Как найти площадь параллелограмма когда есть периметр

Определение параллелограмма

Параллелограмм — это четырехугольник, в котором противоположные стороны равны и параллельны.

Онлайн-калькулятор площади параллелограмма

Параллелограмм обладает некоторыми полезными свойствами, которые упрощают решение задач, связанных с этой фигурой. Например, одно из свойств заключается в том, что противоположные углы параллелограмма равны.

Рассмотрим несколько способов и формул с последующим решением простых примеров.

Формула площади параллелограмма по основанию и высоте

Данный способ нахождения площади является, наверно, одним из основных и простых, так как он практически идентичен формуле по нахождению площади треугольника за небольшим исключением. Для начала разберем обобщенный случай без использования чисел.

Пусть дан произвольный параллелограмм с основанием aa, боковой стороной bb и высотой hh, проведенной к нашему основанию. Тогда формула для площади этого параллелограмма:

S=a⋅hS=acdot h

aa — основание;
hh — высота.

Разберем одну легкую задачу, чтобы потренироваться в решении типовых задач.

Пример

площадь параллелограмма

Найти площадь параллелограмма, в котором известно основание, равное 10 (см.) и высота, равная 5 (см.).

Решение

a=10a=10
h=5h=5

Подставляем в нашу формулу. Получаем:
S=10⋅5=50S=10cdot 5=50 (см. кв.)

Ответ: 50 (см. кв)

Формула площади параллелограмма по двум сторонам и углу между ними

В этом случае искомая величина находится так:

S=a⋅b⋅sin⁡(α)S=acdot bcdotsin(alpha)

a,ba, b — стороны параллелограмма;
αalpha — угол между сторонами aa и bb.

Теперь решим другой пример и воспользуемся вышеописанной формулой.

Пример

площадь параллелограмма

Найти площадь параллелограмма если известна сторона aa, являющаяся основанием и с длиной 20 (см.) и периметр pp, численно равный 100 (см.), угол между смежными сторонами (aa и bb) равен 30 градусам.

Решение

a=20a=20
p=100p=100
α=30∘alpha=30^{circ}

Для нахождения ответа нам неизвестна лишь вторая сторона данного четырехугольника. Найдем ее. Периметр параллелограмма дается формулой:
p=a+a+b+bp=a+a+b+b
100=20+20+b+b100=20+20+b+b
100=40+2b100=40+2b
60=2b60=2b
b=30b=30

Самое сложное позади, осталось только подставить наши значения для сторон и угла между ними:
S=20⋅30⋅sin⁡(30∘)=300S=20cdot 30cdotsin(30^{circ})=300 (см. кв.)

Ответ: 300 (см. кв.)

Формула площади параллелограмма по диагоналям и углу между ними

S=12⋅D⋅d⋅sin⁡(α)S=frac{1}{2}cdot Dcdot dcdotsin(alpha)

DD — большая диагональ;
dd — малая диагональ;
αalpha — острый угол между диагоналями.

Пример

площадь параллелограмма

Даны диагонали параллелограмма, равные 10 (см.) и 5 (см.). Угол между ними 30 градусов. Вычислить его площадь.

Решение

D=10D=10
d=5d=5
α=30∘alpha=30^{circ}

S=12⋅10⋅5⋅sin⁡(30∘)=12.5S=frac{1}{2}cdot 10 cdot 5 cdotsin(30^{circ})=12.5 (см. кв.)

Ответ: 12.5 (см. кв.)

Решение контрольной работы по геометрии онлайн — от профильных экспертов Студворк!

Тест по теме «Площадь параллелограмма»

Преподаватель который помогает студентам и школьникам в учёбе.

Площадь параллелограмма — определение и вычисление с примерами решения

Теорема (о площади параллелограмма). Площадь параллелограмма равна произведению его стороны на высоту, проведенную к этой стороне.

Доказательство:

Пусть Площадь параллелограмма - определение и вычисление с примерами решения

1) Проведем высоту Площадь параллелограмма - определение и вычисление с примерами решения к прямой, содержащей сторону Площадь параллелограмма - определение и вычисление с примерами решения параллелограмма.

2) Площадь параллелограмма - определение и вычисление с примерами решения (как соответственные углы при параллельных прямых Площадь параллелограмма - определение и вычисление с примерами решения и Площадь параллелограмма - определение и вычисление с примерами решения и секущей Площадь параллелограмма - определение и вычисление с примерами решения Поэтому Площадь параллелограмма - определение и вычисление с примерами решения (по гипотенузе и острому углу). 

Площадь параллелограмма - определение и вычисление с примерами решения

3) Параллелограмм Площадь параллелограмма - определение и вычисление с примерами решения состоит из трапеции Площадь параллелограмма - определение и вычисление с примерами решения и треугольника Площадь параллелограмма - определение и вычисление с примерами решения а прямоугольник Площадь параллелограмма - определение и вычисление с примерами решения — из трапеции Площадь параллелограмма - определение и вычисление с примерами решения и треугольника Площадь параллелограмма - определение и вычисление с примерами решения Так как треугольники Площадь параллелограмма - определение и вычисление с примерами решения и Площадь параллелограмма - определение и вычисление с примерами решения равны, то равны и их площади, а потому равными будут площади параллелограмма Площадь параллелограмма - определение и вычисление с примерами решения и прямоугольника Площадь параллелограмма - определение и вычисление с примерами решения

4) Площадь параллелограмма - определение и вычисление с примерами решения Но Площадь параллелограмма - определение и вычисление с примерами решения и поэтому Площадь параллелограмма - определение и вычисление с примерами решения Следовательно, Площадь параллелограмма - определение и вычисление с примерами решения

Заметим, что если основание высоты Площадь параллелограмма - определение и вычисление с примерами решения — точка Площадь параллелограмма - определение и вычисление с примерами решения -совпадает с точкой Площадь параллелограмма - определение и вычисление с примерами решения или лежит на продолжении стороны Площадь параллелограмма - определение и вычисление с примерами решениято доказательство теоремы будет аналогичным.

В общем виде формулу площади Площадь параллелограмма - определение и вычисление с примерами решения параллелограмма можно записать так:

Площадь параллелограмма - определение и вычисление с примерами решения

где Площадь параллелограмма - определение и вычисление с примерами решения — сторона параллелограмма, Площадь параллелограмма - определение и вычисление с примерами решения — высота, к ней проведенная.

Пример:

Докажите, что высоты ромба, проведенные из одной вершины, равны.

Доказательство:

Пусть Площадь параллелограмма - определение и вычисление с примерами решения — данный ромб, Площадь параллелограмма - определение и вычисление с примерами решения и Площадь параллелограмма - определение и вычисление с примерами решения — его высоты (рис. 232).

Площадь параллелограмма - определение и вычисление с примерами решения

Ромб является параллелограммом, поэтому Площадь параллелограмма - определение и вычисление с примерами решения Но Площадь параллелограмма - определение и вычисление с примерами решения а значит Площадь параллелограмма - определение и вычисление с примерами решения

Пример:

Периметр параллелограмма равен 36 см, а его высоты — 4 см и 5 см. Найдите площадь параллелограмма.

Решение:

1) Пусть Площадь параллелограмма - определение и вычисление с примерами решения — данный параллелограмм, Площадь параллелограмма - определение и вычисление с примерами решения и Площадь параллелограмма - определение и вычисление с примерами решения — его высоты (рис. 232), Площадь параллелограмма - определение и вычисление с примерами решения

2) Площадь параллелограмма - определение и вычисление с примерами решения По условию Площадь параллелограмма - определение и вычисление с примерами решения поэтому Площадь параллелограмма - определение и вычисление с примерами решения

3) Пусть Площадь параллелограмма - определение и вычисление с примерами решения см, тогда Площадь параллелограмма - определение и вычисление с примерами решения см.

4) Так как по формуле площади параллелограмма Площадь параллелограмма - определение и вычисление с примерами решения или Площадь параллелограмма - определение и вычисление с примерами решения имеем уравнение: Площадь параллелограмма - определение и вычисление с примерами решения То есть Площадь параллелограмма - определение и вычисление с примерами решенияоткуда Площадь параллелограмма - определение и вычисление с примерами решения (см).

5) Тогда Площадь параллелограмма - определение и вычисление с примерами решения

Ответ. 40 Площадь параллелограмма - определение и вычисление с примерами решения

Площадь параллелограмма

С помощью формулы площади прямоугольника можно доказать формулу площади произвольного параллелограмма.

Теорема (формула площади параллелограмма)

Площадь параллелограмма равна произведению его стороны на высоту, проведенную к этой стороне:

Площадь параллелограмма - определение и вычисление с примерами решения

где Площадь параллелограмма - определение и вычисление с примерами решения — сторона параллелограмма, Площадь параллелограмма - определение и вычисление с примерами решения — проведенная к ней высота.

Доказательство:

 Пусть Площадь параллелограмма - определение и вычисление с примерами решения — данный параллелограмм, не являющийся прямоугольником (рис. 145, а). Проведем его высоты Площадь параллелограмма - определение и вычисление с примерами решения и докажем, что Площадь параллелограмма - определение и вычисление с примерами решения Четырехугольник Площадь параллелограмма - определение и вычисление с примерами решения является прямоугольной трапецией, площадь которой можно вычислить двумя способами — как сумму площадей параллелограмма Площадь параллелограмма - определение и вычисление с примерами решения и треугольника Площадь параллелограмма - определение и вычисление с примерами решения или как сумму площадей прямоугольника Площадь параллелограмма - определение и вычисление с примерами решения и треугольника Площадь параллелограмма - определение и вычисление с примерами решения Треугольники Площадь параллелограмма - определение и вычисление с примерами решения равны по гипотенузе и катету Площадь параллелограмма - определение и вычисление с примерами решения как противолежащие стороны параллелограмма,  Площадь параллелограмма - определение и вычисление с примерами решения как расстояния между параллельными прямыми). Следовательно, эти треугольники имеют равные площади. Тогда площади параллелограмма Площадь параллелограмма - определение и вычисление с примерами решения и прямоугольника Площадь параллелограмма - определение и вычисление с примерами решения также равны, т.е. Площадь параллелограмма - определение и вычисление с примерами решения Случаи, когда точка Площадь параллелограмма - определение и вычисление с примерами решения не является внутренней точкой отрезка Площадь параллелограмма - определение и вычисление с примерами решения (рис. 145, б, в), рассмотрите самостоятельно. 

Площадь параллелограмма - определение и вычисление с примерами решения

Пример:

Площадь параллелограмма равна Площадь параллелограмма - определение и вычисление с примерами решения а длины его высот — 3 см и 4 см. Найдите периметр параллелограмма.

Решение:

Пусть дан параллелограмм с площадью Площадь параллелограмма - определение и вычисление с примерами решения и высотами Площадь параллелограмма - определение и вычисление с примерами решения (рис. 146).

Поскольку  Площадь параллелограмма - определение и вычисление с примерами решенияПлощадь параллелограмма - определение и вычисление с примерами решения

Следовательно, периметр параллелограмма равен Площадь параллелограмма - определение и вычисление с примерами решения

Ответ: 42 см.

Площадь параллелограмма - определение и вычисление с примерами решения

Решая приведенную задачу, можно заметить интересную закономерность: чем больше сторона параллелограмма, тем меньше проведенная к ней высота.

  • Прямоугольник и его свойства
  • Ромб и его свойства, определение и примеры
  • Квадрат и его свойства
  • Трапеция и ее свойства
  • Свойство катета прямоугольного треугольника, лежащего против угла в 30°
  • Четырехугольник и его элементы
  • Четырехугольники и окружность
  • Параллелограмм, его свойства и признаки

Содержание:

  • Формула площади параллелограмма:
  • Формула периметра параллелограмма:

Параллелограмм

Параллелограмм — это четырёхугольник, у которого противолежащие
стороны попарно параллельны, т.е. лежат на параллельных прямых. Частными случаями параллелограмма являются прямоугольник,
квадрат и ромб.

Формула площади параллелограмма:

Площадь геометрической фигуры — часть поверхности, ограниченная замкнутым контуром данной фигуры.
Величина площади параллелограмма выражается числом заключающихся в него квадратных единиц.

1) Площадь параллелограмма равна произведению длины его основания на длину высоты (a, h).

Площадь параллелограмма, формула площади параллелограмма

S — площадь параллелограмма

a — длина основания

h — длина высоты

См. также: Программа для расчета площади параллелограмма.

Формула периметра параллелограмма:

Периметр геометрической фигуры — суммарная длина границ плоской геометрической фигуры.
Периметр имеет ту же размерность величин, что и длина.

1) Периметр параллелограмма равен удвоенной сумме 2-х его смежных сторон (a, b).

Периметр параллелограмма, формула периметра параллелограмма

P — периметр параллелограмма

a — длина 1-ой стороны параллелограмма

b — длина 2-ой стороны параллелограмма

См. также: Программа для расчета периметра параллелограмма.

236

проверенных автора готовы помочь в написании работы любой сложности

Мы помогли уже 4 430 ученикам и студентам сдать работы от решения задач до дипломных на отлично! Узнай стоимость своей работы за 15 минут!

А) Пусть одна сторона параллелограмма — a; другая — b. Так как площадь параллелограмма равна произведению стороны на высоту проведенную к этой стороне, то площадь параллелограмма S = a•6 или S = b•8

Получаем 6a = 8b или b = 3a/4

Периметр параллелограмма равен 2a + 2b = 42. Подставляем b.

Получаем 2а + 3а/2 = 42

а = 42•2/7 = 12 см

S = 12•6 = 72 см²

Ответ: S = 72 см²


Б) Проведя высоту имеем прямоугольный треугольник с гипотенузой = 5, катетом = 4 (катет меньше гипотенузы) и катетом = h. По теореме Пифагора h = √(25-16) = 3 см

И площадь равна произведению стороны на высоту к данной стороне

S = 3•(4+6) = 30 см²

Ответ: S = 30 см²


В) Тут надо знать формулу, что площадь параллелограмма равна произведению сторон на синус угла между ними.

S = 8•10•sin30˚ = 80•1/2 = 40 см²

Ответ: S = 40 см²

Параллелограммом называют четырехугольник у которого противоположные стороны параллельны между собой. Основные задачи в школе по данной теме заключаются в вычислении площади параллелограмма, его периметра, высоты, диагоналей. Указанные величины и формулы для их вычисления будут приведены ниже.

Параллелограмм , площадь

Свойства параллелограмма

Противоположные стороны параллелограмма как и противоположные углы равны между собой:
AB=CD, BC=AD
,

углы

углы

Диагонали параллелограмма в точке пересечения делятся на две равные части:

АО=OC, OB=OD.

Углы прилегающие к любой стороне (соседние углы) в сумме равны 180 градусов.

сумма углов
сумма углов

Каждая из диагоналей параллелограмма делит его на два одинаковые по площади и геометрическими размерами треугольники.

равные треугольники

Еще одно замечательное свойство которое часто применяют при решении задач состоит в том, что сумма квадратов диагоналей в параллелограмме равна сумме квадратов всех сторон:

AC^2+BD^2=2*(AB^2+BC^2).
свойство диагоналей

Основные признаки параллелограммов:

1. Четырехугольник у которого противоположные стороны попарно параллельны является параллелограммом.
2. Четырехугольник с равными противоположными сторонами является параллелограммом.
3. Четырехугольник с равными и параллельными противоположными сторонами является параллелограммом.
4. Если диагонали четырехугольника в точке пересечения делятся пополам то это параллелограмм.
5. Четырехугольник у которого противоположные углы попарно равны является параллелограммом

Биссектрисы параллелограмма

Биссектрисы противоположных углов в параллелограмме могут быть параллельными или совпадать.

биссектриса параллелограмма

Биссектрисы соседних углов ( прилегающие к одной стороне ) пересекаются под прямым углом (перпендикулярные).

биссектриса параллелограмма

Высота параллелограмма

Высота параллелограмма — это отрезок который проведен с угла перпендикулярно к основанию. Из этого следует что из каждого угла можно провести две высоты.

высота параллелограмма

высота параллелограмма

Формула площади параллелограмма

Площадь параллелограмма равна произведению стороны на высоту проведенную к ней. Формула площади следующая
формула площади параллелограмма

Вторая формула не менее популярная при вычислениях и определяется так: площадь параллелограмма равна произведению соседних сторон на синус угла между ними
площадь параллелограмма через синус угла

площадь параллелограмма через синус угла

На основе приведенных формул Вы будете знать как вычислить площадь параллелограмма.

Периметр параллелограмма

Формула для вычисления периметру параллелограмма имеет вид
периметр параллелограмма , формула
то есть периметр равен удвоенному значению суммы сторон. Задачи на параллелограмм будут рассмотрены в соседних материалах, а пока изучайте формулы. Большинство задач по вычислению сторон, диагоналей параллелограмма достаточно просты и сводятся к знанию теоремы синусов и теоремы Пифагора.

Посмотреть материалы:

  • Прямоугольный треугольник. Задачи
  • Площадь треугольника. Формулы
  • Периметр и площадь прямоугольника
  • Квадрат. Формулы
  • Формулы площади трапеции
  • Ромб. Площадь, периметр

Понравилась статья? Поделить с друзьями:
  • Как найти лодку в геншине
  • Как найти пароль от эпик геймс
  • Тиндер найти человека по номеру телефона как
  • Сайт как найти ветеранов по фамилии
  • Как найти свой телефон дома бесплатно