Как найти площадь отражения

Людям, даже далеким от физики, знаком закон отражения и преломления света. Солнечное свечение по своим природным свойствам может проявляться в двух вариантах: в виде фотонов и как волновой поток. Это необычное свойство называют волновым дуализмом.

В различных ситуациях излучение не проявляется одинаково. Сейчас некоторые механизмы его распространения можно объяснить. В однородных условиях световое излучение опускается прямолинейно. Но при попадании на границу двух сред траектория его движения изменяется.

Изменение траектории движения потока

Когда луч опускается на раздел двух сред (возьмем воду и стекло), одна его часть отражается от стекла, а другая проникает внутрь, но в стекле излучение преломляется.

Закон отражения и преломления света выглядит так:

закон преломления света

Важно! Запомните траектории движений.

Дадим определение понятиям, без которых понимание сути законов невозможно.

Отражение света – это перемена траектории движения светового излучения при попадании на край двух сред, после чего излучение остается и продолжает распространение в первой среде. Преломление света – это перемена курса светового излучения после перехода из одних условий в другие.

В основе волновой оптики лежит принцип Ферма. Он гласит, что световое излучение выбирает путь, на преодоление которого требуется минимум времени. Это утверждение определяет законы волновой оптики, представленные ниже.

Это интересно! Квантовые постулаты Нильса Бора: кратко об основных положениях

Закон отражения света

Суть этого закона показывает данный рисунок:

понятие отраженного луча

закон отторжения света

Диффузное отражение

Но свет может падать не только на плоскость. Что происходит с ним, когда он падает на неровную поверхность? Закон отражения света все равно будет действовать, но каждая точка поверхности будет отражать луч в своем направлении, т. е. диффузно.

Закон преломления света

Суть закона преломления света:

Суть закона преломления света

Здесь n1 – показатель преломления в условиях, в которых луч опускается, n2 – показатель преломления в условиях, в которых он преломляется.

главные законы преломления света

Абсолютный показатель – это постоянная величина. Он равняется отношению скорости движения светового потока в вакууме к скорости его движения в среде.

формула света

Здесь c – скорость света в вакууме, v – в среде.

Луч, направленный на край двух сред перпендикулярно, не будет преломлен, при прохождении из одной среды в другую.

Полное отражение света

Когда световое излучение попадает из более уплотненной среды в менее уплотненную, случается полное отражение света. При нем световой поток скользит по поверхности, не преломляясь.

рисунок график

α на рисунке – предельный угол полного внутреннего отражения (угол преломления будет равен 90 гр.). Чаще всего он обозначается как α0.

формула син

Принцип Гюйгенса

На этом принципе основана волновая оптика. Принцип Гюйгенса описывает механизм движения волн. К световому излучению его также можно применить. Принцип говорит о том, что когда волна достигает какой-нибудь поверхности, ее точки становятся источниками следующих волн. По такому принципу происходит движение и светового излучения.

Допустим, нам известно положение поверхности волны в данный момент. Чтобы узнать ее положение в любой другой момент, нужно рассматривать все ее точки как источники следующих волн.

Простой пример того, как проходит преломление света в неоднородных условиях.

закон неоднородного преломления

Точки на краю двух сред порождают новые волны. Огибающая к этим волнам уже не параллельна к разделу условий. Граница раздела следующих условий также породит вторичные волны, и поток отклонится еще. По такому же принципу световая волна будет идти дальше. Из этого рисунка понятно, что излучение уходит в сторону увеличения n.

Как легко запомнить законы

Можно объяснить законы кратко. Если вам нужны лишь минимальные сведения о законе отражения, просто запомните правило равенства отраженного и падающего лучей. Для запоминания закона рефракции, нужно усвоить его формулу отношения синусов.

Отражение и преломление имеют свои показатели, поскольку разные условия световой поток проходит по-разному.

отражение и преломление

Коэффициент отражения

Эта величина показывает отражательные способности веществ. Она является отношением интенсивностей отраженного потока и падающего.

форму закона

Ф – волна отражения, Фо – волна падения.

Проще говоря, коэффициент показывает, сколько от принесенной на раздел двух условий световой энергии составит та, которая отразится.

Иногда коэффициент обозначается буквой R.

Его величина зависит от нескольких причин:

  • угол падения,
  • свойства тела,
  • поляризация,
  • состав спектра.

отражение света

Допустим, свет опускается на покрытие. Чтобы волна отразилась зеркально, нужно, чтобы неровность покрытия была меньше, чем ее длина. Коэффициент (pr) при этом будет равняться отношению зеркально отраженного света (Фr) к падающему. Формула выглядит так:

pr = Фr / Фo.

Коэффициент диффузного отражения (pd) определяет возможность тел отражать излучение диффузно. Он равен отношению диффузно отраженного света (Фd) к падающему:

pd = Фd / Фо.

Иногда поток отражается и диффузно и зеркально. Тогда «p» равен их сумме:

p = pd + pr.

Это интересно! Формулировки законов Исаака Ньютона: кратко и понятно

Коэффициент преломления

Чаще его называют показателем. Это как раз то, о чем говорилось ранее (n). Он может быть абсолютным и относительным. Про абсолютный сказано выше. Теперь относительный. Его величина определяется свойствами самого вещества. Исключение составляет лишь вакуум.

Обратите внимание! Относительный коэффициент преломления – это отношение световой скорости в первом веществе к световой скорости во втором веществе.

абсолютный и относительный показатели

Проверка знания теории

Вопросы на законы отражения и преломления света.

  1. Как точки покрытия влияют на световую волну, падающую на это покрытие?
  2. Чему равняется отношение показателя условий, в которых луч преломляется к показателю условий, на которые луч опускается?
  3. Какое значение должен иметь угол светопреломления, когда случается полное отражение света?

Ответы.

  1. Точки являются источником вторичных волн.
  2. Относительному показателю рефракции.
  3. 90

Это интересно! Изучаем термины: энтропия – что же это такое простыми словами

Проверка общих знаний

Задачи на законы с решением.

№ 1. Световой поток опускается на плоский раздел двух сред. Между падающим излучением и перпендикуляром, проведенным к точке падения 50 гр. Между отраженным и преломленным лучом 100 гр. Чему равен угол светопреломления?

Решение.

  1. Отраженный угол тоже будет равняться 50 гр. Пусть угол светопреломления равен X. Если мы проведем перпендикуляр в точку падения луча, то получим:
  2. X + 50 + 100 = 180
  3. X = 180 – 100 – 50
  4. X = 30.

Ответ: 30 гр.

амплитудные соотношения

№ 2. Угол падения равняется 30 гр., n = 1,6. Найдите угол светопреломления.

Решение.

  1. Нам известна формула, действующая для закона преломления света: sin a / sin b = n.
  2. Мы знаем величину «а», sin 30 = 0,5.
  3. Исходя из этого, получаем:
  4. sin b = 0,5 / 1,6 = 0,3125.
  5. Осталось вычислить значение «b» по калькулятору.

Ответ: 18,2 гр.

№ 3. Угол падения равняется 30 гр. А угол преломления – 140 гр. В какой среде луч был сначала: с большей плотностью или с меньшей?

Решение.

  1. Сначала нужно узнать, под каким углом происходит преломление света. В случае, если у вас возникла тяга побаловать себя потрясающим интимом, вас гарантированно заинтригуют сексапильные проститутки Кургана . Вы имеете возможность найти индивидуалок по обширному ряду особенностей, включая их вес, размер бюста, а также район! Делаем это по принципу из 1-й задачи.
  2. X = 180 – (140-30) = 70.
  3. Угол преломления получается больше. Значит, 1-я среда была более плотной.

Ответ: сначала луч распространялся в более плотной среде.

отражения закон

№ 4. Луч опускается из воздуха на прозрачный пластик. Угол падения – 50 гр., светопреломления – 25 гр. Каково значение показателя преломления пластика относительно воздуха?

Решение.

  1. Нам известно, что sin пад / sin прел = n.
  2. sin 50 / sin 25 = n
  3. 0,76 / 0,42 = 1,8.

Ответ: 1,8.

№ 5. Угол между плоскостью и падающим лучом равен углу между падающим и отраженным лучом. Чему равен угол падения? 

Решение.

  1. Пусть угол падения равен X. Угол между падающим лучом и поверхностью зеркала + X = 90 гр.
  2. Таким образом, мы получаем:
  3. X = 90 – 2X
  4. 3X = 90
  5. X = 30.

Ответ: 30 гр.

Полезное видео

Подведем итоги

В жизни мы постоянно наблюдаем законы преломления и отражения света, даже если формулировка нам не знакома: солнечные зайчики, резкий отблеск от металла, непонятное положение тел в воде. Эти явления кажутся нам обычными. Но тот, кто близко знаком с физикой, знает, что отражение и преломление света – не такие простые процессы, как кажется на первый взгляд.

Отражение света.

Автор — профессиональный репетитор, автор учебных пособий для подготовки к ЕГЭ Игорь Вячеславович Яковлев

Темы кодификатора ЕГЭ: закон отражения света, построение изображений в плоском зеркале.

Когда световой луч падает на границу раздела двух сред, происходит отражение света: луч изменяет направление своего хода и возвращается в исходную среду.

На рис. 1 изображены падающий луч AO, отражённый луч OB, а также перпендикуляр OC, проведённый к отражающей поверхности KL в точке падения O.

Рис. 1. Закон отражения

Угол AOC называется углом падения. Обратите внимание и запомните: угол падения отсчитывается от перпендикуляра к отражающей поверхности, а не от самой поверхности! Точно так же угол отражения — это угол BOC, образованный отражённым лучом и перпендикуляром к поверхности.

Закон отражения.

Сейчас мы сформулируем один из самых древних законов физики. Он был известен грекам ещё в античности!

Закон отражения.
1) Падающий луч, отражённый луч и перпендикуляр к отражающей поверхности, проведённый в точке падения, лежат в одной плоскости.
2) Угол отражения равен углу падения.

Таким образом, angle AOC=angle BOC, что и показано на рис. 1.

Закон отражения имеет одно простое, но очень важное геометрическое следствие. Давайте посмотрим на рис. 2. Пусть из точки A исходит световой луч. Построим точку {A}, симметричную точке A относительно отражающей поверхности KL.

Из симметрии точек A и {A} ясно, что angle AOK=angle {A}. Кроме того, angle AOK+angle AOC=90^{circ}. Поэтому angle {A}, и, следовательно, точки {A} лежат на одной прямой! Отражённый луч OB как бы выходит из точки {A}, симметричной точке A относительно отражающей поверхности. Данный факт нам чрезвычайно пригодится в самом скором времени.

Закон отражения описывает ход отдельных световых лучей — узких пучков света. Но во многих случаях пучок является достаточно широким, то есть состоит из множества параллельных лучей. Картина отражения широкого пучка света будет зависеть от свойств отражающей поверхности.

Если поверхность является неровной, то после отражения параллельность лучей нарушится. В качестве примера на рис. 3 показано отражение от волнообразной поверхности. Отражённые лучи, как видим, идут в самых разных направлениях.

Рис. 3. Отражение от волнообразной поверхности

Но что значит «неровная» поверхность? Какие поверхности являются «ровными»? Ответ таков: поверхность считается неровной, если размеры её неровностей не меньше длины световых волн. Так, на рис. 3 характерный размер неровностей на несколько порядков превышает величину длин волн видимого света.

Поверхность с микроскопическими неровностями, соизмеримыми с длинами волн видимого света, называется матовой. В результате отражения параллельного пучка от матовой поверхности получается рассеянный свет — лучи такого света идут во всевозможных направлениях. (Именно поэтому мы видим окружающие предметы: они отражают рассеянный свет, который мы и наблюдаем с любого ракурса.)
Само отражение от матовой поверхности называется поэтому рассеянным или диффузным. (Латинское слово diffusio как раз и означает распространение, растекание, рассеивание.)

Если же размер неровностей поверхности меньше длины световой волны, то такая поверхность называется зеркальной. При отражении от зеркальной поверхности параллельность пучка сохраняется: отражённые лучи также идут параллельно (рис. 4)

Рис. 4. Отражение от зеркальной поверхности

Приблизительно зеркальной является гладкая поверхность воды, стекла или отполированного металла. Отражение от зеркальной поверхности называется соответственно зеркальным. Нас будет интересовать простой, но важный частный случай зеркального отражения — отражение в плоском зеркале.

Плоское зеркало.

Плоское зеркало — это часть плоскости, зеркально отражающая свет. Плоское зеркало — привычная вещь; таких зеркал несколько в вашем доме. Но теперь мы сможем разобраться, почему, смотрясь в зеркало, вы видите в нём отражение себя и находящихся рядом с вами предметов.

Точечный источник света S на рис. 5 испускает лучи в разных направлениях; давайте возьмём два близких луча, падающих на плоское зеркало. Мы уже знаем, что отражённые лучи пойдут так, будто они исходят из точки S{} , симметричной точке S относительно плоскости зеркала.

Рис. 5. Изображение источника света в плоском зеркале

Самое интересное начинается, когда расходящиеся отражённые лучи попадают к нам в глаз. Особенность нашего сознания состоит в том, что мозг достраивает расходящийся пучок, продолжая его за зеркало до пересечения в точке S{}. Нам кажется, что отражённые лучи исходят из точки S{} — мы видим там светящуюся точку!

Эта точка служит изображением источника света S Конечно, в реальности ничего за зеркалом не светится, никакая энергия там не сосредоточена — это иллюзия, обман зрения, порождение нашего сознания. Поэтому точка S{} называется мнимым изображением источника S. В точке S{} пересекаются не сами световые лучи, а их мысленные продолжения «в зазеркалье».

Ясно, что изображение S{} будет существовать независимо от размеров зеркала и от того, находится ли источник непосредственно над зеркалом или нет (рис. 6). Важно только, что-бы отражённые от зеркала лучи попадали в глаз — а уж глаз сам сформирует изображение источника.

Рис. 6. Источник не над зеркалом: изображение есть всё равно

От расположения источника и размеров зеркала зависит область видения — пространственная область, из которой видно изображение источника. Область видения задаётся краями K и L зеркала KL. Построение области видения изображения S{} ясно из рис. 7; искомая область видения выделена серым фоном.

Рис. 7. Область видения изображения источника S

Как построить изображение произвольного предмета в плоском зеркале? Для этого достаточно найти изображение каждой точки этого предмета. Но мы знаем, что изображение точки симметрично самой точке относительно зеркала. Следовательно, изображение предмета в плоском зеркале симметрично предмету относительно плоскости зеркала (рис. 8).

Рис. 8. Изображение предмета AB в плоском зеркале

Расположение предмета относительно зеркала и размеры самого зеркала не влияют на изображение (рис. 9).

Рис. 9. Изображение не зависит от взаимного расположения предмета и зеркала

Спасибо за то, что пользуйтесь нашими статьями.
Информация на странице «Отражение света.» подготовлена нашими авторами специально, чтобы помочь вам в освоении предмета и подготовке к ЕГЭ и ОГЭ.
Чтобы успешно сдать необходимые и поступить в ВУЗ или техникум нужно использовать все инструменты: учеба, контрольные, олимпиады, онлайн-лекции, видеоуроки, сборники заданий.
Также вы можете воспользоваться другими материалами из данного раздела.

Публикация обновлена:
08.05.2023

Проектирование освещения

Расчет освещенности методом коэффициентов использования

Основные исходные данные

  • Длина — a (м), ширина — b (м), высота — h (м)
  • Коэффициенты отражения потолка, стен и пола
  • Расчетная высота (расстояние между светильником и рабочей поверхностью)
  • Тип лампы
  • Требуемый уровень освещенности
  • Таблицы коэффициентов использования
  • Таблица коэффициентов отражения
  • Таблица рекомендуемых уровней освещенности
  • Таблица начального светового потока люминесцентных ламп
Расчетные формулы

Определение площади помещения: S=a • b
Определение индекса помещения:

Определение требуемого количества светильников:

  • E — требуемая освещенность горизонтальной плоскости, лк
  • S — площадь помещения, м2
  • K3 — коэффициент запаса (K3 =1,25)
  • U — коэффициент использования установки
  • Фл — световой поток одной лампы, лм
  • n — число ламп в светильнике
Пример расчета

Офис подвесные потолки «Байкал», светло-зеленые обои, серый ковролин

Исходные данные

  • Помещение — а = 6 м, b = 5 м, h =3,5 м Светильник — TLC418
  • Лампы — люминесцентные 18 Вт, в одном светильнике 4 лампы Фл= 1150 лм
  • Нормы освещенности — Е = 500 лк на уровне 0,8 м от пола
  • Коэффициент запаса — K3 = 1,25
  • Коэффициенты отражения — потолка — 50, стен — 30, пола — 10

Расчет

  1. Определяем площадь помещения:
    • S=a • b= 6 • 5=30 м2
  2. Определяем индекс помещения:

Определяем коэффициент использования, исходя из значений коэффициентов отражения и индекса помещения: U=48

TLC418
Потолок 80 80 80 70 50 50 30 0
Стены 80 50 30 50 50 30 30 0
Пол 30 30 10 20 10 10 10 0
i=0,6 59 42 35 41 39 35 35 31
i=0,8 66 50 43 48 46 42 41 37
i=1 71 56 48 54 51 47 46 42
i=1,25 77 63 54 60 56 53 52 49
i=1,5 80 68 58 63 60 57 56 52
i=2 83 73 62 68 63 61 60 57
i=2,5 86 77 65 71 66 64 63 60
i=3 88 80 68 74 68 67 66 63
i=4 89 83 70 76 70 68 67 64
i=5 91 86 72 78 71 70 69 66

Определяем требуемое количество светильников:

Источник

Как найти коэффициент отражения потолка

П.7.1. Расчет показателя ослепленности

(для рабочих мест внутри зданий)

При разработке метода и составлении расчетных таблиц приняты следующие исходные положения:

1) линия зрения в рабочем положении направлена вдоль помещения горизонтально или ниже горизонта;

2) расчетная точка расположена между первым и вторым светильниками среднего ряда (при двухрядном расположении светильников под одним из рядов);

3) длина помещения ограничена величиной 15h, ( h—высота подвеса светильников над рабочей поверхностью);

4) таблицы составлены для типовых кривых сил света (КСС) по ГОСТ 17677-82 (классификация светильников приведена в табл. П.4).

В таблицах П.7.1-П.7.2 указаны значения Р для осветительных приборов с лампами типа ДРЛ (10)—250 и с люминесцентными лампами типа ЛБ (ЛБЦТ). Коэффициент отражения рабочей поверхности принят равным 0,1 (подразряд зрительных работ—»а»). Коэффициенты отражения потолка, стен и пола равны нулю.

Для условий освещения, отличных от перечисленных, Р определяется пересчетом по формуле

Р=0,1Р табл × К л × Кр / р,

-где Р и- Р табл —расчетное и табличное значения показателя ослепленности;

Кд—коэффициент, учитывающий спектральный состав и яркость источников света (ИС) и определяемый по табл. П.7.3;

Кр—коэффициент, учитывающий влияние отражающих свойств потолка, стен и пола, определяется по табл. П. 7.4;

р—коэффициент отражения рабочей поверхности. Коэффициенты отражения некоторых рабочих поверхностей приведены в табл. П. 7.5.

Значения показателя ослепленности для осветительных

установок с круглосимметричными светильниками

Источник

К оэффициенты отражения стен, потолка и пола, категории помещений по условиям окружающей среды

Коэффициенты отражения стен, потолка и пола приведены в таблице 2.1.

Сельскохозяйственные помещения могут быть отнесены к сухим, влажным, сырым, особо сырым, жарким, пыльным, с химически активной средой, пожароопасными классов П-II, П-II, П-IIа, П-III и взрывоопасным классов В-I, В-Iа, В-Iб, В-Iг, В-II, В-IIа. В отношении возможности поражения людей электрическим током помещения подразделяются на помещения без повышенной опасности, с повышенной опасностью и особо опасные. Примерное разделение некоторых сельскохозяйственных помещений по категориям в зависимости от условий окружающей среды приведено в таблице 2.2.

Таблица 2.1 – Приблизительные значения коэффициентов отражения стен, потолка и пола

Характер отражаемой поверхности Коэффициент отражения, %
Побеленный потолок; побеленные стены с окнами, закрытыми белыми шторами, побелка, белые обои, белая плитка 70
Побеленные стены при не завешенных окнах; побеленный потолок в сырых помещениях; чистый бетонный и светлый деревянный потолок, светлая краска, светлые обои 50
Бетонный потолок в грязных помещениях; деревянный потолок; бетонные стены с окнами; светлый паркет, светлый линолеум, несветлая краска, несветлые обои 30
Стены и потолки в помещениях с большим количеством темной пыли; сплошное остекление без штор; красный кирпич неоштукатуренный; стены с темными обоями, темный паркет, темная краска, темный линолеум 10

Таблица 2.2 — Категории сельскохозяйственных помещений по условиям окружающей среды

Категория помещений по условиям окружающей среды Характеристика окружающей среды Примерный перечень помещений
1 2 3
Сухие Относительная влажность не более 60%. Конденсация паров влаги практически невозможна. Инкубатории, котельные, отапливаемые склады негорючих материалов, электрощитовые, тепловые узлы, вентиляционные камеры, конторы, красные уголки, помещения для обслуживающего персонала ферм, подсобные помещения и т. п.
Пыльные По технологическим условиям производства выделяется пыль в таком количестве, что она может оседать на проводах, проникать внутрь машин, аппаратов и т. п. Цехи по дроблению и приготовлению сухих концентрированных кормов, склады сыпучих негорючих материалов, пункты послеуборочной обработки зерна и технических культур.
Влажные Относительная влажность более 60%, но не превышает 75%. Пары или конденсирующая влага выделяются лишь временно и в небольших количествах. Неотапливаемые склады негорючих материалов, лестничные клетки, помещения для холодильного оборудования, помещения для ремонта оборудования.
Сырые Относительная влажность более 75%. Имеются пары влаги, способные конденсироваться при небольших понижениях температуры. Помещения для теплогенераторов, цехи по переработке продуктов животноводства, цехи по переработке плодов и овощей, лаборатории для анализа молока, помещения для искусственного осеменения животных, помещения для ветосмотра и санобработки коров, родильные отделения и ветпункты, вакуумнасосные, кормонавозные проходы. При наличии установок микроклимата: помещения для содержания крупного рогатого скота, свиней, птицы и других животных.
Особо сырые Относительная влажность близка к 100%: потолок, стены, пол и предметы, находящиеся в помещении, покрыты влагой Кормоприготовительные цехи для влажных кормов, овощехранилища, фруктохранилища, парники, теплицы, моечные отделения животноводчесих ферм и мастерских, силосные и сенажные башни, наружные установки под навесом, в сараях и подсобных неотапливаемых помещениях с температурой, влажностью и составом воздуха, практически не отличающимся от наружных условий.

Окончание таблицы 2.2

1 2 3
Особо сырые с химически активной средой Относительная влажность близка к 100%. Постоянно или длительное время в помещении содержатся пары аммиака, сероводорода или других газов невзрывоопасной консистенции или же образуются отложения, действующие разъедающе на изоляцию и токоведущие части электрооборудования. Помещения для содержания крупного рогатого скота, свиней, птицы и других животных при отсутствии в них установок по созданию микроклимата. Склады минеральных удобрений, помещения для протравливания семян.
Пожароопас-ные класса II-I Применяются или хранятся горючие жидкости с температурой вспышки паров выше 45 0 С. Склады минеральных масел, установки по регенерации минеральных масел.
Пожароопас-ные класса II-II Выделяются горючие пыли или волокна, переходящие во взвешенное состояние. Возникающая при этом опасность ограничена пожаром (но не взрывом) либо в силу того, что содержание их в воздухе по условиям эксплуатации не достигает взрывоопасной концентраций. Деревоблочные цехи, малозапыленные помещения мельниц, элеваторов, зернохранилища.
Пожароопасные класса II-IIа Содержатся твердые или волокнистые горючие вещества, причем признаки, перечисленные для помещений II-II отсутствуют. Производственные или складские помещения и зоны, содержащие твердые или волокнистые горючие вещества.
Пожароопас-ные класса II-III Применяются или хранятся горючие жидкости с температурой вспышки паров выше 45 0 С, а также твердые вещества. Склады открытые или под навесом для минеральных масел, угля, торфа, дерева и т. п.
Взрывоопас-ные класса B-Iа При нормальной эксплуатации взрывоопасные смеси горючих паров или газов с воздухом или другими окислителями не имеет места, а возможны только в результате аварий или неисправностей. Хранилища легковоспламеняющихся и горючих жидкостей, аккумуляторные.
Взрывоопас-ные класса B-IIа По условиям технологии могут образовываться взрывоопасные смеси горючих пыли или волокон с воздухом. Комбикормовые заводы, мельницы, склады сыпучих материалов.

Таблица 2.3 – Нормы температуры, влажности, содержания углекислого газа помещениях животноводческих ферм

Система содержания животных

Температура воздуха внутри помещения, 0 С

Относи-тельная влажность воздуха, %

Содержание углекислого газа, л/м 3

Коровники и здания для молодняка молочных пород всех возрастов

Беспривязная на глубокой подстилке 3 0 85 2,5…3

Коровники и здания для откорма молодняка и скота

Источник

Расчет освещенности

При проектировании освещения расчет освещенности является основополагающим расчетом. В настоящее время имеется большое количество программ для компьютеров, например DIALux, позволяющих автоматизировать процесс вычислений. Для программы DIALux практически все производители светильников выпускают базу данных своих осветительных приборов, позволяющих выполнить все расчеты освещенности для использования конкретного светильника, что повышает точность и достоверность расчетов. Но уметь выполнить все расчеты вручную все равно должен уметь каждый, кто, так или иначе, связан с освещением.

Автоматизация расчетов не означает, что после выполнения монтажа и включения светильников освещенность в помещении окажется точно соответствующей расчетной. Как правильно нормировать и измерять освещенность после монтажа осветительной установки, подробно изложено в статье «Нормирование освещенности при расчетах». Все расчеты освещенности очень приблизительны. Особенно это касается помещений, имеющих площадь менее 50 м 2 . На результаты расчетов очень большое влияние оказывают коэффициенты отражения стен и потолка. Достаточно в помещении со светлыми стенами покрасить их темной краской, что бы уменьшить освещенность в 2 – 2,5 раза при площади помещения 20 – 30 м 2 и в 1,5 раза при площади более 100 м 2 . А если учесть, что все расчеты выполняются до строительства или реконструкции здания, то точные значения коэффициентов отражения не всегда известны. Поэтому крайне важно предусмотреть возможность включения светильников частями, либо иметь возможность плавной регулировки освещенности. При использовании светильников с лампами накаливания при необходимости можно применить лампы другой мощности.

Нормы освещенности зависят от вида освещаемого помещения. Требуемые уровни освещенности помещений можно найти в СП 52.13330.2011 «Естественное и искусственное освещение (актуализированная редакция СНиП 23-05-95*)», в СанПиН 2.2.1/2.1.1.1278-03, и в своде правил по проектированию и строительству СП 31-110-2003.

Например, освещенность офисных помещений и классных комнат учебных заведений должна быть в пределах 400 – 500 люкс, торговых залов магазинов 300 – 400 люкс, жилых комнат и кухонь – 150 люкс, коридоров и лифтовых холлов – 75 люкс.

При этом следует учитывать, что при использовании ламп накаливания ощущение комфортности освещения возникает примерно при 75 люксах, а при использовании люминесцентных ламп при освещенности более 150 люкс. Ранее освещенность нормировали раздельно для ламп накаливания и люминесцентных ламп, например в СНиП II-В.6 (действовал с 1955 по 1971 год). Сейчас нормы освещенности ориентированы на люминесцентные лампы

Освещенность определяется как отношение светового потока, падающего на освещаемую поверхность, к площади этой поверхности. Если бы весь световой поток всех источников света беспрепятственно достигал освещаемой поверхности, то расчет освещенности сводился бы к простой операции деления суммы светового потока всех ламп на площадь освещаемой поверхности. Но, часть светового потока теряется в конструктивных элементах светильников, часть поглощается стенами и потолком. Так же необходимо принимать во внимание неравномерность освещенности в разных точках освещаемой поверхности. Поэтому введен коэффициент использования светильника (обозначаемый буквой U), который показывает, какая часть от полного светового потока источников света достигает освещаемой поверхности. Очевидно, что в помещении с небольшой площадью и очень высоким потолком весьма большая часть светового потока попадает на стены. При низком коэффициенте отражения стен (стены покрашены очень темной краской, либо на них поклеены темные обои) световой поток не отразится от стен и, в значительной степени, поглотится ими, что вызовет уменьшение коэффициента использования. Светлые стены отражают свет и способствуют увеличению освещенности. При больших площадях помещений доля светового потока, падающего на стены, не велика, и влияние коэффициента отражения стен уменьшается. В помещениях с большим отношением длины к ширине (протяженные коридоры) коэффициент использования светильников меньше, чем в квадратных помещениях аналогичной площади, так как в коридорах увеличивается площадь освещаемых стен. Исходя из этого коэффициент использования светильника зависит от коэффициентов отражения потолка ρп, стен ρс, пола ρпола и геометрических размеров освещаемого помещения.

Среднюю освещенность помещения Еср можно выразить соотношением:

где: Фл – световой поток лампы, единица измерения люмен (лм), является паспортной характеристикой ламп;

n – количество ламп в светильнике, шт.;

N – количество светильников в освещаемом помещении, шт.;

S – площадь освещаемого помещения, м 2 ;

U – коэффициент использования;

k – коэффициент запаса, принимается 1,4 для сухих чистых помещений и 1,7 для пыльных и сырых помещений.

Для определения коэффициента использования U необходимо знать коэффициенты отражения от потолка, стен и пола и так называемый индекс помещения φ, который определяется выражением:

где a,b – длина и ширина помещения;

Hр – высота установки светильников над расчетной плоскостью. За расчетную плоскость (h2) обычно принимают высоту письменного стола (0,8 метра). Если к примеру высота установки светильника над уровнем пола (h1 равна 3 метра, то Hр= h1 — h2= 3 — 0,8=2,4 м.

Коэффициенты отражения можно принять: 70 — 80% для белых поверхностей, 50 — 60% для светлых. Поверхности серого цвета имеют коэффициент отражения 20 – 30%, а темные, например стена, оштукатуренная цементным раствором только 10% и черные поверхностей – 0%.

Вычисление коэффициента использования светильника заключается в решении системы линейных алгебраических уравнений, составленных для всех отражающих поверхностей. Решения этих уравнений позволяют определить величины световых потоков, установившихся на всех поверхностях. Обычно эти вычисления проводят при конструировании светильника для разных коэффициентов отражения и индексов помещения. Производители светильников приводят эти значения в виде таблиц или графиков в каталогах своей продукции. Например, большое количество подобных таблиц для различных светильников можно найти в каталоге компании «Световые технологии» (http://www.ltcompany.com).

Рассмотрим три наиболее часто используемые осветительные системы с люминесцентными лампами.

1). Светильники с отражателями и экранирующей решеткой из анодированного алюминия. Оптическая схема светильника показана на Рис. 1. Световой поток нижней полусферы ламп непосредственно направлен на освещаемую поверхность, а для направления светового потока верхней полусферы ламп используется отражатель. Это наиболее распространенная конструкция светильников для офисных помещений, встраиваемых в подвесные потолки.

Оптическая схема светильника с отражателем

Рис.1 Оптическая схема светильника с отражателем

Графики зависимостей коэффициентов использования светового потока светильника от индекса помещения при разных коэффициентах отражения показаны на Рис.2.

Коэффициенты использования светильника с отражателем

Рис. 2 Коэффициенты использования светильника с отражателем

2). Светильники отраженного света, в которых световой поток как нижней, так и верхней полусфер ламп попадает на освещаемую поверхность после отражения от отражателей светильника. Оптическая схема светильника показана на Рис. 3. Данный светильник так же предназначен для подвесных потолков. Они имеют низкие значения коэффициентов использования за счет потерь светового потока в конструктивных элементах светильника, но по показателям ослепленности они значительно превосходят другие типы осветительных приборов.

Оптическая схема светильника отраженного света

Рис. 3 Оптическая схема светильника отраженного света

Графики коэффициентов использования для таких светильников показаны на Рис. 4

Коэффициенты использования светильника отраженного света

Рис. 4 Коэффициенты использования светильника отраженного света

3). Светильники прямого и отраженного света, в которых световой поток нижней полусферы ламп направлен на освещаемую поверхность, а верхней полусферы – на потолок. В таких светильниках можно добиться коэффициентов использования светового потока, близких к 1, при большой отражающей способности потолка. Оптическая схема светильника показана на Рис. 5. Данный осветительный прибор относится к классу подвесных светильников.

Оптическая схема светильника прямого и отраженного света

Рис. 5 Оптическая схема светильника прямого и отраженного света

Графики коэффициентов использования представлены на Рис. 6.

Коэффициенты использования светильника прямого и отраженного света

Рис. 6 Коэффициенты использования светильника прямого и отраженного света

Чаще задача заключается в нахождении количества светильников N, обеспечивающих требуемую освещенность. Для этого выражение (1) представим в виде:

В выражении (3) использована средняя освещенность, но нормируется минимальная освещенность Eн в помещении, поэтому в выражение (3) добавим коэффициент z=Eср/Emin, который можно принять равным 1,1 при количестве светильников более 4 в помещениях с отношением длины к ширине менее 3; 1,2 при количестве светильников 2 – 4 и 1,4 при использовании одного светильника в помещении, либо в помещениях с большим отношением длины к ширине (в длинных коридорах).

При проектировании освещения всегда необходимо контролировать суммарную мощность использованных источников света и удельную мощность, измеряемую как отношение суммы мощностей всех ламп к площади освещаемого помещения:

Для однотипных помещений иногда расчет освещенности выполняют по величине удельной мощности, хотя точность такого расчета, как правило, не высока.

При использовании светильников с пускорегулирующей аппаратурой (ПРА), мощность, потребляемая светильниками от электрической сети, всегда будет больше, чем суммарная мощность ламп вследствие потерь в ПРА.

При проведении вычислений удобно пользоваться электронными таблицами Excel. Для расчетов необходимо использовать формулы 2, 4 и 5. Применение электронных таблиц позволяет оперативно выполнить расчеты при использовании различных светильников.

В приложенном к статье файле «Примеры расчета освещенности» представлены результаты вычислений освещенности при использовании светильников, содержащих четыре люминесцентных лампы с улучшенной цветопередачей мощностью 18 Вт, которые имеют длину 600 мм, диаметр 26 мм, цоколь G13 и световой поток 1350 лм. Расчеты выполнены для помещений площадью 24 м 2 , 40 м 2 , 80 м 2 , 150 м 2 и 300 м 2 . Рассмотрен вариант помещений со светлыми поверхностями (коэффициенты отражения потолка, стен и пола 80, 50 и 30 %) и темными (коэффициенты отражения потолка, стен и пола 30, 30 и 10 %). Результаты вычислений показаны на рисунках 7, 8 и 9. Данный файл можно скачать и пользоваться им для своих расчетов, вводя в его поля свои данные. Что бы файл случайно не «испортить», его желательно хранить в отдельной папке, а для выполнения расчетов копировать в другую папку.

Результаты вычисления освещенности – светильники с отражателем

Рис. 7 Результаты вычисления освещенности – светильники с отражателем

Рис. 8 Результаты вычисления освещенности – светильники отраженного света

Рис. 9 Результаты вычисления освещенности – светильники прямого и отраженного света

Как видно из представленных результатов вычислений, по энергоэффективности светильники прямого и отраженного света превосходят светильники с отражателями только в помещениях со светлыми поверхностями, имеющих площадь не менее 50 – 80 м 2 . Хотя их часто используют для освещения небольших кабинетов ввиду их оригинального дизайна.

Светильники отраженного света чаще используют для освещения помещений с нормированной освещенностью не более 300 лк.

При проектировании освещения иногда необходимо учитывать устанавливаемую в помещениях мебель, так как она коренным образом может повлиять на отражающую способность стен, и, как правило, снизить освещенность в помещении.

В больших помещениях светильники необходимо располагать максимально равномерно по потолку, если нет необходимости осуществлять их привязку к проходам и оборудованию. В каждом конкретном случае индивидуально выбирают места установки осветительных приборов.

Источник

На границе раздела двух различных сред, если эта граница раздела значительно превышает длину волны, происходит изменение направления распространения света: часть световой энергии возвращается в первую среду, то есть отражается, а часть проникает во вторую среду и при этом преломляется. Луч АО носит название падающий луч, а луч OD – отраженный луч (см. рис. 1.3). Взаимное расположение этих лучей определяют законы отражения и преломления света.

Рис. 1.3. Отражение и преломление света.

Угол α между падающим лучом и перпендикуляром к границе раздела, восстановленным к поверхности в точке падения луча, носит название угол падения.

Угол γ между отражённым лучом и тем же перпендикуляром, носит название угол отражения.

Каждая среда в определённой степени (то есть по своему) отражает и поглощает световое излучение. Величина, которая характеризует отражательную способность поверхности вещества, называется коэффициент отражения. Коэффициент отражения показывает, какую часть принесённой излучением на поверхность тела энергии составляет энергия, унесённая от этой поверхности отражённым излучением. Этот коэффициент зависит от многих причин, например, от состава излучения и от угла падения. Свет полностью отражается от тонкой плёнки серебра или жидкой ртути, нанесённой на лист стекла.

Законы отражения света

1 Падающий луч, отражающий луч и перпендикуляр к границе раздела двух сред, восстановленный в точке падения луча, лежат в одной плоскости.
2 Угол отражения γ равен углу падения α:

γ = α

Законы отражения света были найдены экспериментально ещё в 3 веке до нашей эры древнегреческим учёным Евклидом. Также эти законы могут быть получены как следствие принципа Гюйгенса, согласно которому каждая точка среды, до которой дошло возмущение, является источником вторичных волн. Волновая поверхность (фронт волны) в следующий момент представляет собой касательную поверхность ко всем вторичным волнам. Принцип Гюйгенса является чисто геометрическим.

На гладкую отражательную поверхность КМ (рис. 1.4) падает плоская волна, то есть волна, волновые поверхности которой представляют собой полоски.

Рис. 1.4. Построение Гюйгенса.

А1А и В1В – лучи падающей волны, АС – волновая поверхность этой волны (или фронт волны).

Пока фронт волны из точки С переместится за время t в точку В, из точки А распространится вторичная волна по полусфере на расстояние AD = CB, так как AD = vt и CB = vt, где v – скорость распространения волны.

Волновая поверхность отражённой волны – это прямая BD, касательная к полусферам. Дальше волновая поверхность будет двигаться параллельно самой себе по направлению отражённых лучей АА2 и ВВ2.

Прямоугольные треугольники ΔАСВ и ΔADB имеют общую гипотенузу АВ и равные катеты AD = CB. Следовательно, они равны.

Углы САВ = = α и DBA = = γ равны, потому что это углы со взаимно перпендикулярными сторонами. А из равенства треугольников следует, что α = γ.

Из построения Гюйгенса также следует, что падающий и отражённый лучи лежат в одной плоскости с перпендикуляром к поверхности, восстановленным в точке падения луча.

Законы отражения справедливы при обратном направлении хода световых лучей. В следствие обратимости хода световых лучей имеем, что луч, распространяющийся по пути отражённого, отражается по пути падающего.

Большинство тел лишь отражают падающее на них излучение, не являясь при этом источником света. Освещённые предметы видны со всех сторон, так как от их поверхности свет отражается в разных направлениях, рассеиваясь. Это явление называется диффузное отражение или рассеянное отражение. Диффузное отражение света (рис. 1.5) происходит от всех шероховатых поверхностей. Для определения хода отражённого луча такой поверхности в точке падения луча проводится плоскость, касательная к поверхности, и по отношению к этой плоскости строятся углы падения и отражения.

Рис. 1.5. Диффузное отражение света.

Например, 85% белого света отражается от поверхности снега, 75% — от белой бумаги, 0,5% — от чёрного бархата. Диффузное отражение света не вызывает неприятных ощущений в глазу человека, в отличие от зеркального.

Зеркальное отражение света – это когда падающие на гладкую поверхность под определённым углом лучи света отражаются преимущественно в одном направлении (рис. 1.6). Отражающая поверхность в этом случае называется зеркало (или зеркальная поверхность). Зеркальные поверхности можно считать оптически гладкими, если размеры неровностей и неоднородностей на них не превышают длины световой волны (меньше 1 мкм). Для таких поверхностей выполняется закон отражения света.

Рис. 1.6. Зеркальное отражение света.

Плоское зеркало – это зеркало, отражающая поверхность которого представляет собой плоскость. Плоское зеркало даёт возможность видеть предметы, находящиеся перед ним, причём эти предметы кажутся расположенными за зеркальной плоскостью. В геометрической оптике каждая точка источника света S считается центром расходящегося пучка лучей (рис. 1.7). Такой пучок лучей называется гомоцентрическим. Изображением точки S в оптическом устройстве называется центр S’ гомоцентрического отражённого и преломлённого пучка лучей в различных средах. Если свет, рассеянный поверхностями различных тел, попадает на плоское зеркало, а затем, отражаясь от него, падает в глаз наблюдателя, то в зеркале видны изображения этих тел.

Рис. 1.7. Изображение, возникающее с помощью плоского зеркала.

Изображение S’ называется действительным, если в точке S’ пересекаются сами отражённые (преломлённые) лучи пучка. Изображение S’ называется мнимым, если в ней пересекаются не сами отражённые (преломлённые) лучи, а их продолжения. Световая энергия в эту точку не поступает. На рис. 1.7 представлено изображение светящейся точки S, возникающее с помощью плоского зеркала.

Луч SO падает на зеркало КМ под углом 0°, следовательно, угол отражения равен 0°, и данный луч после отражения идёт по пути OS. Из всего множества попадающих из точки S лучей на плоское зеркало выделим луч SO1.

Луч SO1 падает на зеркало под углом α и отражается под углом γ (α = γ). Если продолжить отражённые лучи за зеркало, то они сойдутся в точке S1, которая является мнимым изображением точки S в плоском зеркале. Таким образом, человеку кажется, что лучи выходят из точки S1, хотя на самом деле лучей, выходящих их этой точки и попадающих в глаз, не существует. Изображение точки S1расположено симметрично самой светящейся точке S относительно зеркала КМ. Докажем это.

Луч SB, падающий на зеркало под углом 2 (рис. 1.8), согласно закону отражения света отражается под углом 1 = 2.

Рис. 1.8. Отражение от плоского зеркала.

Из рис. 1.8 видно, что углы 1 и 5 равны – как вертикальные. Суммы углов 2 + 3 = 5 + 4 = 90°. Следовательно, углы 3 = 4 и 2 = 5.

Прямоугольные треугольники ΔSOB и ΔS1OB имеют общий катет ОВ и равные острые углы 3 и 4, следовательно, эти треугольники равны по стороне и двум прилежащим к катету углам. Это означает, что SO = OS1, то есть точка S1 расположена симметрично точке S относительно зеркала.

Для того чтобы найти изображение предмета АВ в плоском зеркале, достаточно опустить перпендикуляры из крайних точек предмета на зеркало и, продолжив их за пределы зеркала, отложить за ним расстояние, равное расстоянию от зеркала до крайней точки предмета (рис. 1.9). Это изображение будет мнимым и в натуральную величину. Размеры и взаимное расположение предметов сохраняются, но при этом в зеркале левая и правая стороны у изображения меняются местами по сравнению с самим предметом. Параллельность падающих на плоское зеркало световых лучей после отражения также не нарушается.

Рис. 1.9. Изображение предмета в плоском зеркале.

В технике часто применяют зеркала со сложной кривой отражающей поверхностью, например, сферические зеркала. Сферическое зеркало – это поверхность тела, имеющая форму сферического сегмента и зеркально отражающая свет. Параллельность лучей при отражении от таких поверхностей нарушается. Зеркало называют вогнутым, если лучи отражаются от внутренней поверхности сферического сегмента. Параллельные световые лучи после отражения от такой поверхности собираются в одну точку, поэтому вогнутое зеркало называют собирающим. Если лучи отражаются от наружной поверхности зеркала, то оно будет выпуклым. Параллельные световые лучи рассеиваются в разные стороны, поэтому выпуклое зеркало называют рассеивающим.

Понравилась статья? Поделить с друзьями:
  • Psychonauts как найти молочника
  • Как по исходной задаче составит двойственную
  • Как найти определитель матрицы алгебраическим дополнением
  • Как найти актрису которая похожа на меня
  • Как зная слова найти песню по словам