Как найти площадь под графиком в физике

По графику скорости от времени v(t) можно найти перемещение тела. Для этого нужно уметь рассчитывать площади плоских фигур.

По-английски «Square» – значит «площадь». Первая буква этого слова – буква «S». Перемещение обозначают буквой S потому, что S – это площадь фигуры, заключенной между линией скорости и горизонтальной осью времени.

Как вычислить площади плоских фигур

Площади прямоугольника, прямоугольной трапеции и прямоугольного треугольника помогут вычислить перемещение тела по графику скорости v(t)

Рис.1. Чтобы рассчитать перемещение по графику v(t) нужно уметь вычислять площади трех плоских фигур

Площадь прямоугольника

Площадь прямоугольника (рис. 1а) можно найти, перемножив две его перпендикулярные стороны:

[ large boxed{ S_{text{прямоуг}}  = a cdot b }]

Площадь трапеции

 Примечание: Трапеция – это четырехугольник, две его стороны параллельные, а две другие – не параллельные. Параллельные стороны называются основаниями трапеции.

Умножив полусумму оснований трапеции на ее высоту, получим площадь (рис. 1б) трапеции:

[ large boxed{ S_{text{трапец}}  = frac{1}{2} (a + b) cdot h }]

Площадь прямоугольного треугольника

Для прямоугольного треугольника (рис. 1в) площадь можно вычислить, перемножив два его катета и взяв половину от получившегося произведения:

[ large boxed{ S_{text{треуг}}  = frac{1}{2} cdot a cdot b }]

Скорость не меняется

Пусть тело движется по прямой и при этом его скорость не изменяется (остается одной и той же). На языке математики «скорость не изменяется» можно записать так:

[v=const]

На графике для скорости v(t) такая скорость обозначается горизонтальной линией. На рисунке 2 эта линия обозначена синим цветом.

На графике v(t) при неизменной скорости площадь прямоугольника будет численно равна пути, пройденному телом

Рис.2. Площадь прямоугольника на графике v(t), если скорость тела не изменяется, будет численно равна перемещению тела

Примечание: Движение с постоянной (т. е. с одной и той же) скоростью называют равномерным движением.

Если скорость направлена по оси движения – линия лежит выше оси t времени (рис. 2а).

А когда скорость направлена против оси движения – линия скорости располагается ниже оси t времени (рис. 2б). Математики в таком случае говорят: «Скорость имеет отрицательную проекцию на ось».

Какую бы проекцию не имела скорость – положительную, или отрицательную, длина вектора скорости остается положительной. Поэтому, когда мы вычисляем площадь фигуры, то не учитываем знак «минус» для скорости (рис. 2б).

В обоих случаях перемещение тела можно вычислить по формуле:

[ large S  = v_{0} cdot (t_{2} — t_{1}) ]

Примечание: Перемещение тела – это всегда либо нулевая, либо положительная величина S. Математики словосочетание «либо нулевая, либо положительная» заменят одним словом «не отрицательная».

Скорость увеличивается

Когда скорость тела увеличивается, то линия скорости на графике v(t) всегда располагается так, чтобы с ростом времени удаляться от оси времени. Чем больше времени пройдет, тем дальше от горизонтали располагаются точки, лежащие на линии скорости (рис. 3).

Если скорость тела увеличивается, то линия скорости на графике v(t) всегда располагается так, чтобы с ростом времени удаляться от оси времени

Рис.3. Так выглядит зависимость скорости от времени v(t), когда тело увеличивает свою скорость, двигаясь по оси – рис а) и против оси – рис. б)

Примечание: Движение с возрастающей скоростью называют равноускоренным движением.

Когда тело движется по направлению оси, линия скорости расположена выше горизонтальной оси времени (рис 3а).

А если тело движется против оси, линия скорости располагается ниже горизонтальной оси времени (рис. 3б).

Вычислим перемещение тела, движущегося в положительном направлении оси Ox. Для тела, движущегося противоположно оси, перемещение рассчитывается аналогично.

Выбор интервала времени влияет на то, будем ли мы вычислять площадь трапеции (рис. 4а), или прямоугольного треугольника (рис. 4б).

Когда тело увеличивает свою скорость, будем вычислять путь, пройденный телом, с помощью площади трапеции, или прямоугольного треугольника. Выбор интервала времени влияет на вид плоской фигуры

Рис.4. График v(t) — тело движется в положительном направлении оси и увеличивает свою скорость. От того, какой интервал времени мы выберем, зависит, будем ли мы вычислять путь, пройденный телом, с помощью площади трапеции – рис. а), или прямоугольного треугольника — рис. б)

На графике скорости v(t) для рисунка 4а перемещение с помощью трапеции вычисляется так:

[ large S  = frac{1}{2} cdot (v_{1} + v_{2}) cdot (t_{2} — t_{1}) ]

А для рисунка 4б перемещение тела найдем с помощью площади треугольника:

[ large S  = frac{1}{2} cdot v_{2} cdot (t_{2} — 0) ]

Скорость уменьшается

Когда тело замедляется и его скорость уменьшается, с ростом времени линия скорости приближается к горизонтальной оси t

  • сверху – если тело движется по оси (рис. 5а),
  • или снизу – когда тело движется против оси (рис. 5б).

Если скорость тела уменьшается, то линия скорости на графике v(t) всегда располагается так, чтобы с ростом времени приближаться к оси t

Рис.5. Так выглядит зависимость скорости от времени v(t), когда тело уменьшает свою скорость, двигаясь по оси – рис а) и против оси – рис. б)

Примечание: Движение с уменьшающейся по модулю скоростью называют равнозамедленным движением.

Будем вычислять перемещение тела, движущегося в положительном направлении оси Ox. Аналогичным способом рассчитывается перемещение тела, движущегося противоположно оси.

От того, какой интервал времени нас интересует, зависит, будем ли мы вычислять площадь трапеции (рис. 6а), или треугольника (рис. 6б).

Когда тело уменьшает свою скорость, будем вычислять путь, пройденный телом, с помощью площади трапеции, или прямоугольного треугольника. Выбор интервала времени влияет на вид фигуры

Рис.6. График v(t) — тело движется в положительном направлении оси и уменьшает свою скорость. Выбор интервала времени определяет, будем ли мы вычислять путь, пройденный телом, с помощью трапеции – рис. а), или треугольника — рис. б)

Найдем на графике v(t) перемещение с помощью площади трапеции для рисунка 6а:

[ large S  = frac{1}{2} cdot (v_{1} + v_{2}) cdot (t_{2} — t_{1}) ]

А для рисунка 6б перемещение тела найдем с помощью площади треугольника:

[ large S  = frac{1}{2} cdot v_{1} cdot (t_{2} — t_{1}) ]

Выводы

На графике v(t) перемещение – это:

  1. площадь прямоугольника, когда скорость не изменяется;
  2. площадь треугольника, или трапеции, когда скорость изменяется — падает, или растет.

Путь при неравномерном движении.

Автор — профессиональный репетитор, автор учебных пособий для подготовки к ЕГЭ Игорь Вячеславович Яковлев

Сейчас мы будем рассматривать неравномерное движение — то есть движение, при котором абсолютная величина скорости меняется со временем. Оказывается, существует простая геометрическая интерпретация пути, пройденного телом при произвольном движении.
Начнём с равномерного движения. Пусть скорость тела постоянна и равна v. Возьмём два момента времени: начальный момент t_{displaystyle 1} и конечный момент t_{displaystyle 2}. Длительность рассматриваемого промежутка времени равна Delta t= t_{displaystyle 2} - t_{displaystyle 1}.

Очевидно, что за промежуток времени [t_{displaystyle 1},t_{displaystyle 2}] тело проходит путь:

s=v(t_{displaystyle 2}-t_{displaystyle 1})=vDelta t (1)

Давайте построим график зависимости скорости от времени. В данном случае это будет прямая, параллельная оси абсцисс (рис. 1).

Рис. 1. Путь при равномерном движении

Нетрудно видеть, что пройденный путь равен площади прямоугольника, расположенного под графиком скорости. В самом деле, первый множитель v в формуле (1) есть вертикальная сторона этого прямоугольника, а второй множитель Delta t — его горизонтальная сторона.

Теперь нам предстоит обобщить эту геометрическую интерпретацию на случай неравномерного движения.

Пусть скорость тела v зависит от времени, и на рассматриваемом промежутке [t_{displaystyle 1},t_{displaystyle 2}] график скорости выглядит, например, так (рис. 2):

Рис. 2. Неравномерное движение

Дальше мы рассуждаем следующим образом.

1. Разобьём наш промежуток времени [t_{displaystyle 1},t_{displaystyle 2}] на небольшие отрезки величиной Delta t.

2. Предположим, что на каждом таком отрезке [t_{displaystyle i},t_{displaystyle i}+Delta t] тело движется с постоянной скоростью v(t_{displaystyle i}). То есть, плавное изменение скорости заменим ступенчатой аппроксимацией*: в течение каждого небольшого отрезка времени тело движется равномерно, а затем скорость тела мгновенно и cкачком меняется.
На рис. 3 показаны две ступенчатые аппроксимации. Ширина ступенек Delta t на правом рисунке вдвое меньше, чем на левом.

Рис. 3. Ступенчатая аппроксимация

Путь, пройденный за время Delta t равномерного движения — это площадь прямоугольника, расположенного под ступенькой. Поэтому путь, пройденный за всё время такого «ступенчатого» движения — это сумма площадей всех прямоугольников на графике.

3. Теперь устремляем Delta t к нулю. Ясно, что в пределе наша ступенчатая аппроксимация перейдёт в исходный график скорости на рис. 2. Сумма площадей прямоугольников перейдёт в площадь под графиком скорости; следовательно, эта площадь и есть путь, пройденный телом за время от t_{displaystyle 1} до t_{displaystyle 2}. (рис. 4

Рис. 4. Путь при неравномерном движении

В итоге мы приходим к нужному нам обобщению геометрической интерпретации пути, полученной выше для случая равномерного движения.

Аппроксимация — это приближённая замена достаточно сложного объекта более простой моделью, которую удобнее изучать.

Геометрическая интерпретация пути.Путь, пройденный телом при любом движении, равен площади под графиком скорости на заданном промежутке времени.

Посмотрим, как работает эта геометрическая интерпретация в важном частном случае равноускоренного движения.

Задача. Тело, имеющее скорость v_{0} в начальный момент t=0, разгоняется с постоянным ускорением a. Найти путь, пройденный телом к моменту времени t.

Решение. Зависимость скорости от времени в данном случае имеет вид:

v=v_{0}+at. (2)

График скорости — прямая, изображённая на рис. 5. Искомый путь есть площадь трапеции, расположенной под графиком скорости.

Рис. 5. Путь при равноускоренном движении

Меньшее основание трапеции равно v_{0}. Большее основание равно v=v_{0}+at. Высота трапеции равна t. Поскольку площадь трапеции есть произведение полусуммы оснований на высоту, имеем:

s=frac{displaystyle v_{0}+displaystyle v}{2}cdot t=frac{displaystyle v_{0}+(v_{0}+at)}{2}cdot t=frac{displaystyle 2v_{0}t+at^{2}}{2}.

Эту формулу можно переписать в более привычном виде:

s=v_{0}t+frac{displaystyle at^{2}}{displaystyle2}.

Она, разумеется, вам хорошо известна из темы «Равноускоренное движение».

Задача. График скорости тела является полуокружностью диаметра tau (рис. 6). Максимальная скорость тела равна v. Найти путь, пройденный телом за время tau .

Решение. Как вы знаете, площадь круга радиуса R равна pi R^{2}. Но в данной задаче необходимо учесть, что радиусы полуокружности имеют разные размерности: горизонтальный радиус есть время tau /2 , а вертикальный радиус есть скорость v.

Поэтому пройденный путь, вычисляемый как площадь полукруга, равен половине произведения pi на горизонтальный радиус и на вертикальный радиус:

s=frac{1}{2}cdot pi cdot frac{displaystyle tau }{2}cdot v=frac{displaystyle pi vtau }{displaystyle 4}.

Рис. 6. К задаче

Спасибо за то, что пользуйтесь нашими материалами.
Информация на странице «Путь при неравномерном движении.» подготовлена нашими редакторами специально, чтобы помочь вам в освоении предмета и подготовке к экзаменам.
Чтобы успешно сдать нужные и поступить в высшее учебное заведение или техникум нужно использовать все инструменты: учеба, контрольные, олимпиады, онлайн-лекции, видеоуроки, сборники заданий.
Также вы можете воспользоваться другими статьями из разделов нашего сайта.

Публикация обновлена:
08.05.2023

Посмотрите, что мы можем узнать из графиков, на которых обозначена зависимость ускорения от времени.

Что показывает вертикальная ось на графике ускорения?

Вертикальная ось показывает ускорение объекта.

Например, если на показанном ниже графике посмотреть значение функции в различные моменты времени, у нас получится ускорение объекта в метрах на секунду в квадрате в каждый из этих моментов

Попробуйте переместить точку вдоль горизонтальной оси графика, выбирая разные моменты времени, и посмотрите, как при этом изменяется ускорение.

Самопроверка: Согласно приведенному выше графику, чему равно ускорение в момент времени t, equals, 4, start text, space, с, end text?

Что показывает угловой коэффициент графика ускорения?

Угловой коэффициент графика ускорения показывает так называемый «рывок». В физике «рывок» — это скорость изменения ускорения.

Для графика ускорения угловой коэффициент находится по формуле
start text, у, г, л, о, в, о, й, space, к, о, э, ф, ф, и, ц, и, е, н, т, end text, equals, start fraction, start text, и, з, м, е, н, е, н, и, е, space, ф, у, н, к, ц, и, и, end text, divided by, start text, и, з, м, е, н, е, н, и, е, space, а, р, г, у, м, е, н, т, а, end text, end fraction, equals, start fraction, a, start subscript, 2, end subscript, minus, a, start subscript, 1, end subscript, divided by, t, start subscript, 2, end subscript, minus, t, start subscript, 1, end subscript, end fraction, equals, start fraction, delta, a, divided by, delta, t, end fraction, как показано на схеме ниже.

Этот наклон, который представляет скорость изменения ускорения, называется «рывком».

start text, р, ы, в, о, к, end text, equals, start fraction, delta, a, divided by, delta, t, end fraction

Термин «рывок» может показаться странным, но он хорошо соответствует нашему представлению о «движении рывками». Если вас везут и при этом ускорение постоянно то резко увеличивается, то резко уменьшается в течение коротких промежутков времени, тогда
движение ощущается прерывистым, и вам придётся прикладывать разную силу и по-разному напрягать мышцы, чтобы устоять на месте.

В конце этого раздела давайте визуально представим рывок на графике ниже. Перемещайте точку вдоль горизонтальной оси и посмотрите, чему равен угловой коэффициент касательной (т.е. рывок) в каждый момент времени.

Самопроверка. Посмотрите на приведённый выше график ускорения и определите, является ли рывок положительным, отрицательным или нулевым в момент времени t, equals, 6, start text, space, с, end text?

Что показывает площадь фигуры под графиком ускорения?

Площадь фигуры под графиком ускорения показывает изменение скорости. Другими словами, площадь под графиком ускорения для определенного интервала времени равна изменению скорости в течение этого интервала времени.

start text, п, л, о, щ, а, д, ь, end text, equals, delta, v

Проще всего в этом убедиться на примере показанного ниже графика с постоянным ускорением 4space, start fraction, start text, м, end text, divided by, start text, с, end text, squared, end fraction на интервале 9 с.

Умножив обе части определения ускорения, a, equals, start fraction, delta, v, divided by, delta, t, end fraction, на изменение времени, delta, t, мы получим delta, v, equals, a, delta, t.

Подставив ускорение 4space, start fraction, start text, м, end text, divided by, start text, с, end text, squared, end fraction и интервал 9 с, мы найдём изменение скорости:

delta, v, equals, a, delta, t, equals, left parenthesis, 4, space, start fraction, start text, м, end text, divided by, start text, с, end text, squared, end fraction, right parenthesis, left parenthesis, 9, start text, space, с, end text, right parenthesis, equals, 36, start fraction, start text, м, end text, divided by, start text, с, end text, end fraction

Умножение ускорения на временной интервал эквивалентно нахождению области под кривой. В нашем случае эта фигура — прямоугольник, как показано на диаграмме ниже.

Площадь прямоугольника находится умножением высоты на ширину. В нашем случае высота равна 4space, start fraction, start text, м, end text, divided by, start text, с, end text, squared, end fraction, а ширина — 9 с. Таким образом, вычислив площадь, мы получим изменение скорости.

start text, п, л, о, щ, а, д, ь, end text, equals, 4, space, start fraction, start text, м, end text, divided by, start text, с, end text, squared, end fraction, times, 9, start text, space, с, end text, equals, 36, start fraction, start text, м, end text, divided by, start text, с, end text, end fraction

Площадь фигуры под графиком ускорения на определённом интервале времени соответствует изменению скорости на данном интервале.

Как выглядят примеры решения задач на графики зависимости ускорения от времени?

Пример 1. Ускорение гоночного автомобиля

Уверенный в себе водитель гоночного автомобиля едет с постоянной скоростью 20 м/с. Подъезжая к финишной черте, он начинает разгонять автомобиль. Ниже приведён график ускорения автомобиля после начала разгона. В момент времени t, equals, 0, start text, space, с, end text скорость считаем равной 20 м/с.

Определите по графику, чему равна скорость гоночного автомобиля через 8 секунд после начала разгона?

Мы можем найти изменение скорости, вычислив площадь фигуры под графиком ускорения.

delta, v, equals, start text, п, л, о, щ, а, д, ь, end text, equals, start fraction, 1, divided by, 2, end fraction, b, h, equals, start fraction, 1, divided by, 2, end fraction, left parenthesis, 8, start text, space, с, end text, right parenthesis, left parenthesis, 6, start fraction, start text, м, end text, divided by, start text, с, end text, squared, end fraction, right parenthesis, equals, 24, start text, space, м, slash, с, end text, start text, left parenthesis, И, с, п, о, л, ь, з, у, е, м, space, ф, о, р, м, у, л, у, space, п, л, о, щ, а, д, и, space, т, р, е, у, г, о, л, ь, н, и, к, а, colon, space, start fraction, 1, divided by, 2, end fraction, b, h, point, right parenthesis, end text

delta, v, equals, 24, start text, space, м, slash, с, end text, start text, left parenthesis, В, ы, ч, и, с, л, я, е, м, space, и, з, м, е, н, е, н, и, е, space, с, к, о, р, о, с, т, и, point, right parenthesis, end text

Но мы нашли изменение скорости на данном временном интервале, а нас просят найти конечную скорость. Для этого воспользуемся определением изменения скорости: delta, v, equals, v, start subscript, к, end subscript, minus, v, start subscript, н, end subscript

delta, v, equals, 24, start text, space, м, slash, с, end text

v, start subscript, к, end subscript, minus, v, start subscript, н, end subscript, equals, 24, start text, space, м, slash, с, end text, start text, left parenthesis, П, о, д, с, т, а, в, л, я, е, м, space, v, start subscript, к, end subscript, minus, v, start subscript, н, end subscript, space, в, м, е, с, т, о, space, delta, v, point, right parenthesis, end text

v, start subscript, к, end subscript, minus, v, start subscript, н, end subscript, equals, 24, start text, space, м, slash, с, end text, start text, left parenthesis, П, о, д, с, т, а, в, л, я, е, м, space, 20, space, м, slash, с, space, в, м, е, с, т, о, space, н, а, ч, а, л, ь, н, о, й, space, с, к, о, р, о, с, т, и, space, v, start subscript, н, end subscript, point, right parenthesis, end text

v, start subscript, к, end subscript, equals, 24, start text, space, м, slash, с, end text, plus, 20, start text, space, м, slash, с, end text, start text, left parenthesis, В, ы, р, а, ж, а, е, м, space, v, start subscript, к, end subscript, point, right parenthesis, end text

v, start subscript, к, end subscript, equals, 44, start text, space, м, slash, с, end text, start text, left parenthesis, Э, т, о, space, и, space, б, у, д, е, т, space, н, а, ш, space, о, т, в, е, т, !, right parenthesis, end text

Конечная скорость гоночного автомобиля равнялась 44 м/с.

Пример 2. Прогулка на яхте

Яхта идёт под парусом по прямой со скоростью 10 м/с. В момент времени t, equals, 0, start text, space, с, end text начинает дуть ветер, в результате чего яхта начинает ускоряться так, как это показано на схеме ниже.

Чему равна скорость яхты после того, как ветер дул в течение 9 секунд?

Площадь под графиком ускорения равняется изменению скорости. Соответствующую фигуру можно разбить на прямоугольник и два треугольника, как показано на схеме ниже.

Площадь голубого прямоугольника между t, equals, 0, start text, space, с, end text и t, equals, 3, start text, space, с, end text считается положительной, поскольку она находится выше горизонтальной оси. Площадь зелёного треугольника между t, equals, 3, start text, space, с, end text и t, equals, 7, start text, space, с, end text также считается положительной по той же причине. А вот площадь красного треугольника между t, equals, 7, start text, space, с, end text и t, equals, 9, start text, space, с, end text будет считаться отрицательной, поскольку он находится ниже горизонтальной оси.

Сложив все три площади, используя формулу h, w для площади прямоугольника и start fraction, 1, divided by, 2, end fraction, b, h для площади треугольника, мы получим общую площадь фигуры под графиком между t, equals, 0, start text, space, с, end text и t, equals, 9, start text, space, с, end text.

delta, v, equals, start text, п, л, о, щ, а, д, ь, end text, equals, left parenthesis, 4, start fraction, start text, м, end text, divided by, start text, с, end text, squared, end fraction, right parenthesis, left parenthesis, 3, start text, space, с, end text, right parenthesis, plus, start fraction, 1, divided by, 2, end fraction, left parenthesis, 4, start text, space, с, end text, right parenthesis, left parenthesis, 4, start fraction, start text, м, end text, divided by, start text, с, end text, squared, end fraction, right parenthesis, plus, start fraction, 1, divided by, 2, end fraction, left parenthesis, 2, start text, space, с, end text, right parenthesis, left parenthesis, minus, 2, start fraction, start text, м, end text, divided by, start text, с, end text, squared, end fraction, right parenthesis, start text, left parenthesis, С, л, о, ж, и, м, space, п, л, о, щ, а, д, и, space, п, р, я, м, о, у, г, о, л, ь, н, и, к, а, space, и, space, д, в, у, х, space, т, р, е, у, г, о, л, ь, н, и, к, о, в, point, right parenthesis, end text

delta, v, equals, 18, start text, space, м, slash, с, end text, start text, left parenthesis, Н, а, х, о, д, и, м, space, о, б, щ, е, е, space, и, з, м, е, н, е, н, и, е, space, с, к, о, р, о, с, т, и, point, right parenthesis, end text

Но это — изменение скорости, а для того, чтобы найти конечную скорость, воспользуемся определением изменения скорости.

v, start subscript, к, end subscript, minus, v, start subscript, н, end subscript, equals, 18, start text, space, м, slash, с, end text, start text, left parenthesis, И, с, п, о, л, ь, з, у, е, м, space, о, п, р, е, д, е, л, е, н, и, е, space, и, з, м, е, н, е, н, и, я, space, с, к, о, р, о, с, т, и, point, right parenthesis, end text

v, start subscript, к, end subscript, equals, 18, start text, space, м, slash, с, end text, plus, v, start subscript, н, end subscript, start text, left parenthesis, В, ы, р, а, ж, а, е, м, space, к, о, н, е, ч, н, у, ю, space, с, к, о, р, о, с, т, ь, point, right parenthesis, end text

v, start subscript, к, end subscript, equals, 18, start text, space, м, slash, с, end text, plus, 10, start text, space, м, slash, с, end text, start text, left parenthesis, П, о, д, с, т, а, в, л, я, е, м, space, н, а, ч, а, л, ь, н, у, ю, space, с, к, о, р, о, с, т, ь, point, right parenthesis, end text

v, start subscript, к, end subscript, equals, 28, start text, space, м, slash, с, end text, start text, left parenthesis, Э, т, о, space, и, space, б, у, д, е, т, space, н, а, ш, space, о, т, в, е, т, !, right parenthesis, end text

Конечная скорость яхты равна v, start subscript, к, end subscript, equals, 28, start text, space, м, slash, с, end text.

1. Нахождение пути по графику зависимости скорости от времени

Покажем, как можно найти пройденный телом путь с помощью графика зависимости скорости от времени.

Начнем с самого простого случая – равномерного движения. На рисунке 6.1 изображен график зависимости v(t) – скорости от времени. Он представляет собой отрезок прямой, параллельной осн времени, так как при равномерном движении скорость постоянна.

Путь при равномерном движении

Фигура, заключенная под этим графиком, – прямоугольник (он закрашен на рисунке). Его площадь численно равна произведению скорости v на время движения t. С другой стороны, произведение vt равно пути l, пройденному телом. Итак, при равномерном движении

путь численно равен площади фигуры, заключенной под графиком зависимости скорости от времени.

Покажем теперь, что этим замечательным свойством обладает и неравномерное движение.

Пусть, например, график зависимости скорости от времени имеет вид кривой, изображенной на рисунке 6.2.

Путь при неравномерном движении

Разобьем мысленно все время движения на столь малые промежутки, чтобы в течение каждого из них движение тела можно было считать практически равномерным (это разбиение показано штриховыми линиями на рисунке 6.2).

Тогда путь, пройденный за каждый такой промежуток, численно равен площади фигуры под соответствующим ком графика. Поэтому и весь путь равен площади фигур заключенной под всем графиком. (Использованный нами прием лежит в основе интегрального исчисления, основы которого вы будете изучать в курсе «Начала математического анализа».)

2. Путь и перемещение при прямолинейном равноускоренном движении

Применим теперь описанный выше способ нахождения пути к прямолинейному равноускоренному движению.

Начальная скорость тела равна нулю

Направим ось x в сторону ускорения тела. Тогда ax = a, vx = v. Следовательно,

v = at.     (1)

На рисунке 6.3 изображен график зависимости v(t).

График зависимости скорости от времени

? 1. Используя рисунок 6.3, докажите, что при прямолинейном равноускоренном движении без начальной скорости путь l выражается через модуль ускорения a и время движения t формулой

l = at2/2.     (2)

Главный вывод:

при прямолинейном равноускоренном движении без начальной скорости пройденный телом путь пропорционален квадрату времени движения.

Этим равноускоренное движение существенно отличается от равномерного.

На рисунке 6.4 приведены графики зависимости пути от времени для двух тел, одно из которых движется равномерно, а другое – равноускоренно без начальной скорости.

Графики зависимости пути от времени для двух тел

? 2. Рассмотрите рисунок 6.4 и ответьте на вопросы.
а) Каким цветом изображен график для тела, движущегося равноускоренно?
б) Чему равно ускорение этого тела?
в) Чему равны скорости тел в тот момент, когда они прошли одинаковый путь?
г) В какой момент времени скорости тел равны?

? 3. Тронувшись с места, автомобиль за первые 4 с проехал расстояние 20 м. Движение автомобиля считайте прямолинейным равноускоренным. Не вычисляя ускорения автомобиля, определите, какое расстояние проедет автомобиль:
а) за 8 с? б) за 16 с? в) за 2 с?

Найдем теперь зависимость проекции перемещения sx от времени. В данном случае проекция ускорения на ось x положительна, поэтому sx = l, ax = a. Таким образом, из формулы (2) следует:

sx = axt2/2.     (3)

Формулы (2) и (3) очень похожи, что приводит порой к ошибкам при решении простых задач. Дело в том, что значение проекции перемещения может быть отрицательным. Так будет, если ось x направлена противоположно перемещению: тогда sx < 0. А путь отрицательным быть не может!

? 4. На рисунке 6.5 изображены графики зависимости от времени пути и проекции перемещения для некоторого тела. Какой цвет у графика проекции перемещения?

Начальная скорость тела не равна нулю

Напомним, что в таком случае зависимость проекции скорости от времени выражается формулой

vx = v0x + axt,     (4)

где v0x – проекция начальной скорости на ось x.

Мы рассмотрим далее случай, когда v0x > 0, ax > 0. В этом случае снова можно воспользоваться тем, что путь численно равен площади фигуры под графиком зависимости скорости от времени. (Другие комбинации знаков проекции начальной скорости и ускорения рассмотрите самостоятельно: в результате получится та же общая формула (5).

На рисунке 6.6 изображен график зависимости vx(t) при v0x > 0, ax > 0.

? 5. Используя рисунок 6.6, докажите, что при прямолинейном равноускоренном движении с начальной скоростью проекция перемещения

sx = v0x + axt2/2.     (5)

Эта формула позволяет найти зависимость координаты x тела от времени. Напомним (см. формулу (6), § 2), что координата x тела связана с проекцией его перемещения sx соотношением

sx = x – x0,

где x0 — начальная координата тела. Следовательно,

x = x0 + sx,     (6)

Из формул (5), (6) получаем:

x = x0 + v0xt + axt2/2.     (7)

6. Зависимость координаты от времени для некоторого тела, движущегося вдоль оси x, выражается в единицах СИ формулой x = 6 – 5t + t2.
а) Чему равна начальная координата тела?
б) Чему равна проекция начальной скорости на ось x?
в) Чему равна проекция ускорения на ось x?
г) Начертите график зависимости координаты x от времени.
д) Начертите график зависимости проекции скорости от времени.
е) В какой момент скорость тела равна нулю?
ж) Вернется ли тело в начальную точку? Если да, то в какой момент (моменты) времени?
з) Пройдет ли тело через начало координат? Если да, то в какой момент (моменты) времени?
и) Начертите график зависимости проекции перемещения от времени.
к) Начертите график зависимости пути от времени.

3. Соотношение между путем и скоростью

При решении задач часто используют соотношения между путем, ускорением и скоростью (начальной v0, конечной v или ими обеими). Выведем эти соотношения. Начнем с движения без начальной скорости. Из формулы (1) получаем для времени движения:

t = v/a.      (8)

Подставим это выражение в формулу (2) для пути:

l = at2/2 = a/2(v/a)2 = v2/2a.     (9)

Главный вывод:

при прямолинейном равноускоренном движении без начальной скорости пройденный телом путь пропорционален квадрату конечной скорости.

? 7. Тронувшись с места, автомобиль набрал скорость 10 м/с на пути 40 м. Движение автомобиля считайте прямолинейным равноускоренным. Не вычисляя ускорения автомобиля, определите, какой путь от начала движения проехал автомобиль, когда его скорость была равна: а) 20 м/с? б) 40 м/с? в) 5 м/с?

Соотношение (9) можно получить также, вспомнив, что путь численно равен площади фигуры, заключенной под графиком зависимости скорости от времени (рис. 6.7).

Это соображение поможет вам легко справиться со следующим заданием.

? 8. Используя рисунок 6.8, докажите, что при торможении с постоянным ускорением тело проходит до полной остановки путь lт = v02/2a, где v0 – начальная скорость тела, a – модуль ускорения.

В случае торможения транспортного средства (автомобиль, поезд) путь, пройденный до полной остановки, называют тормозным путём. Обратите внимание: тормозной путь при начальной скорости v0 и путь, пройденный при разгоне с места до скорости v0 с тем же по модулю ускорением a, одинаковы.

? 9. При экстренном торможении на сухом асфальте ускорение автомобиля равно по модулю 5 м/с2. Чему равен тормозной путь автомобиля при начальной скорости: а) 60 км/ч (максимальная разрешенная скорость в городе); б) 120 км/ч? Найдите тормозной путь при указанных скоростях во время гололеда, когда модуль ускорения равен 2 м/с2. Сравните найденные вами значения тормозного пути с длиной классной комнаты.

? 10. Используя рисунок 6.9 и формулу, выражающую площадь трапеции через ее высоту и полусумму оснований, докажите, что при прямолинейном равноускоренном движении:
а) l = (v2 – v02)/2a, если скорость тела увеличивается;
б) l = (v02 – v2)/2a, если скорость тела уменьшается.

? 11. Докажите, что проекции перемещения, начальной и конечной скорости, а также ускорения связаны соотношением

sx = (vx2 – v0x2)/2ax     (10)

? 12. Автомобиль на пути 200 м разогнался от скорости 10 м/с до 30 м/с.
а) С каким ускорением двигался автомобиль?
б) За какое время автомобиль проехал указанный путь?
в) Чему равна средняя скорость автомобиля?

Лютый опыт

Дополнительные вопросы и задания

13. От движущегося поезда отцепляют последний вагон, после чего поезд движется равномерно, а вагон – с постоянным ускорением до полной остановки.
а) Изобразите на одном чертеже графики зависимости скорости от времени для поезда и вагона.
б) Во сколько раз путь, пройденный вагоном до остановки, меньше пути, пройденного поездом за то же время?

14. Отойдя от станции, электричка какое-то время ехала равноускоренно, затем в течение 1 мин – равномерно со скоростью 60 км/ч, после чего снова равноускоренно до остановки на следующей станции. Модули ускорений при разгоне и торможении были различны. Расстояние между станциями электричка прошла за 2 мин.
а) Начертите схематически график зависимости проекции скорости электрички от времени.
б) Используя этот график, найдите расстояние между станциями.
в) Какое расстояние проехала бы электричка, если бы на первом участке пути она разгонялась, а на втором – тормозила? Какова была бы при этом ее максимальная скорость?

15. Тело движется равноускоренно вдоль оси x. В начальный момент оно находилось в начале координат, а проекция его скорости была равна 8 м/с. Через 2 с координата тела стала равной 12 м.
а) Чему равна проекция ускорения тела?
б) Постройте график зависимости vx(t).
в) Напишите формулу, выражающую в единицах СИ зависимость x(t).
г) Будет ли скорость тела равна нулю? Если да, то в какой момент времени?
д) Побывает ли тело второй раз в точке с координатой 12 м? Если да, то в какой момент времени?
е) Вернется ли тело в начальную точку? Если да, то в какой момент времени, и чему будет равен пройденный при этом путь?

16. После толчка шарик вкатывается вверх по наклонной плоскости, после чего возвращается в начальную точку. На расстоянии b от начальной точки шарик побывал дважды через промежутки времени t1 и t2 после толчка. Вверх и вниз вдоль наклонной плоскости шарик двигался с одинаковым по модулю ускорением.
а) Направьте ось x вверх вдоль наклонной плоскости, выберите начало координат в точке начального положения шарика и напишите формулу, выражающую зависимость x(t), в которую входят модуль начальной скорости шарика v0 и модуль ускорения шарика a.
б) Используя эту формулу и тот факт, что на расстоянии b от начальной точки шарик побывал в моменты времени t1 и t2 составьте систему двух уравнений с двумя неизвестными v0 и a.
в) Решив эту систему уравнений, выразите v0 и a через b, t1 и t2.
г) Выразите весь пройденный шариком путь l через b, t1 и t2.
д) Найдите числовые значения v0, a и l при b = 30 см, t1 = 1с, t2 = 2 с.
е) Постройте графики зависимости vx(t), sx(t), l(t).
ж) С помощью графика зависимости sx(t) определите момент, когда модуль перемещения шарика был максимальным.

Геометрический смысл перемещения заключается в том, что перемещение есть площадь фигуры, заключенной между графиком скорости, осью времени и прямыми, проведенными перпендикулярно к оси времени через точки, соответствующие времени начала и конца движения.

При равноускоренном прямолинейном движении перемещение определяется площадью трапеции, основаниями которой служат проекции начальной и конечной скорости тела, а ее боковыми сторонами — ось времени и график скорости соответственно. Поэтому перемещение (путь) можно вычислить по формуле:

Формула перемещения

Пример №1. По графику определить перемещение тела в момент времени t=3 с.

Перемещение есть площадь фигуры, ограниченной графиком скорости, осью времени и перпендикулярами, проведенными к ней. Поэтому в нашем случае:

Извлекаем из графика необходимые данные:

  • Фигура 1. Начальная скорость — 3 м/с. Конечная — 0 м/с. Время — 1,5 с.
  • Фигура 2. Начальная скорость — 0 м/с. Конечная — –3 м/с. Время — 1,5 с (3 с – 1,5 с).

Подставляем известные данные в формулу:

Перемещение равно 0, так как тело сначала проделало некоторый путь, а затем вернулось в исходное положение.

Варианты записи формулы перемещения

Конечная скорость движения тела часто неизвестна. Поэтому при решении задач вместо нее обычно подставляют эту формулу:

v = v0 ± at

В итоге получается формула:

Если движение равнозамедленное, в формуле используется знак «–». Если движение равноускоренное, оставляется знак «+».

Если начальная скорость равна 0 (v0 = 0), эта формула принимает вид:

Если неизвестно время движения, но известно ускорение, начальная и конечная скорости, то перемещение можно вычислить по формуле:

Пример №2. Найти тормозной путь автомобиля, который начал тормозить при скорости 72 км/ч. Торможение до полной остановки заняло 3 секунды. Модуль ускорения при этом составил 2 м/с.

Перемещение при разгоне и торможении тела

Все перечисленные выше формулы работают, если направление вектора ускорения и вектора скорости совпадают (а↑↑v). Если векторы имеют противоположное направление (а↑↓v), движение следует описывать в два этапа:

Этап торможения

Время торможения равно разности полного времени движения и времени второго этапа:

t1 = t – t2

Когда тело тормозит, через некоторое время t1 оно останавливается. Поэтому скорость в момент времени t1 равна 0:

0 = v01 – at1

При торможении перемещение s1 равно:

Этап разгона

Время разгона равно разности полного времени движения и времени первого этапа:

t2 = t – t1

Тело начинает разгоняться сразу после преодоления нулевого значения скорости, которую можно считать начальной. Поэтому скорость в момент времени t2 равна:

v = at2

При разгоне перемещение s2 равно:

При этом модуль перемещения в течение всего времени движения равен:

s = |s1 – s2|

Полный путь (обозначим его l), пройденный телом за оба этапа, равен:

l = s1 + s2

Пример №3. Мальчик пробежал из состояния покоя некоторое расстояние за 5 секунд с ускорением 1 м/с2. Затем он тормозил до полной остановки в течение 2 секунд с другим по модулю ускорением. Найти этот модуль ускорения, если его тормозной путь составил 3 метра.

В данном случае движение нужно разделить на два этапа, так как мальчик сначала разогнался, потом затормозил. Тормозной путь будет соответствовать второму этапу. Через него мы выразим ускорение:

Из первого этапа (разгона) можно выразить конечную скорость, которая послужит для второго этапа начальной скоростью:

v02 = v01 + a1t1 = a1t1 (так как v01 = 0)

Подставляем выраженные величины в формулу:

Перемещение в n-ную секунду прямолинейного равноускоренного движения

Иногда в механике встречаются задачи, когда нужно найти перемещение тела за определенный промежуток времени при условии, что тело начинало движение из состояния покоя. В таком случае перемещение определяется формулой:

За первую секунду тело переместится на расстояние, равное:

За вторую секунду тело переместится на расстояние, равное разности перемещения за 2 секунды и перемещения за 1 секунду:

За третью секунду тело переместится на расстояние, равное разности перемещения за 3 секунды и перемещения за 2 секунды:

Видно, что за каждую секунду тело проходит перемещение, кратное целому нечетному числу:

Из формул перемещений за 1, 2 и 3 секунду можно выявить закономерность: перемещение за n-ную секунду равно половине произведения модуля ускорения на (2n–1), где n — секунда, за которую мы ищем перемещение тела. Математически это записывается так:

Формула перемещения за n-ную секунду

Пример №4. Автомобиль разгоняется с ускорением 3 м/с2. Найти его перемещение за 6 секунду.

Подставляем известные данные в формулу и получаем:

Таким же способом можно найти перемещение не за 1 секунду, а за некоторый промежуток времени: за 2, 3, 4 секунды и т. д. В этом случае используется формула:

где t — время одного промежутка, а n — порядковый номер этого промежутка.

Пример №5. Ягуар ринулся за добычей с ускорением 2,5 м/с2. Найти его перемещение за промежуток времени от 4 до 6 секунд включительно.

Время от 4 до 6 секунд включительно — это 3 секунды: 4-ая, 5-ая и 6-ая. Значит, промежуток времени составляет 3 секунды. До наступления этого промежутка успело пройти еще 3 секунды. Значит, время от 4 до 6 секунд — это второй по счету временной промежуток.

Подставляем известные данные в формулу:

Проекция и график перемещения

Проекция перемещения на ось ОХ. График перемещения — это график зависимости перемещения от времени. Графиком перемещения при равноускоренном движении является ветка параболы. График перемещения при равноускоренном движении, когда вектор скорости направлен в сторону оси ОХ (v↑↑OX), а вектора скорости и ускорения сонаправлены (v↑↑a), принимает следующий вид:

График перемещения при равнозамедленном движении, когда вектор скорости направлен в сторону оси ОХ (v↑↑OX), а вектора скорости и ускорения противоположно (v↓↑a), принимает следующий вид:

Определение направления знака проекции ускорения по графику его перемещения:

  • Если ветви параболического графика смотрят вниз, проекция ускорения тела отрицательна.
  • Если ветви параболического графика смотрят вверх, проекция ускорения тела положительна.

Пример №6. Определить ускорение тела по графику его перемещения.

Перемещение тела в момент времени t=0 с соответствует нулю. Значит, ускорение можно выразить из формулы перемещения без начального ускорения. Получим:

Теперь возьмем любую точку графика. Пусть она будет соответствовать моменту времени t=2 с. Этой точке соответствует перемещение 30 м. Подставляем известные данные в формулу и получаем:

График пути

График пути от времени в случае равноускоренного движения совпадает с графиком проекции перемещения, так как s = l.

В случае с равнозамедленным движением график пути представляет собой линию, поделенную на 2 части:

  • 1 часть — до момента, когда скорость тела принимает нулевое значение (v = 0). Эта часть графика является частью параболы от начала координат до ее вершины.
  • 2 часть — после момента, при котором скорость тела принимает нулевое значение (v = 0). Эта часть является ветвью такой же, но перевернутой параболы. Ее вершина совпадает с вершиной предыдущей параболы, но ее ветвь направлена вверх.

Такой вид графика (возрастающий) объясняется тем, что путь не может уменьшаться — он либо не меняется (в состоянии покоя), либо растет независимо от того, в каком направлении, с какой скоростью и с каким ускорением движется тело.

Пример №7. По графику пути от времени, соответствующему равноускоренному прямолинейному движению, определить ускорение тела.

При равноускоренном прямолинейном движении графиком пути является ветвь параболы. Поэтому наш график — красный. График пути при равноускоренном прямолинейном движении также совпадает с графиком проекции его ускорения. Поэтому для вычисления ускорения мы можем использовать эту формулу:

Для расчета возьмем любую точку графика. Пусть она будет соответствовать моменту времени t=2 c. Ей соответствует путь, равный 5 м. Значит, перемещение тоже равно 5 м. Подставляем известные данные в формулу:

Задание EF18553

Тело массой 200 г движется вдоль оси Ох, при этом его координата изменяется во времени в соответствии с формулой х(t) = 10 5t 3t2(все величины выражены в СИ).

Установите соответствие между физическими величинами и формулами, выражающими их зависимости от времени в условиях данной задачи.

К каждой позиции первого столбца подберите соответствующую позицию из второго столбца и запишите в таблицу выбранные цифры под соответствующими буквами.


Алгоритм решения

1.Записать исходные данные и перевести их единицы измерения величин в СИ.

2.Записать уравнение движения тела при прямолинейном равноускоренном движении в общем виде.

3.Сравнить формулу из условия задачи с этим уравнением движения и выделить кинематические характеристики движения.

4.Определить перемещение тела и его кинетическую энергию.

5.Выбрать для физических величин соответствующую позицию из второго столбца таблицы и записать ответ.

Решение

Из условия задачи известна только масса тела: m = 200 г = 0,2 кг.

Так как тело движется вдоль оси Ox, уравнение движения тела при прямолинейном равноускоренном движении имеет вид:

x(t)=x0+v0t+at22

Теперь мы можем выделить кинематические характеристики движения тела:

 a/2 = –3 (м/с2), следовательно, a = –6 (м/с2).

Перемещение тела определяется формулой:

s=v0t+at22

Начальная координата не учитывается, так как это расстояние было уже пройдено до начала отсчета времени. Поэтому перемещение равно:

x(t)=v0t+at22=5t3t2

Кинетическая энергия тела определяется формулой:

Ek=mv22

Скорость при прямолинейном равноускоренном движении равна:

v=v0+at=56t

Поэтому кинетическая энергия тела равна:

Ek=m(56t)22=0,22(56t)2=0,1(56t)2

Следовательно, правильная последовательность цифр в ответе будет: 34.

Ответ: 34

pазбирался: Алиса Никитина | обсудить разбор

Задание EF18774

На рисунке показан график зависимости координаты x тела, движущегося вдоль оси Ох, от времени t (парабола). Графики А и Б представляют собой зависимости физических величин, характеризующих движение этого тела, от времени t. Установите соответствие между графиками и физическими величинами, зависимости которых от времени эти графики могут представлять.

К каждой позиции графика подберите соответствующую позицию утверждения и запишите в поле цифры в порядке АБ.


Алгоритм решения

  1. Определить, какому типу движения соответствует график зависимости координаты тела от времени.
  2. Определить величины, которые характеризуют такое движение.
  3. Определить характер изменения величин, характеризующих это движение.
  4. Установить соответствие между графиками А и Б и величинами, характеризующими движение.

Решение

График зависимости координаты тела от времени имеет вид параболы в случае, когда это тело движется равноускоренно. Так как движение тела описывается относительно оси Ох, траекторией является прямая. Равноускоренное прямолинейное движение характеризуется следующими величинами:

  • перемещение и путь;
  • скорость;
  • ускорение.

Перемещение и путь при равноускоренном прямолинейном движении изменяются так же, как координата тела. Поэтому графики их зависимости от времени тоже имеют вид параболы.

График зависимости скорости от времени при равноускоренном прямолинейном движении имеет вид прямой, которая не может быть параллельной оси времени.

График зависимости ускорения от времени при таком движении имеет вид прямой, перпендикулярной оси ускорения и параллельной оси времени, так как ускорение в этом случае — величина постоянная.

Исходя из этого, ответ «3» можно исключить. Остается проверить ответ «1». Кинетическая энергия равна половине произведения массы тела на квадрат его скорости. Графиком квадратичной функции является парабола. Поэтому ответ «1» тоже не подходит.

График А — прямая линия, параллельная оси времени. Мы установили, что такому графику может соответствовать график зависимости ускорения от времени (или его модуля). Поэтому первая цифра ответа — «4».

График Б — прямая линия, не параллельная оси времени. Мы установили, что такому графику может соответствовать график зависимости скорости от времени (или ее проекции). Поэтому вторая цифра ответа — «2».

Ответ: 24

pазбирался: Алиса Никитина | обсудить разбор

Задание EF18831

На рисунке представлен график зависимости модуля скорости υ автомобиля от времени t. Определите по графику путь, пройденный автомобилем в интервале времени от t1=20 с до t2=50 с.


Алгоритм решения

  1. Охарактеризовать движение тела на различных участках графика.
  2. Выделить участки движения, над которыми нужно работать по условию задачи.
  3. Записать исходные данные.
  4. Записать формулу определения искомой величины.
  5. Произвести вычисления.

Решение

Весь график можно поделить на 3 участка:

  1. От t1 = 0 c до t2 = 10 с. В это время тело двигалось равноускоренно (с положительным ускорением).
  2. От t1 = 10 c до t2 = 30 с. В это время тело двигалось равномерно (с нулевым ускорением).
  3. От t1 = 30 c до t2 = 50 с. В это время тело двигалось равнозамедленно (с отрицательным ускорением).

По условию задачи нужно найти путь, пройденный автомобилем в интервале времени от t1 = 20 c до t2 = 50 с. Этому времени соответствуют два участка:

  1. От t1 = 20 c до t2 = 30 с — с равномерным движением.
  2. От t1 = 30 c до t2 = 50 с — с равнозамедленным движением.

Исходные данные:

  • Для первого участка. Начальный момент времени t1 = 20 c. Конечный момент времени t2 = 30 с. Скорость (определяем по графику) — 10 м/с.
  • Для второго участка. Начальный момент времени t1 = 30 c. Конечный момент времени t2 = 50 с. Скорость определяем по графику. Начальная скорость — 10 м/с, конечная — 0 м/с.

Записываем формулу искомой величины:

s = s1 + s2

s1 — путь тела, пройденный на первом участке, s2 — путь тела, пройденный на втором участке.

s1 и s2 можно выразить через формулы пути для равномерного и равноускоренного движения соответственно:

Теперь рассчитаем пути s1 и s2, а затем сложим их:

s1 + s2 = 100 + 100 = 200 (м)

Ответ: 200

pазбирался: Алиса Никитина | обсудить разбор

Алиса Никитина | Просмотров: 25.6k

Понравилась статья? Поделить с друзьями:
  • Как найти значение чистых инвестиций формула
  • Как найти реестр собственников в гис жкх
  • Как составить тематический проспект
  • Как найти заводской номер флешки
  • Как найти новых подписчиков инстаграм