Как найти площадь параллелепипеда если известна диагональ

Wafer Dirt
[263]

3 года назад 

1) Диагональ, известная сторона (с) и диагональ нижнего основания образуют прямоугольный тр-ник. Нижнюю диагональ находим по т-ме Пифагора: √(6^2 — 4^2)= √(36-16) = √20;

2) Нижняя диагональ и другая известная сторона (в) образуют другой прямоугольный тр-ник. По той же т-ме Пифагора найдём сторону а: а = √((√20)^2 — 2^2) = √(20-4) = √16 = 4

3) Находим площадь поверхности параллелепипеда по формуле S = (aв + вс + ас)•2 = (4•2 + 2•4 + 4•4)•2 = 64

Ответ: 64

Прикрепляю фотографию, чтоб было понятнее

автор вопроса выбрал этот ответ лучшим

комментировать

в избранное

ссылка

отблагодарить

Как найти площадь поверхности параллелепипеда

Как найти площадь поверхности параллелепипеда

Призма, у которой все стороны являются параллелограммами, и есть параллелепипед. Коробка, холодильник, здания, аквариум, кусочек сахара-рафинада – вот немногие примеры параллелепипеда в нашей повседневной жизни.

1

Разновидность, свойства параллелепипеда

Различают прямой и наклонный параллелепипед.

Прямой – это тот, ребра которого перпендикулярны основанию плоскости. Если основанием является прямоугольник, тогда фигура называется прямоугольным параллелепипедом. Если основанием и боковыми гранями является квадрат – куб.

Наклонный параллелепипед имеет наклон боковых граней к основанию под углом, отличным от 90 градусов.

Свойства параллелепипеда:

  • Противоположные грани равны и параллельны.
  • Квадрат длины диагонали прямоугольного параллелепипеда равен сумме квадратов 3-х его измерений, т.е. D^2=a^2+b^2+c^2.
  • Все диагонали пересекаются в одной точке, делящей их пополам.
  • Параллелепипед симметричен по отношению к середине его диагонали.

2

Площадь поверхности параллелепипеда

Как известно, существует несколько разновидностей параллелепипеда, поэтому и формулы для нахождения площади полной поверхности будут различаться.

Прямоугольный параллелепипед

У прямоугольного параллелепипеда основания и боковые грани – прямоугольники.

В данном случае используется формула S(п)=2(a*b+b*c+a*c).

Куб

Куб является частным случаем параллелепипеда. У него все стороны равны. Воспользовавшись формулой выше, получаем S(п)=2(a*a+a*a+a*a). В результате преобразования можно получить сокращенную версию формулы для нахождения площади полной поверхности куба S(п)=6*a^2.

Прямой параллелепипед

В то время, когда у прямоугольного параллелепипеда основанием является прямоугольник, прямой может иметь там любой параллелограмм, будь то квадрат или ромб. Именно поэтому формула для нахождения площади полной поверхности такой фигуры будет иной: S(п)=S(б)+2S(о), где S(о) – площадь основания, S(б) – площадь боковой поверхности.

Площадь основания S(о) будет зависеть от того, какая фигура лежит в основании.

В свою очередь, площадь боковой поверхности рассчитывается, как S(б)=P(о)*h, где P(о) – периметр основания, h – высота.

3

Как найти площадь поверхности параллелепипеда – пример

Основанием прямого параллелепипеда служит ромб. Меньшая его диагональ равна 5 см, большая диагональ – 9 см, периметр равен 20 см. Найти площадь полной поверхности параллелепипеда, если его высота равна 6 см.

Для решения задачи понадобится формула S(п)=S(б)+2S(о).

В основании параллелепипеда лежит ромб, следовательно, его площадь необходимо найти.

S(б)=P(о)*h=20*6=120 см^2

S(о)=(d1+d2)/2=(5+9)/2=7см^2

Подставив данные в формулу, получаем S(п)=120+2*7=134 см^2.

Человека окружает множество вещей-параллелепипедов. Системный блок компьютера, кирпич, шкаф, различные архитектурные сооружения. Даже не замечая, параллелепипед занял значимое место в современном мире.

Прямоугольный параллелепипед. Формулы и свойства прямоугольного параллелепипеда

Определение.

Прямоугольный параллелепипед — это многогранная объемная фигура ограничена шестью прямоугольниками.

Куб является частным случаем прямоугольного параллелепипеда.

Изображение прямоугольного параллелепипеда с обозначениями
Рис.1

Основные свойства правильного прямоугольного параллелепипеда

Противоположные грани прямоугольного параллелепипеда параллельны и равны.

Ребра прямоугольного параллелепипеда, которые сходятся в одной вершине взаимно перпендикулярны.

Не параллельные грани прямоугольного параллелепипеда пересекаются под прямым углом.

У прямоугольного параллелепипеда четыре диагонали.

Диагонали прямоугольного параллелепипеда равны между собой и пересекаются в одной точке.

Объем прямоугольного параллелепипеда

Формула. Объем прямоугольного параллелепипеда равна произведению длин его сторон:

V = a · b · c

Площадь поверхности прямоугольного параллелепипеда

Определение. Поверхность прямоугольного параллелепипеда состоит из суммы площадей прямоугольников, ограничивающие его.

Формула. Площадь поверхности прямоугольного параллелепипеда через длины его сторон:

S = 2a·b + 2a·c + 2b·c

Диагональ прямоугольного параллелепипеда

Определение. Диагональ прямоугольного параллелепипеда — это отрезок, соединяющий две не соседние вершины, лежащие на разных гранях.

Формула. Длина диагонали прямоугольного параллелепипеда через длины его сторон:

d = √a2 + b2 + c2

Параллелепипед – это многогранник с 6 гранями, каждая из которых является параллелограммом.

Прямоугольный параллелепипед – это параллелепипед, каждая грань которого является прямоугольником.

Любой параллелепипед характеризуется 3 сторонами a, b и c (см. рисунок) и диагональю. Именно эти характеристики используются в формулах параллелепипеда при вычислении объема и площади.

Диагональ параллелепипеда – это отрезок, соединяющий противоположные вершины параллелепипеда.

Формула диагонали параллелепипеда

Диагональ d прямоугольного параллелепипеда можно получить, зная его стороны:

d2 = a2 + b2 + c2

Формула площади параллелепипеда

Площадь поверхности прямоугольного параллелепипеда можно получить, зная его стороны:

S = 2(ab + ac + bc)

Формула объема параллелепипеда

Объем прямоугольного параллелепипеда можно вычислить, зная его стороны:

V = abc

На слух все достаточно занудно и сложно, но на деле все свойства просто описывают фигуру. Внимательно прочтите вслух каждое свойство, разглядывая рисунок параллелепипеда после каждого пункта. Все сразу встанет на места.

Прямоугольным параллелепипедом называется параллелепипед, у которого основание — прямоугольник, а боковые ребра перпендикулярны основанию.

На рисунке: основание прямоугольного параллелепипеда ABCD; боковое ребро АА1 перпендикулярно АВСD; угол BAD = 90°

Внимательно рассмотрите, как выглядит прямоугольный параллелепипед. Отметьте разницу с прямым параллелепипедом.

Свойства прямоугольного параллелепипеда

Прямоугольный параллелепипед обладает всеми свойствами произвольного параллелепипеда.

 

  1. Прямоугольный параллелепипед содержит 6 граней. Все грани прямоугольного параллелепипеда — прямоугольники.
  2. Противолежащие грани параллелепипеда попарно параллельны и равны.
  3. Все углы прямоугольного параллелепипеда, состоящие из двух граней — 90°.
  4. Диагонали прямоугольного параллелепипеда равны.
  5. В прямоугольный параллелепипеде четыре диагонали, которые пересекаются в одной точке и делятся этой точкой пополам.
  6. Любая грань прямоугольного параллелепипеда может быть принята за основание.
  7. Если все ребра прямоугольного параллелепипеда равны, то такой параллелепипед является кубом.
  8. Квадрат диагонали прямоугольного параллелепипеда равен сумме квадратов трех его измерений (длины, ширины, высоты).

Свойства прямоугольного параллелепипеда

Формулы прямоугольного параллелепипеда:

  • Объем прямоугольного параллелепипеда
    V = a · b · h
    a — длина, b — ширина, h — высота
  • Площадь боковой поверхности
    Sбок = Pосн·c=2(a+b)·c
    Pосн — периметр основания, с — боковое ребро
  • Площадь поверхности
    Sп.п = 2(ab+bc+ac)

Диагонали прямоугольного параллелепипеда: теорема

Не достаточно просто знать свойства прямоугольного параллелепипеда, нужно уметь их доказывать.

Если есть теорема, нужно ее доказать. (с) Пифагор

Теорема: Квадрат диагонали прямоугольного параллелепипеда равен сумме квадратов трех его измерений.

В данном случае, три измерения — это длина, ширина, высота. Длина, ширина и высота — это длины трех ребер, исходящих из одной вершины прямоугольного параллелепипеда.

Дан прямоугольный параллелепипед ABCDA1B1C1D1. Доказать теорему.

Теорема о диагонали прямоугольного параллелепипеда

Доказательство теоремы:

Чтобы найти диагональ прямоугольного параллелепипеда, помните, что диагональ — это отрезок, соединяющий противоположные вершины.

Применяем формулу:

d² = a² + b² + c²

Все грани прямоугольного параллелепипеда — прямоугольники.

ΔABD: ∠BAD = 90°, по теореме Пифагора

d₁² = a² + b²

ΔB₁BD: ∠B₁BD = 90°, по теореме Пифагора

d² = d₁² + c² = a² + b² + c²

d² = a² + b² + c²

Доказанная теорема — пространственная теорема Пифагора.

Куб: определение, свойства и формулы

Кубом называется прямоугольный параллелепипед, все три измерения которого равны.

Каждая грань куба — это квадрат.

Куб

Свойства куба:

 

  1. В кубе 6 граней, каждая грань куба — квадрат.
  2. Противолежащие грани параллельны друг другу.
  3. Все углы куба, образованные двумя гранями, равны 90°.
  4. У куба четыре диагонали, которые пересекаются в центре куба и делятся пополам.
  5. Диагонали куба равны.
  6. Диагональ куба в √3 раз больше его ребра.
  7. Диагональ грани куба в √2 раза больше длины ребра.

Помимо основных свойств, куб характеризуется умением вписывать в себя тетраэдр и правильный шестиугольник.

Формулы куба:

  • Объем куба через длину ребра a
    V = a3
  • Площадь поверхности куба
    S = 6a2
  • Периметр куба
    P = 12a

Решение задач

Чтобы считать тему прямоугольного параллелепипеда раскрытой, стоит потренироваться в решении задач. 10 класс — время настоящей геометрии для взрослых. Поэтому, чем больше практики, тем лучше. Разберем несколько примеров.

Задачка 1. Дан прямоугольный параллелепипед. Нужно найти сумму длин всех ребер параллелепипеда и площадь его поверхности.

Задача на нахождение суммы длины всех ребер параллелепипеда и площадь его поверхности

Для наглядного решения обозначим измерения прямоугольного параллелепипеда: a — длина, b — ширина, c — высота. Тогда a = 10, b = 5, c = 8.

Так как в прямоугольном параллелепипеде всего по 4 — высота, ширина и длина, и все измерения равны между собой, то:
1) 4 * 10 = 40 (см) — сумма длин параллелепипеда;
2) 4 * 5 = 20 (см) — суммарное значение ширины параллелепипеда;
3) 4 * 8 = 32 (см) — сумма высот параллелепипеда;
4) 40 + 20 + 32 = 92 (см) — сумма длин всех ребер прямоугольного параллелепипеда.

Отсюда можно вывести формулу по нахождению суммы длин всех сторон ПП:
X = 4a + 4b + 4c (где X — сумма длин ребер).

Формула нахождения площади поверхности параллелепипеда Sп.п = 2(ab+bc+ac).
Тогда: S = (5*8 + 8*10 + 5*10) * 2 = 340 см2.

Задачка 2. Дан прямоугольный параллелепипед АВСDA1B1C1D1.

D1B = √26
BB1 = 3
A1D1 = 4

Нужно найти длину ребра A1B1.

Задача на нахождение длинны ребра прямоугольного параллелепипеда

В фокусе внимания треугольник BDD1.
Угол D = 90°.

По теореме Пифагора:
BD12 = DD12 + BD2
BD2 = BD12 – DD12
BD2 = 26 – 9 = 17
BD = √17
В треугольнике ADB угол А = 90°.
BD2 = AD2 + AB2
AB2 = BD2 — AD2 = (√17)2 — 42 = 1
A1B1 = AB = 1.

Задачка 3. Дан прямоугольный параллелепипед АВСDA1B1C1D1.

AB = 4
AD = 6
AA1= 5
Нужно найти отрезок BD1.

Задача на нахождение отрезка BD прямоугольного параллелепипеда

В треугольнике ADB угол A = 90°.

По теореме Пифагора:
BD2 = AB2+AD2
BD2 = 42 + 62 = 16 + 36 = 52
В треугольнике BDD1 угол D = 90°.
BD12 = 52 + 25 = 77
BD1 = √77.

Самопроверка

Теперь потренируйтесь самостоятельно — мы верим, что все получится!

Задачка 1. Дан прямоугольный параллелепипед. Измерения (длина, ширина, высота) = 8, 10, 20. Найдите диагональ параллелепипеда.

Задача на нахождение диагонали прямоугольного параллелепипеда

Подсказка: если нужно выяснить, чему равна диагональ прямоугольного параллелепипеда, вспоминайте теорему.

Задачка 2. Дан прямоугольный параллелепипед АВСDA1B1C1D1.

AC1= 15
C1D1 = 3
B1C1= 12

Вычислите длину ребра AA1.

Как видите, самое страшное в параллелепипеде — 14 букв в названии. Чтобы не перепутать прямой параллелепипед с прямоугольным, а ребро параллелепипеда с длиной диагонали параллелепипеда, вот список основных понятий:

  • прямой параллелепипед — это параллелепипед, у которого боковые ребра перпендикулярны основанию;
  • параллелепипед называется прямоугольным, когда его боковые ребра перпендикулярны к основанию;
  • основание прямоугольного параллелепипеда — прямоугольник;
  • три измерения прямоугольного параллелепипеда: длина, ширина, высота;
  • диагональ параллелепипеда равна сумме квадратов его измерений.

Понравилась статья? Поделить с друзьями:
  • Как исправить ошибку 0x80072ee7 на виндовс 10
  • Как найти многочлен в результате умножения
  • Как найти парня в белгороде
  • Спуски гта 5 онлайн как найти
  • Опечатка в исполнительном листе как исправить