{ромба}$

В прямой призме высота равна боковому ребру, следовательно, $h=С_1С=20$

Чтобы найти периметр основания, надо узнать сторону ромба. Рассмотрим один из прямоугольных треугольников, получившихся, при пересечении диагоналей и воспользуемся теоремой Пифагора.

Диагонали точкой пересечения делятся пополам, поэтому катеты прямоугольного треугольника равны $5$ и $12$.

$АВ=√{5^2+12^2}=√{25+144}=√{169}=13$

$Р=13·4=52$

Теперь найдем площадь основания: площадь ромба равна половине произведения его диагоналей.

$S_{основания}={d_1·d_2}/{2}={10·24}/{2}=120$

Далее подставим все найденные величины в формулу полной поверхности и вычислим ее:

$S_{п.п}=P_{осн}·h+2S_{ромба}=52·20+2·120=1040+240=1280$

Ответ: $1280$

Цилиндр — это та же призма, в основании которой лежит круг.

$S_{бок}=P_{осн}·h=2πRh$

$S_{п.п}=S_{бок}+2S_{осн}=2πRh+2πR^2=2πR(h+R)$

$V=S_{осн}·h=πR^2 h$

Подобные призмы: при увеличении всех линейных размеров призмы в $k$ раз, её объём увеличится в $k^3$ раз.

Средняя линия треугольника параллельна основанию и равна его половине.

$MN$ — средняя линия, так как соединяет середины соседних сторон.

$MN {//} AC, MN = {AC}/{2}$

Подобие треугольников

Два треугольника называются подобными, если их углы соответственно равны, а стороны одного треугольника больше сходственных сторон другого треугольника в некоторое число раз.

Число $k$ — коэффициент подобия (показывает во сколько раз стороны одного треугольника больше сторон другого треугольника.)

  1. Периметры подобных треугольников и их линейные величины (медианы, биссектрисы, высоты) относятся друг к другу как коэффициент подобия $k$.
  2. Отношение площадей двух подобных треугольников равно квадрату коэффициента подобия.

Прямоугольный треугольник и его свойства:

В прямоугольном треугольнике катетами называются две стороны треугольника, которые образуют прямой угол. Гипотенузой называется сторона, лежащая напротив прямого угла.

Некоторые свойства прямоугольного треугольника:

  1. Сумма острых углов в прямоугольном треугольнике равна $90$ градусов.
  2. Катет прямоугольного треугольника, лежащий напротив угла в $30$ градусов, равен половине гипотенузы. (Этот катет называется малым катетом.)

Теорема Пифагора

В прямоугольном треугольнике сумма квадратов катетов равна квадрату гипотенузы.

$AC^2+BC^2=AB^2$

Соотношение между сторонами и углами в прямоугольном треугольнике:

В прямоугольном треугольнике $АВС$, с прямым углом $С$

Для острого угла $В: АС$ — противолежащий катет; $ВС$ — прилежащий катет.

Для острого угла $А: ВС$ — противолежащий катет; $АС$ — прилежащий катет.

  1. Синусом (sin) острого угла прямоугольного треугольника называется отношение противолежащего катета к гипотенузе.
  2. Косинусом (cos) острого угла прямоугольного треугольника называется отношение прилежащего катета к гипотенузе.
  3. Тангенсом (tg) острого угла прямоугольного треугольника называется отношение противолежащего катета к прилежащему.
  4. Котангенсом (ctg) острого угла прямоугольного треугольника называется отношение прилежащего катета к противолежащему.
  5. В прямоугольном треугольнике синус одного острого угла равен косинусу другого острого угла.
  6. Синусы, косинусы, тангенсы и котангенсы острых равных углов равны.
  7. Синусы смежных углов равны, а косинусы, тангенсы и котангенсы отличаются знаками: для острых углов положительные значения, для тупых углов отрицательные значения

Значения тригонометрических функций некоторых углов:

$α$ $30$ $45$ $60$
$sinα$ ${1}/{2}$ ${√2}/{2}$ ${√3}/{2}$
$cosα$ ${√3}/{2}$ ${√2}/{2}$ ${1}/{2}$
$tgα$ ${√3}/{3}$ $1$ $√3$
$ctgα$ $√3$ $1$ ${√3}/{3}$

Теорема синусов

Во всяком треугольнике стороны относятся как синусы противолежащих углов:

${a}/{sinα}={b}/{sinβ}={c}/{sinγ}=2R$, где $R$ — радиус описанной около треугольника окружности.

Теорема косинусов

Квадрат одной из сторон треугольника равен сумме квадратов двух других сторон минус удвоенное произведение этих сторон на косинус угла между ними:

$a^2=b^2+c^2-2·b·c·cosα;$

$b^2=a^2+c^2-2·a·c·cos⁡β;$

$c^2=b^2+a^2-2·b·a·cosγ.$

Пирамида

Пирамидой называется многогранник, одна грань которого (основание) – многоугольник, а остальные грани (боковые) — треугольники, имеющие общую вершину.

Высотой ($h$) пирамиды является перпендикуляр, опущенный из ее вершины на плоскость основания.

$SO$ — высота

Связь между сторонами правильного n-угольника и радиусами описанной и вписанной окружностей :

$АВ=an$ — сторона правильного многоугольника

$R$ — радиус описанной окружности

$r$ — радиус вписанной окружности

$n$ — количество сторон и углов

$a_n=2·R·sin {180°}/{n};$

$r=R·cos{180°}/{n};$

$a_n=2·r·tg{180°}/{n}.$

В зависимости от многоугольника, лежащего в основании, пирамиды могут быть треугольными, четырехугольными и т.д.

У треугольной пирамиды есть еще одно название – тетраэдр (четырехгранник).

Формулы вычисления объема и площади поверхности произвольной пирамиды.

Чтобы были понятны формулы, введем обозначения:

$P_{осн}$ -периметр основания;

$S_{осн}$ — площадь основания;

$S_{бок}$ — площадь боковой поверхности;

$S_{п.п}$ — площадь полной поверхности;

$V$ — объем.

В произвольной пирамиде боковые грани могут быть разными треугольниками, поэтому площадь боковой поверхности равна сумме площадей всех боковых граней, найденных по отдельности.

$S_{бок}=∑↖{n}S_{бок.граней}$

$S_{п.п}=S_{бок}+S_{осн}$

$V={1}/{3} S_{осн}·h$

В основании у произвольной пирамиды могут лежать различные многоугольники, рассмотрим площади некоторых из них.

В основании лежит треугольник

Площадь треугольника

  1. $S={a·h_a}/{2}$, где $h_a$ — высота, проведенная к стороне $а$
  2. $S={a·b·sin⁡α}/{2}$, где $a,b$ — соседние стороны, $α$ — угол между этими соседними сторонами.
  3. Формула Герона $S=√{p(p-a)(p-b)(p-c)}$, где $р$ — это полупериметр $p={a+b+c}/{2}$
  4. $S=p·r$, где $r$ — радиус вписанной окружности
  5. $S={a·b·c}/{4R}$, где $R$ — радиус описанной окружности
  6. Для прямоугольного треугольника $S={a·b}/{2}$, где $а$ и $b$ — катеты прямоугольного треугольника.

В основании лежит четырехугольник

Прямоугольник

$S=a·b$, где $а$ и $b$ — смежные стороны.

Ромб

$S={d_1·d_2}/{2}$, где $d_1$ и $d_2$ — диагонали ромба

$S=a^2·sin⁡α$, где $а$ — длина стороны ромба, а $α$ — угол между соседними сторонами.

Трапеция

$S={(a+b)·h}/{2}$, где $а$ и $b$ — основания трапеции, $h$ — высота трапеции.

Пирамида называется правильной, если в ее основании лежит правильный многоугольник, а ее высота приходит в центр основания (в центр описанной окружности). Все боковые ребра правильной пирамиды равны, следовательно, все боковые грани являются равнобедренными треугольниками.

Формулы вычисления объема и площади поверхности правильной пирамиды.

$h_a$- высота боковой грани (апофема)

$S_{бок}={P_осн·h_a}/{2}$

$S_{п.п}=S_{бок}+S_{осн}$

$V={1}/{3} S_{осн}·h$

В основании лежат правильные многоугольники, рассмотрим их площади:

  1. Для равностороннего треугольника $S={a^2 √3}/{4}$, где $а$ — длина стороны.
  2. Квадрат $S=a^2$, где $а$ — сторона квадрата.
  3. Правильный шестиугольник

Шестиугольник разделим на шесть правильных треугольников и найдем площадь как:

$S=6·S_{треугольника}={6·a^2 √3}/{4}={3·a^2 √3}/{2}$, где $а$ — сторона правильного шестиугольника.

Пример:

Найдите объём правильной треугольной пирамиды, стороны основания которой равны $10$, а высота равна $5√3$.

Решение:

Объем пирамиды равен трети произведения площади основания на высоту:

$V={1}/{3} S_{осн}·h$

Так как пирамида правильная, то в основании у нее лежит равносторонний треугольник, найдем его площадь по формуле:

$S_{основания}={a^2 √3}/{4}={10^2·√3}/{4}=25√3$

Подставим все данные в формулу объема и вычислим его:

$V={1}/{3} S_{осн}·h={25√3·5√3}/{3}={25·5·3}/{3}=25·5=125$

Ответ: $125$

Подобные пирамиды: при увеличении всех линейных размеров пирамиды в $k$ раз, его объём увеличится в $k^3$ раз.

Теорема Пифагора

В прямоугольном треугольнике сумма квадратов катетов равна квадрату гипотенузы.

$AC^2+BC^2=AB^2$

Соотношение между сторонами и углами в прямоугольном треугольнике:

В прямоугольном треугольнике $АВС$, с прямым углом $С$

Для острого угла $В: АС$ — противолежащий катет; $ВС$ — прилежащий катет.

Для острого угла $А: ВС$ — противолежащий катет; $АС$ — прилежащий катет.

  1. Синусом (sin) острого угла прямоугольного треугольника называется отношение противолежащего катета к гипотенузе.
  2. Косинусом (cos) острого угла прямоугольного треугольника называется отношение прилежащего катета к гипотенузе.
  3. Тангенсом (tg) острого угла прямоугольного треугольника называется отношение противолежащего катета к прилежащему.
  4. Котангенсом (ctg) острого угла прямоугольного треугольника называется отношение прилежащего катета к противолежащему.
  5. В прямоугольном треугольнике синус одного острого угла равен косинусу другого острого угла.
  6. Синусы, косинусы, тангенсы и котангенсы острых равных углов равны.

Многогранники

Многогранник – это поверхность, составленная из многоугольников, ограничивающая некоторое геометрическое тело.

В данной теме мы рассмотрим составные многогранники (многогранники, состоящие обычно из нескольких параллелепипедов).

Объемы различных многогранников:

  • Призма $V=S_{осн}·h$
  • Пирамида $V={1}/{3}S_{осн}·h$
  • Параллелепипед $V=a·b·c$, где $a, b$ и $c$ — длина, ширина и высота.
  • Куб $V=а^3$, где $а$ — сторона куба

Задачи на нахождение объема составного многогранника:

  • Первый способ.
  1. Составной многогранник надо достроить до полного параллелепипеда или куба.
  2. Найти объем параллелепипеда.
  3. Найти объем лишней части фигуры.
  4. Вычесть из объема параллелепипеда объем лишней части.

Пример:

Найдите объём многогранника, изображённого на рисунке (все двугранные углы прямые).

Решение:

1. Достроим составной многогранник до параллелепипеда.

Найдем его объем. Для этого перемножим все три измерения параллелепипеда:

$V=10·9·4=360$

2. Найдем объем лишнего маленького параллелепипеда:

Его длина равна $9-4=5$

Ширина равна $4$

Высота равна $7$

$V=7·4·5=140$

3. Вычтем из объема параллелепипеда объем лишней части и получим объем заданной фигуры:

$V=360-140=220$

Ответ: $220$

  • Второй способ
  1. Разделить составной многогранник на несколько параллелепипедов.
  2. Найти объем каждого параллелепипеда.
  3. Сложить объемы.

Задачи на нахождение площади поверхности составного многогранника.

— Если можно составной многогранник представить в виде прямой призмы, то находим площадь поверхности по формуле:

$S_{полн.пов.}=P_{осн}·h+2S_{осн}$

Чтобы найти площадь основания призмы, надо разделить его на прямоугольники и найти площадь каждого.

Пример:

Найдите площадь поверхности многогранника, изображённого на рисунке (все двугранные углы прямые).

Представим данный многогранник как прямую призму с высотой равной $12$.

$S_{полн.пов.}=P_{осн}·h+2S_{осн}$

$P_{осн}=8+6+6+2+2+4=28$

Чтобы найти площадь основания, разделим его на два прямоугольника и найдем площадь каждого:

$S_1=6·6=36$

$S_2=2·4=8$

$S_осн=36+8=44$

Далее подставим все данные в формулу и найдем площадь поверхности многогранника

$S_{полн.пов.}=28·12+2·44=336+88=424$

Ответ: $424$

— Если составной многогранник нельзя представить в виде призмы, то площадь полной поверхности можно найти как сумму площадей всех граней, ограничивающих поверхность.

Задачи на нахождение расстояния между точками составного многогранника.

В данных задачах приведены составные многогранники, у которых двугранные углы прямые. Надо соединить расстояние между заданными точками и достроить его до прямоугольного треугольника. Далее остается воспользоваться теоремой Пифагора для нахождения нужной стороны.

Теорема Пифагора

В прямоугольном треугольнике сумма квадратов катетов равна квадрату гипотенузы.

$АС^2+ВС^2=АВ^2$

Задачи на нахождение угла или значения одной из тригонометрических функций обозначенного в условии угла составного многогранника.

Так как в данных задачах приведены составные многогранники, у которых все двугранные углы прямые, то достроим угол до прямоугольного треугольника и найдем его значение по тригонометрическим значениям.

Соотношение между сторонами и углами в прямоугольном треугольнике:

В прямоугольном треугольнике $АВС$, с прямым углом $С$:

Для острого угла $В: АС$ — противолежащий катет; $ВС$ — прилежащий катет.

Для острого угла $А: ВС$ — противолежащий катет; $АС$ — прилежащий катет.

  1. Синусом ($sin$) острого угла прямоугольного треугольника называется отношение противолежащего катета к гипотенузе.
  2. Косинусом ($cos$) острого угла прямоугольного треугольника называется отношение прилежащего катета к гипотенузе.
  3. Тангенсом ($tg$) острого угла прямоугольного треугольника называется отношение противолежащего катета к прилежащему катету.

Значения тригонометрических функций некоторых углов:

Составим твой персональный план подготовки к ЕГЭ

$α$ $30$ $45$ $60$
$sinα$ ${1}/{2}$ ${√2}/{2}$ ${√3}/{2}$
$cosα$ ${√3}/{2}$ ${√2}/{2}$ ${1}/{2}$
$tgα$ ${√3}/{3}$ $1$ $√3$
$ctgα$ $√3$ $1$ ${√3}/{3}$

Пирамидой называют многогранник, одна грань которого – многоугольник, а остальные грани – треугольники с общей вершиной. Многоугольник называют основанием пирамиды, а треугольники – боковыми гранями

Высотой пирамиды называют перпендикуляр, проведенный из вершины пирамиды к плоскости ее основания. 

На рисунке 9.53 изображена четырехугольная пирамида LaTeX formula: SABCD с вершиной в точке LaTeX formula: S . Четырехугольник LaTeX formula: ABCD – основание пирамиды, треугольники LaTeX formula: SAB , LaTeX formula: SAD , LaTeX formula: SCD и LaTeX formula: SBC – ее боковые грани. Отрезки LaTeX formula: SA , LaTeX formula: SD , LaTeX formula: SC и LaTeX formula: SB – боковые ребра пирамиды. Отрезок LaTeX formula: SO – высота пирамиды. 

1. Если все боковые ребра пирамиды равны или наклонены к плоскости основания под одним и тем же углом, то основание высоты пирамиды, проведенной из ее вершины, совпадает с центром окружности, описанной около основания пирамиды.

2. Если боковые грани пирамиды наклонены к плоскости основания под одним и тем же углом (двугранные углы при основании равны), то основание высоты пирамиды, проведенной из ее вершины, совпадает с центром окружности, вписанной в основание пирамиды.

3. Если две боковые грани пирамиды перпендикулярны плоскости основания, то боковое ребро, содержащее эти грани, является высотой пирамиды. 

Объем пирамиды высоты LaTeX formula: h находят по формуле: 

LaTeX formula: V=frac{1}{3}S_{o.} cdot h , (9.11)

Площадь поверхности пирамиды находят по формуле:

  LaTeX formula: S_{n.}=S_{o.}+S_{delta .} . (9.12)

Пирамида называется правильной, если ее основанием является правильный многоугольник, а основание высоты пирамиды, проведенной из ее вершины, совпадает с центром окружности, вписанной в основание пирамиды (или описанной около основания пирамиды, так как центры этих окружностей совпадают). 

На рисунке 9.54 изображена правильная четырехугольная пирамида, а на рисунке 9.55 – правильная треугольная.

Высоту боковой грани правильной пирамиды, проведенную из ее вершины, называют апофемой. На рисунке 9.54 отрезок LaTeX formula: SP – апофема правильной четырехугольной пирамиды. 

Любую треугольную пирамиду называют тетраэдром

Тетраэдр называется правильным, если все его ребра равны. 

На рисунке 9.56 изображен правильный тетраэдр.

Площадь боковой поверхности правильной пирамиды находят по формуле: 

LaTeX formula: S_{delta .}=frac{1}{2}P_{o.} cdot h_{delta .} , (9.13)

где LaTeX formula: h_{delta .}  – апофема пирамиды.

Усеченной пирамидой называют многогранник, вершинами которого служат вершины основания пирамиды и вершины ее сечения плоскостью, параллельной основанию пирамиды. 

Основания усеченной пирамиды – подобные многоугольники.

Высотой усеченной пирамиды называют перпендикуляр, заключенный между плоскостями ее оснований. 

На рисунке 9.57 изображена треугольная усеченная пирамида, а на рисунке 9.58 – правильная четырехугольная усеченная пирамида.

Объем усеченной пирамиды находят по формуле:

LaTeX formula: V=frac{1}{3}h(S_1+S_2+sqrt{S_1S_2}) , (9.14)

где LaTeX formula: S_1 и LaTeX formula: S_2 – площади оснований, LaTeX formula: h – высота усеченной пирамиды.

Пример 1. Основанием пирамиды является правильный треугольник со стороной LaTeX formula: 2 дм, а две ее боковые грани перпендикулярны плоскости основания (рис. 9.59). Найдите объем пирамиды, зная, что ее высота равна LaTeX formula: sqrt{3} дм. 

Решение. Так как две боковые грани LaTeX formula: ABS и LaTeX formula: CBS пирамиды перпендикулярны плоскости ее основания, то их общее ребро LaTeX formula: SB является высотой пирамиды. Площадь основания пирамиды найдем по формуле  LaTeX formula: S=frac{sqrt{3}a^2}{4} . Получим: LaTeX formula: S=frac{4sqrt{3}}{4}=sqrt{3} (LaTeX formula: _{partial M}\^3). 

Объем пирамиды найдем по формуле  9.11 . Получим: LaTeX formula: V=frac{1}{3}cdot sqrt{3}cdot sqrt{3}=1 (LaTeX formula: _{partial M}\^3).

Ответ: LaTeX formula: 1 LaTeX formula: _{partial M}\^3.

Пример 2. Вычислите объем правильного тетраэдра с ребром, равным  LaTeX formula: a .

Решение. Так как тетраэдр правильный (рис. 9.60), то его высота опускается в центр треугольника LaTeX formula: ABC : точку LaTeX formula: O , точку пересечения высот, биссектрис и медиан этого треугольника. 

Тогда LaTeX formula: OA=frac{a }{sqrt{3}} – радиус окружности, описанной около LaTeX formula: triangle ABC ;  LaTeX formula: DO=h – высота тетраэдра. 

Найдем высоту тетраэдра. Рассмотрим треугольникLaTeX formula: AOD . Из теоремы Пифагора:  LaTeX formula: OD^2=AD^2-AO^2 ,  LaTeX formula: h^2=a^2-R^2 ,  LaTeX formula: h=sqrt{a^2-frac{a^2}{3}}=sqrt{frac{2a^2}{3}}=frac{sqrt{2}a}{sqrt{3}} . 

Объем тетраэдра вычислим по формуле 9.11 , где  LaTeX formula: S_{o.}=frac{sqrt{3}a^2}{4} . Запишем:  LaTeX formula: V=frac{1}{3}cdot frac{sqrt{3}a^2}{4}cdot frac{sqrt{2}a}{sqrt{3}}=frac{sqrt{2}a^3}{12} .

Ответ:  LaTeX formula: frac{sqrt{2}a^3}{12} .

Пример 3. В основании пирамиды лежит прямоугольный треугольник с гипотенузой, равной LaTeX formula: c, и острым углом  LaTeX formula: 30^{circ}. Боковые ребра пирамиды наклонены к плоскости основания под углом  LaTeX formula: 60^{circ}. Найдите объем пирамиды. 

Решение. Основанием пирамиды является треугольник LaTeX formula: ABC : LaTeX formula: angle C=90^{circ} ;  LaTeX formula: AB=c (рис. 9.61). Так как боковые ребра пирамиды наклонены к плоскости основания под одним и тем же углом, то высота пирамиды опускается в центр окружности, описанной около этого треугольника (на рисунке 9.61 точка LaTeX formula: O ). Тогда LaTeX formula: AO=R=frac{c}{2}  и высота пирамиды  LaTeX formula: h=SO . 

Рассмотрим прямоугольный треугольник LaTeX formula: SAO. Угол LaTeX formula: SAO является углом наклона бокового ребра к плоскости основания, так как отрезок LaTeX formula: AO – проекция ребра LaTeX formula: AS на плоскость основания и  LaTeX formula: angle SAO=60^{circ}. Тогда LaTeX formula: tg60^{circ}=frac{SO}{AO}  и  LaTeX formula: SO=frac{sqrt{3}c}{2}=h . 

Рассмотрим прямоугольный треугольник LaTeX formula: ABCLaTeX formula: CB=frac{c}{2}  по свойству катета, лежащего против угла LaTeX formula: 30^{circ} ;  LaTeX formula: angle B=60^{circ} . 

Найдем площадь треугольника:

LaTeX formula: S_{triangle ABC}=frac{1}{2}ABcdot CBcdot sinangle B ,  LaTeX formula: S_{triangle ABC}=frac{1}{2}ccdot frac{c}{2}cdot frac{sqrt{3}}{2} ,  LaTeX formula: S_{triangle ABC}=frac{sqrt{3}c^2}{8} . 

По формуле 9.11 найдем объем пирамиды: LaTeX formula: V=frac{1}{3}cdot frac{sqrt{3}c^2}{8}cdot frac{sqrt{3}c}{2}=frac{c^3}{16} .

Ответ:  LaTeX formula: frac{c^3}{16} .

Пример 4. Основанием пирамиды служит треугольник со сторонами LaTeX formula: 5 см, LaTeX formula: 6 см и LaTeX formula: 6 см. Боковые грани пирамиды образуют с ее основанием равные двугранные углы, содержащие по  LaTeX formula: 45^{circ} . Определите объем пирамиды.

Решение. Основанием пирамиды (рис. 9.62) служит равнобедренный треугольник LaTeX formula: ABCLaTeX formula: AB=CB=6 смсм, LaTeX formula: AC=5см. Так как боковые грани образуют с плоскостью основания равные двугранные углы, то высота пирамиды опускается в центр окружности, вписанной в треугольник LaTeX formula: ABC , то есть в точку  LaTeX formula: O , лежащую на высоте LaTeX formula: BK  этого треугольника.

Тогда LaTeX formula: AK=CK=2,5 см;  LaTeX formula: OK=r , где LaTeX formula: r – радиус окружности, вписанной в основание пирамиды и  LaTeX formula: r=frac{2S}{a+b+c}.

Площадь треугольника LaTeX formula: ABC найдем по формуле Герона  LaTeX formula: S_{triangle ABC}=sqrt{p(p-a)(p-b)(p-c)} , где LaTeX formula: p=frac{5+6+6}{2}=8,5 (см) и LaTeX formula: S_{triangle ABC}=sqrt{8,5cdot (8,5-5)(8,5-6)^2}=frac{5sqrt{119}}{4} (LaTeX formula: _{CM}\^3). Следовательно, LaTeX formula: r=frac{5sqrt{119}}{2cdot 17}=frac{5sqrt{7}}{2sqrt{17}} (см).

Угол LaTeX formula: SKB – линейный угол двугранного угла LaTeX formula: SACB, так как LaTeX formula: BKperp AC и  LaTeX formula: SKperp AC, и согласно условию задачи LaTeX formula: angle SKB=45^{circ} . Значит, треугольник LaTeX formula: SOK равнобедренный и LaTeX formula: h=r=frac{5sqrt{7}}{2sqrt{17}}(см).

Согласно формуле  9.11 найдем объем пирамиды:

LaTeX formula: V=frac{1}{3}cdot frac{5sqrt{119}}{4}cdot frac{5sqrt{7}}{2sqrt{17}}=frac{25cdot 7}{24}=frac{175}{24} (LaTeX formula: _{CM}\^3).

Ответ: LaTeX formula: frac{175}{24}LaTeX formula: _{CM}\^3 .

Пример 5. Апофема правильной четырехугольной пирамиды (рис. 9.63) равна LaTeX formula: sqrt{3} и образует с высотой пирамиды угол  LaTeX formula: 30^{circ}. Найдите площадь боковой поверхности пирамиды. 

Решение. Так как пирамида правильная, то четырехугольник LaTeX formula: ABCD – квадрат, а ее боковые грани – равнобедренные треугольники. 

Точка LaTeX formula: O – центр окружности, вписанной в основание пирамиды, следовательно,  LaTeX formula: OP=r=frac{DC}{2} . 

Поскольку LaTeX formula: angle SOP=90^{circ} , а  LaTeX formula: angle PSO=30^{circ} , то LaTeX formula: OP=frac{sqrt{3}}{2} , тогда LaTeX formula: DC=sqrt{3} . 

По формуле 9.13 найдем площадь боковой поверхности пирамиды:   LaTeX formula: S_{delta .}=frac{1}{2}cdot 4cdot sqrt{3}cdot sqrt{3}=6 .

Ответ: LaTeX formula: 6 .

Пример 6. Основание пирамиды – ромб с острым углом  LaTeX formula: 30^{circ} и стороной, равной LaTeX formula: 3. Найдите объем пирамиды, если известно, что ее вершина удалена от всех сторон основания на расстояние, равное  LaTeX formula: sqrt{3}.

Решение. Так как вершина пирамиды равноудалена от всех сторон ромба, то основание высоты пирамиды (точка LaTeX formula: O) совпадает с центром окружности, вписанной в ромб (рис. 9.64). По формуле LaTeX formula: S=a^2sinalpha  найдем площадь ромба:  LaTeX formula: S=3^2sin30^{circ}=frac{9}{2} . 

С другой стороны, площадь ромба можем найти и по формуле LaTeX formula: S=ah, откуда LaTeX formula: h=frac{S}{a} ,  LaTeX formula: h=frac{9}{2cdot 3}=frac{3}{2} .Тогда LaTeX formula: OP=frac{h}{2}=frac{3}{4} . 

Из теоремы Пифагора LaTeX formula: OS=sqrt{SP^2-OP^2} ,  LaTeX formula: OS=sqrt{3-frac{9}{16}}=frac{sqrt{39}}{4} . 

По формуле 9.11 найдем объем пирамиды: 

LaTeX formula: V=frac{1}{3}cdot frac{9}{2}cdot frac{sqrt{39}}{4}=frac{3sqrt{39}}{8} .

Ответ:  LaTeX formula: frac{3sqrt{39}}{8} .

Пример 7. Боковое ребро правильной четырехугольной усеченной пирамиды наклонено к плоскости основания под углом  LaTeX formula: 45^{circ} , а длины ребер оснований соответственно равны LaTeX formula: 2см и LaTeX formula: 4см (рис. 9.65). Найдите объем пирамиды. 

Решение. Так как основания усеченной пирамиды – квадраты со сторонами LaTeX formula: 2 и LaTeX formula: 4 см, то их площади соответственно равны: 

LaTeX formula: S_1=2^2=4 LaTeX formula: _{CM}\^2 ,  LaTeX formula: S_2=4^2=16 LaTeX formula: _{CM}\^2 .

По теореме Пифагора найдем диагонали квадратов: 

LaTeX formula: AD=sqrt{16+16}=sqrt{2cdot 16}=4sqrt{2} (см), LaTeX formula: BC=sqrt{4+4}=sqrt{2cdot 4}=2sqrt{2} (см).

Так как диагонали точкой пересечения делятся пополам, то LaTeX formula: OD=2sqrt{2} см, а  LaTeX formula: NC=sqrt{2} см. 

Рассмотрим диагональное сечение пирамиды – трапецию LaTeX formula: ABCD. Так как LaTeX formula: MO=CP, то имеем прямоугольник LaTeX formula: ONCP , в котором  LaTeX formula: OP=NC , а LaTeX formula: PD=OD-OP. Поскольку треугольник LaTeX formula: CPD равнобедренный, то LaTeX formula: PD=2sqrt{2}-sqrt{2}=sqrt{2}  (см) и LaTeX formula: PC=sqrt{2} см. Следовательно, высота усеченной пирамиды LaTeX formula: h=sqrt{2} см. 

По формуле 9.14 найдем объем пирамиды: 

LaTeX formula: V=frac{1}{3}cdot sqrt{2}(16+4+sqrt{16cdot 4})=frac{sqrt{2}}{3}(20+4cdot 2)=frac{28sqrt{2}}{3} (LaTeX formula: _{CM}\^3).

Ответ:  LaTeX formula: frac{28sqrt{2}}{3} LaTeX formula: _{CM}\^3 . 

1. Решение задач, связанных с пирамидой, необходимо начинать с построения высоты пирамиды. 

2. Различайте правильную треугольную пирамиду и правильный тетраэдр: 

1) у правильной треугольной пирамиды основание – правильный треугольник, а боковые ребра хоть и равны между собой, но не обязательно, что они равны ребрам основания пирамиды; 

2) правильный тетраэдр – это треугольная пирамида, у которой все ребра равны. 

Полная площадь боковой поверхности пирамиды состоит из суммы площадей его боковых граней.
четырехугольная пирамида
В четырехугольной пирамиде различается два вида граней – четырехугольник в основании и треугольники с общей вершиной, которой образуют боковую поверхность.
Для начала потребуется рассчитать площадь боковых граней. Для этого можно использовать формулы площади треугольника, а можно также воспользоваться формулой площади поверхности четырехугольной пирамиды (только в случае, если многогранник правильный). Если пирамида правильная и в ней известна длина ребра a основания и проведенной к нему апофемы h, то:

S_bok={1/2}ah

Если по условиям даны длина ребра c правильной пирамиды и длина стороны основания a, то можно найти значение по следующей формуле:
S_bok={1/2}a sqrt{c^2-{{a^2}/4}}
Если же дана длина ребра в основании и противолежащий ей острый угол у вершины, то можно рассчитать площадь боковой поверхности по соотношению квадрата стороны a к удвоенному косинусу половины угла α:
S_bok={a^2}/{2*cos{{alpha}/2}}
Рассмотрим пример расчета площади поверхности четырехугольной пирамиды через боковое ребро и сторону основания.

Иконка карандаша 24x24Задача: пусть дана правильная четырехугольная пирамида. Длина ребра b = 7 см, длина стороны основания a = 4 см. Подставим заданные значения в формулу:
S_bok={1/2}*4*sqrt{7^2-{{4^2}/4}}={1/2}*4*sqrt{49-4}=13,4{cm}^2

Мы показали расчеты площади одной боковой грани для правильной пирамиды. Соответственно. Чтобы найти площадь всей поверхности необходимо умножить результат на количество граней, то есть на 4. Если пирамида произвольная и ее грани не равны между собой, то рассчитать площадь необходимо для каждой отдельной стороны. Если в основании лежит прямоугольник или параллелограмм, то стоит вспомнить их свойства. Стороны у этих фигур попарно параллельны, а соответственно грани пирамиды будут также попарно одинаковы.
Формула площади основания четырехугольной пирамиды напрямую зависит от того, какой четырехугольник лежит в основании. Если пирамида правильная, то площадь основания рассчитывается по формуле площади квадрата, если в основании лежит ромб, то потребуется вспомнить, как находится площадь ромба. Ели же в основании лежит прямоугольник, то найти его площадь будет довольно просто. Достаточно знать длины сторон основания. Рассмотрим пример расчета площади основания четырехугольной пирамиды.

Иконка карандаша 24x24Задача: Пусть дана пирамида, в основании которой лежит прямоугольник со сторонами a = 3 см, b = 5 см. К каждой из сторон из вершины пирамиды опущена апофема. h-a=4 см,h-b=6 см. Вершина пирамиды лежит на одной линии с точкой пересечения диагоналей. Найдите полную площадь пирамиды.
Формула площади четырехугольной пирамиды состоит из суммы площадей всех граней и площади основания. Для начала найдем площадь основания:
S_osn=ab
S_osn=3*5=15{cm}^2
Теперь рассмотрим грани пирамиды. Они попарно одинаковы, потому что высота пирамиды пересекает точку пересечения диагоналей. То есть, в нашей пирамиде есть два треугольника с основанием a и высотой h-a, а также два треугольника с основанием b и высотой h-b. Теперь найдем площадь треугольника по известной формуле: S={1/2}ah
S_a={1/2}*3*4=6{cm}^2
S_b={1/2}*5*6=15{cm}^2
Теперь выполним пример расчета площади четырехугольной пирамиды. В нашей пирамиде с прямоугольником в основании, формула будет выглядеть так:
S_poln=S_osn+2S_a+2S_b
S_poln=15+2*6+2*15=15+12+30=57{cm}^2

Материал урока.

С пирамидой мы с
вами знакомились в курсе геометрии базовой школы. Давайте вспомним, какой
многогранник мы назвали пирамидой и основные элементы пирамиды.

Итак, рассмотрим
многоугольник A1A2…An и точку P, не лежащую в
плоскости этого многоугольника. Соединим точку ПЭ отрезками с вершинами
многоугольника. В итоге получим n треугольников:
PA1A2, PA2A3, …, PAnA1. Многогранник, составленный из n-угольника A1A2…An и этих n треугольников, называется пирамидой.

Многоугольник A1A2…An называется основанием пирамиды.
Треугольники PA1A2,
PA2A3, …,
PAnA1 называются боковыми
гранями пирамиды
. Точка P – вершиной пирамиды,
а отрезки PA1, PA2,…,
PAn – ее боковыми
ребрами.

Пирамиду с вершиной
P и основанием A1A2…An называют n-угольной пирамидой и обозначают так: PA1A2…An.

Отрезок,
соединяющий вершину пирамиды с плоскостью ее основания и перпендикулярный к
этой плоскости, называется высотой пирамиды.

Объединение боковых граней называется боковой
поверхностью пирамиды
, а объединение всех граней называется полной
поверхностью пирамиды
. Тогда площадью боковой поверхности пирамиды
называется сумма площадей ее боковых граней. А площадью полной поверхности
пирамиды называется сумма площадей всех ее граней.

Пирамида в зависимости от того какой многоугольник
лежит в основании имеет свое название. Если в основании лежит треугольник, то
пирамида называется треугольной. Если четырехугольник – то четырехугольной
пирамидой. А если n-угольник, то n-угольной
пирамидой.

Решим задачу.

Задача. Основанием
пирамиды является ромб, сторона которого равна , а одна из
диагоналей равна . Найти длину
боковых ребер пирамиды, если высота пирамиды проходит через точку пересечения
диагоналей основания и равна .

Решение.

Ответ. ,  см.

Давайте дадим определение
правильной пирамиды.

Пирамида
называется правильной
, если ее основание – правильный многоугольник, а
отрезок, соединяющий вершину пирамиды с центром основания, является ее высотой.
Высота боковой грани правильной пирамиды, проведенная из ее вершины, называется
апофемой.

На сегодняшнем
уроке мы подробно рассмотрим правильные пирамиды.

Сейчас давайте
попробуем доказать одно из свойств правильной пирамиды. А именно
докажем, что все боковые ребра правильной пирамиды равны, а боковые грани
являются равными равнобедренными треугольниками.

Рассмотрим
правильную пирамиду PA1A2…An. Сначала докажем, что все боковые ребра этой
пирамиды равны. Проведем высоту пирамиды.

 Поскольку
основанием правильной пирамиды является правильный многоугольник, значит,
вокруг основания правильной пирамиды можно описать окружность. Тогда каждое
боковое ребро пирамиды есть ничто иное, как гипотенуза прямоугольного
треугольника, одним катетом которого служит высота PO пирамиды, а другим – радиус описанной около основания
окружности. Например, если рассмотреть треугольник OPA1,
то OP равно h, OA1 равно R.

Таким образом, мы
доказали, что боковые ребра правильной пирамиды равны. А значит, боковые грани
правильной пирамиды – это равнобедренные треугольники. Поскольку в основании
лежит правильный многоугольник, значит, основания боковых граней равны между
собой. То есть боковые грани равны между собой по трем сторонам.

Что и
требовалось доказать.

Теперь давайте
сформулируем и докажем теорему о площади боковой поверхности правильной
пирамиды.

Площадь боковой
поверхности правильной пирамиды равна половине произведения периметра основания
на апофему.

Доказательство.

Запишем формулу для
вычисления площади боковой поверхности правильной пирамиды.

Мы уже доказали,
что боковые грани правильной пирамиды – равные равнобедренные треугольники.
Высоты этих треугольников равны апофеме пирамиды. Тогда площадь боковой грани
находится по формуле .

Подставим эти
площади в формулу площади боковой поверхности. Вынесем половину апофемы за
скобки, тогда в скобках получим периметр основания.

Что и
требовалось доказать.

Решим несколько
задач.

Задача. Радиус
окружности, вписанной в основание правильной четырехугольной пирамиды, равен , высота
пирамиды равна . Найти
площадь боковой поверхности пирамиды.

Решение.

Ответ. 60 м2

Решим еще одну
задачу.

Задача. Радиус
окружности, описанной около основания правильной треугольной пирамиды, равен . . Найти длину
апофемы.

Решение.

Ответ. 4 м

Подведем итоги
урока.

Сегодня на уроке мы
вспомнили, какая фигура называется пирамидой. Какие пирамиды называются
правильными. Познакомились со свойствами правильных пирамид. Решили несколько
задач.

В данной публикации мы рассмотрим, как можно вычислить площадь поверхности различных видов правильных пирамид: треугольной, четырехугольной и шестиугольной.

Правильная пирамида – это пирамида, вершина которой проецируется в центр основания, являющегося правильным многоугольником.

  • Формула площади правильной пирамиды

    • 1. Общая формула

    • 2. Площадь правильной треугольной пирамиды

    • 3. Площадь правильной четырехугольной пирамиды

    • 4. Площадь правильной шестиугольной пирамиды

Формула площади правильной пирамиды

Формула площади поверхности правильной пирамиды

1. Общая формула

Площадь (S) полной поверхности пирамиды равняется сумме площади ее боковой поверхности и основания.

Sполн. = Sбок. + Sосн.

Боковой гранью правильной пирамиды является равнобедренный треугольник.

Нахождение площади правильной пирамиды: формулы

Площадь треугольника вычисляется по формулам:

1. Через длину основания (a) и высоту (h):

Формула площади треугольника

2. Через основание (a) и боковую сторону (b):

Формула площади равнобедренного треугольника

Формула площади основания правильной пирамиды зависит от вида многогранника. Далее мы рассмотрим самые популярные варианты.

2. Площадь правильной треугольной пирамиды

2. Площадь правильной треугольной пирамиды

Основание: равносторонний треугольник.

L (апофема) – перпендикулярная линия, опущенная из вершины пирамиды на ребро основания. Т.е. апофема пирамиды является высотой (h) ее боковой грани.

3. Площадь правильной четырехугольной пирамиды

Площадь правильной четырехугольной пирамиды

Основание: квадрат.

Площадь Формула
основание Sосн. = a2
боковая поверхность Sбок. = 2aL
Нахождение площади правильной пирамиды: формулы
полная Sполн. = a2 + 2aL
Нахождение площади правильной пирамиды: формулы

microexcel.ru

4. Площадь правильной шестиугольной пирамиды

Площадь поверхности правильной шестиугольной пирамиды

Основание: правильный шестиугольник

Понравилась статья? Поделить с друзьями:
  • Как найти 5 предметов в брамблвудском лесу
  • Как в скайпе найти переписку по дате
  • Как найти игру три богатыря
  • Фотоэффект как найти длину волны света
  • Как найти площадь впи