Как найти площадь поверхности тела вращения конуса

Содержание:

Великий греческий ученый Архимед был очень взволнован, когда он обнаружил, что отношение площади поверхности шара и описанного около него цилиндра и отношение их объемов равно 2:3. Великий математик, физик, инженер, Архимед, среди всех своих работ самой значимой считал именно эту. Он завещал на своей могильной плите выгравировать доказательство данной теоремы. Из истории известно, что долгое время его родной город Сиракузы, располагающийся на Сицилии, противостоял римлянам именно благодаря оружию, которое изобрел Архимед. Поэтому при взятии города римский военачальники приказал сохранить ученому жизнь. Но римский воин, который не знал Архимеда в лицо, убил его. Великий философ и писатель Цицерон потратил много времени, чтобы отыскать могилу Архимеда (по историческим сведениям он нашел ее через 137 лет). Это дело Цицерона стало идеей для работ многих художников.

Определение фигур вращения

Гончарное ремесло позволяет создавать керамическую посуду из глины. Форму глиняной лепешке придают вращением вокруг оси. Затем полученную форму обжигают. Это ремесло живо и по сей день. В различных районах Азербайджана есть ремесленники, которые изготавливают керамическую посуду. Исследуйте принцип работы по которому кусок глины приобретает какую-либо форму.

Фигуры вращения: цилиндр, конус, шар - с примерами решения

Плоские фигуры (плоская часть ограниченная кривой), совершая один полный оборот вокруг определенной оси, образуют пространственные фигуры. Эта ось называется осью вращении.

Цилиндр, конус и сфера являются простыми пространственными фигурами, полученными при вращении.

Например, при вращении прямоугольного треугольника вокруг одного из катетов получается конус, при вращении прямоугольника вокруг стороны образуется цилиндр, а при вращении полукруга вокруг диаметра — шар.

Фигуры вращения: цилиндр, конус, шар - с примерами решения

Цилиндр

Наглядно образование фигур вращения можно увидеть на примере вращающихся стеклянных дверей, которые мы часто видим в общественных зданиях, отелях и больницах. Прямоугольный слой двери, прикрепленный к неподвижной стойке, при вращении очерчивает цилиндр.

Фигуры вращения: цилиндр, конус, шар - с примерами решения

Цилиндром называется пространственная фигура, образованная двумя параллельными и конгруэнтными плоскими фигурами, которые совпадают при параллельном переносе, и отрезками, соединяющими соответствующие точки данных фигур. Плоские фигуры называются основаниями цилиндра, отрезки, соединяющие соответствующие точки основания называются образующими цилиндра. Если образующая перпендикулярна основанию, то цилиндр называется прямым, иначе — наклонным. Расстояние между основаниями называется высотой цилиндра.

Фигуры вращения: цилиндр, конус, шар - с примерами решения

На рисунках ниже изображены прямые и наклонные цилиндрические фигуры.

Фигуры вращения: цилиндр, конус, шар - с примерами решения

Сравнивая рисунки, изображенные ниже, можно сделать вывод, что призму можно рассматривать как частный случай цилиндра.

Фигуры вращения: цилиндр, конус, шар - с примерами решения

Прямой цилиндр, в основании которого лежит круг, называют прямым круговым цилиндром.

Далее, говоря о цилиндре, мы будем иметь в виду прямой круговой цилиндр. В любом другом случае будут отмечены его особенности.

Прямой круговой цилиндр также можно рассматривать как фигуру, полученную вращением прямоугольника вокруг одной из его сторон. Высота прямого кругового цилиндра равна его образующей. Радиусом цилиндра называется радиус круга в основании.

Вращая прямоугольник вокруг любой стороны, можно получить цилиндр, высота которого равна стороне прямоугольника.

Фигуры вращения: цилиндр, конус, шар - с примерами решения

Прямая, проходящая через центры оснований прямого кругового цилиндра называется осью цилиндра.

Фигуры вращения: цилиндр, конус, шар - с примерами решения

Площадь поверхности цилиндра

Площадь боковой и полной поверхностей цилиндра.

Изобразите на листе бумаги рисунки разверток цилиндров различных размеров, вырежьте и склейте цилиндры.

Фигуры вращения: цилиндр, конус, шар - с примерами решения

Мустафа красит стену цилиндрической кистью. Чтобы подсчитать время, потраченное на покраску, он захотел узнать, какую площадь покрывает кисть при одном полном обороте? Какие советы вы могли бы дать мальчику?

Так как кисть имеет цилиндрическую форму, то за один полный оборот кисть покрывает площадь в форме прямоугольника, равную боковой поверхности цилиндра.

Полная поверхность цилиндра находится но формуле схожей с формулой полной поверхности призмы. Полная поверхность цилиндра состоит из боковой поверхности и двух конгруэнтных кругов.

Боковую поверхность цилиндра с высотой Фигуры вращения: цилиндр, конус, шар - с примерами решения и радиусом Фигуры вращения: цилиндр, конус, шар - с примерами решения можно рассматривать как свернутый вокруг окружности прямоугольник со сторонами Фигуры вращения: цилиндр, конус, шар - с примерами решения и Фигуры вращения: цилиндр, конус, шар - с примерами решения

Фигуры вращения: цилиндр, конус, шар - с примерами решения

Боковая поверхность цилиндра равна произведению длины окружности основания и высоты.

Фигуры вращения: цилиндр, конус, шар - с примерами решения

Площадь полной поверхности цилиндра равна сумме площади боковой поверхности и площадей оснований

Фигуры вращения: цилиндр, конус, шар - с примерами решения

Пример №1

Найдите площадь полной поверхности цилиндра выстой 12 см и радиусом 5 см.

Фигуры вращения: цилиндр, конус, шар - с примерами решения

Решение: Фигуры вращения: цилиндр, конус, шар - с примерами решения

Фигуры вращения: цилиндр, конус, шар - с примерами решения

Пример №2

По данным рисунка, найдите площадь боковой поверхности прямого цилиндра, основанием которой являются полукруг.

Фигуры вращения: цилиндр, конус, шар - с примерами решения

Решение: Фигуры вращения: цилиндр, конус, шар - с примерами решения

Фигуры вращения: цилиндр, конус, шар - с примерами решения

Пример №3

По данным на рисунке найдите площадь полной поверхности прямого цилиндра, основанием которой является круговой сектор с углом 40°.

Фигуры вращения: цилиндр, конус, шар - с примерами решения

Решение: известно, что Фигуры вращения: цилиндр, конус, шар - с примерами решения

По формуле площади сектора:

Фигуры вращения: цилиндр, конус, шар - с примерами решения

Боковая поверхность фигуры равна Фигуры вращения: цилиндр, конус, шар - с примерами решения части боковой поверхности цилиндра с радиусом 9 см и высотой 20 см плюс площадь двух конгруэнтных прямоугольников размерами Фигуры вращения: цилиндр, конус, шар - с примерами решения

Фигуры вращения: цилиндр, конус, шар - с примерами решения

Таким образом,

Фигуры вращения: цилиндр, конус, шар - с примерами решения

Конус

Конусом называется пространственная фигура, образованная всеми отрезками, соединяющими какую-либо плоскую фигуру с точкой, не принадлежащей данной плоскости. Плоскую фигуру называют основанием конуса, а точку —вершиной конуса.

Фигуры вращения: цилиндр, конус, шар - с примерами решения

Перпендикуляр, проведенный из вершины конуса на плоскость его основания, называется высотой конуса. Конус, в основании которого лежит круг, называется круговым конусом. Если ортогональная проекция вершины конуса лежит в центре основания, то конус называется прямым круговым конусом. Отрезок, соединяющий вершину конуса с любой точкой окружности основания кругового конуса, называется образующей конуса. В дальнейшем, говоря о конусе, будем иметь ввиду прямой круговой конус.

Конус можно рассматривать как фигуру, образованную вращением прямоугольного треугольника вокруг одного из катетов.

Прямая, выходящая из вершины конуса и проходящая через центр основания, называется осью конуса, радиус основания называется радиусом конуса. Для образующей, высоты и радиуса конуса справедливо отношение Фигуры вращения: цилиндр, конус, шар - с примерами решения (по теореме Пифагора)

Фигуры вращения: цилиндр, конус, шар - с примерами решения

Сооружение конуса

Известно, что при сворачивании прямоугольника можно получить цилиндр. Скручивая круговой сектор можно соорудить конус.

Фигуры вращения: цилиндр, конус, шар - с примерами решения

Радиус сектора равен образующей конуса, а длина дуги сектора равна длине окружности основания.

Боковая поверхность конуса, полная поверхность конуса

Поверхность конуса состоит из боковой поверхности и круга в основании. На рисунке показаны радиус основания Фигуры вращения: цилиндр, конус, шар - с примерами решения и образующая Фигуры вращения: цилиндр, конус, шар - с примерами решения

Фигуры вращения: цилиндр, конус, шар - с примерами решения

Боковая поверхность конуса — круговой сектор с радиусом Фигуры вращения: цилиндр, конус, шар - с примерами решения и соответствующим центральным углом Фигуры вращения: цилиндр, конус, шар - с примерами решения

Значит, площадь сектора и есть площадь боковой поверхности.

Фигуры вращения: цилиндр, конус, шар - с примерами решения

Фигуры вращения: цилиндр, конус, шар - с примерами решения

Значит, сектор составляет Фигуры вращения: цилиндр, конус, шар - с примерами решения часть окружности.

* Зная, что площадь круга Фигуры вращения: цилиндр, конус, шар - с примерами решения тогда Фигуры вращения: цилиндр, конус, шар - с примерами решения часть площади круга будет Фигуры вращения: цилиндр, конус, шар - с примерами решения

Значит,

Фигуры вращения: цилиндр, конус, шар - с примерами решения

Боковая поверхность конуса равна произведению половины длины окружности основания и образующей.

* Площадь полной поверхности конуса

Фигуры вращения: цилиндр, конус, шар - с примерами решения

Пример №4

По рисунку найдите площадь боковой и полной поверхностей конуса.

Решение: Дано: Фигуры вращения: цилиндр, конус, шар - с примерами решения

Фигуры вращения: цилиндр, конус, шар - с примерами решения

Найти: Фигуры вращения: цилиндр, конус, шар - с примерами решения и Фигуры вращения: цилиндр, конус, шар - с примерами решения

Фигуры вращения: цилиндр, конус, шар - с примерами решения и Фигуры вращения: цилиндр, конус, шар - с примерами решения

Чтобы найти образующую Фигуры вращения: цилиндр, конус, шар - с примерами решения применим теорему Пифагора

Фигуры вращения: цилиндр, конус, шар - с примерами решения

Сечения цилиндра и конуса плоскостью

Сечения поверхности конуса плоскостью (теория конических сечений) считались одной из вершин античной геометрии. Исследования Аполлония (3-й в.до н.э.) показали, что сечением плоскостью конуса, с бесконечной образующей (лучом) является: эллине (плоскость пересекает все образующие), парабола (плоскость сечения параллельна одной из образующих) или ветвь гиперболы (плоскость сечения параллельна двум образующим).

Сечения цилиндра плоскостью

Сечением цилиндра плоскостью, параллельной основанию, является круг. Сечение цилиндра плоскостью, проходящей через ось симметрии, называется осевым сечением. Осевое сечение цилиндра является прямоугольником со сторонами Фигуры вращения: цилиндр, конус, шар - с примерами решения и Фигуры вращения: цилиндр, конус, шар - с примерами решения Значит, Фигуры вращения: цилиндр, конус, шар - с примерами решения Цилиндр, осевое сечение которого является квадратом Фигуры вращения: цилиндр, конус, шар - с примерами решения называется равносторонним цилиндром.

Фигуры вращения: цилиндр, конус, шар - с примерами решения

Сечения конуса плоскостью

Сечением конуса плоскостью, параллельной основанию, является круг. Сечение конуса, проходящее через ось конуса называется осевым сечением конуса. Это сечение является равнобедренным треугольником, боковые стороны которого являются образующими, а основание равно диаметру конуса: Фигуры вращения: цилиндр, конус, шар - с примерами решения Если осевое сечение конуса является правильным треугольником Фигуры вращения: цилиндр, конус, шар - с примерами решения то конус называется равносторонним конусом.

Фигуры вращения: цилиндр, конус, шар - с примерами решения

Пример №5

Сечением цилиндра плоскостью, проведенного параллельно оси цилиндра на расстоянии 3 см от оси, является квадрат, площадь которого равна 64 Фигуры вращения: цилиндр, конус, шар - с примерами решения Найдите площадь полной поверхности цилиндра.

Фигуры вращения: цилиндр, конус, шар - с примерами решения

Решение: сначала найдем радиус и высоту цилиндра. По условию Фигуры вращения: цилиндр, конус, шар - с примерами решения и Фигуры вращения: цилиндр, конус, шар - с примерами решения Отсюда Фигуры вращения: цилиндр, конус, шар - с примерами решения значит Фигуры вращения: цилиндр, конус, шар - с примерами решения Из Фигуры вращения: цилиндр, конус, шар - с примерами решения Фигуры вращения: цилиндр, конус, шар - с примерами решения отсюда Фигуры вращения: цилиндр, конус, шар - с примерами решения Таким образом, Фигуры вращения: цилиндр, конус, шар - с примерами решения

Усеченный конус и площадь поверхности

Усеченный конус

Если параллельно основанию прямого кругового конуса провести плоскость, то получим маленький конус и усеченный конус.

Фигуры вращения: цилиндр, конус, шар - с примерами решения

Фигуры вращения: цилиндр, конус, шар - с примерами решения

Усеченным конусом называется часть конуса, заключенная между основанием и секущей плоскостью, параллельной основанию.

Боковая поверхность усеченного конуса равна разности боковых поверхностей большого конуса и маленького конуса, отсеченного плоскостью, параллельной основанию, от большого конуса. Используя обозначения на рисунке, можно записать:

Фигуры вращения: цилиндр, конус, шар - с примерами решения

Фигуры вращения: цилиндр, конус, шар - с примерами решения

Из подобия треугольников запишем следующее отношение Фигуры вращения: цилиндр, конус, шар - с примерами решения

Тогда, подставив Фигуры вращения: цилиндр, конус, шар - с примерами решения или Фигуры вращения: цилиндр, конус, шар - с примерами решения в формулу для нахождения боковой поверхности, получим:

Фигуры вращения: цилиндр, конус, шар - с примерами решения

В данной формуле введем обозначение Фигуры вращения: цилиндр, конус, шар - с примерами решения среднего радиуса

усеченного конуса. Тогда

Фигуры вращения: цилиндр, конус, шар - с примерами решения

Полная поверхность усеченного конуса равна сумме боковой поверхности и площадей нижнего и верхнего оснований.

Фигуры вращения: цилиндр, конус, шар - с примерами решения

Пример №6

Конус высотой 8 см и радиусом 6 см рассечен плоскостью, параллельной основанию. Высота полученного усеченного конуса равна 4 см. Найдите площади боковой и полной поверхностей усеченного конуса

Решение: дано: Фигуры вращения: цилиндр, конус, шар - с примерами решения

Найти:

Фигуры вращения: цилиндр, конус, шар - с примерами решения

Фигуры вращения: цилиндр, конус, шар - с примерами решения

Фигуры вращения: цилиндр, конус, шар - с примерами решения

Площадь поверхности шара и его частей

Шаром называется множество всех точек пространства находящихся от данной точки на расстоянии, не больше данного. Данная точка называется центром шара, данное расстояние радиусом Фигуры вращения: цилиндр, конус, шар - с примерами решения шара.

Фигуры вращения: цилиндр, конус, шар - с примерами решения

Множество всех точек, расположенных на расстоянии Фигуры вращения: цилиндр, конус, шар - с примерами решения от центра шара, образует поверхность шара. Поверхность шара называется сферой. Прямая, соединяющая любые две точки на поверхности шара, называется хордой Фигуры вращения: цилиндр, конус, шар - с примерами решения Хорда, проходящая через центр шара называется диаметром шара Фигуры вращения: цилиндр, конус, шар - с примерами решения

Шар получается, при вращении полукруга вокруг диаметра.

Фигуры вращения: цилиндр, конус, шар - с примерами решения Любое сечение шара плоскостью является кругом. Центр этого круга является основанием перпендикуляра, проведенного к плоскости и проходящего через центр шара. Если Фигуры вращения: цилиндр, конус, шар - с примерами решения — радиус шара, Фигуры вращения: цилиндр, конус, шар - с примерами решения — расстояние между плоскостью и центром, а Фигуры вращения: цилиндр, конус, шар - с примерами решения — радиус сечения, то получим:

Фигуры вращения: цилиндр, конус, шар - с примерами решения

Фигуры вращения: цилиндр, конус, шар - с примерами решения

Пример №7

Шар радиуса 10 см пересечена плоскостью на расстояние

8 см от центра. Вычислите площадь сечения.

Решение: По условию Фигуры вращения: цилиндр, конус, шар - с примерами решения

Тогда Фигуры вращения: цилиндр, конус, шар - с примерами решения

Сечение шара плоскостью, проходящей через центр шара, называется

большим кругом. Центр, радиус и диаметр большого круга равны

центру, радиусу и диаметру шара.

Фигуры вращения: цилиндр, конус, шар - с примерами решения

Также для шара известны следующие части:

Фигуры вращения: цилиндр, конус, шар - с примерами решения

Площадь поверхности шара

Площадь поверхности шара находится по формуле Фигуры вращения: цилиндр, конус, шар - с примерами решения Здесь Фигуры вращения: цилиндр, конус, шар - с примерами решения радиус шара.

В окружность радиусом Фигуры вращения: цилиндр, конус, шар - с примерами решения впишем правильный многоугольник. Поверхность шара, полученного при вращении относительно диаметра соответствующих кругов, можно рассматривать как сумму пределов боковых поверхностей фигур — конуса,усеченного конуса и цилиндра, образующие которых являются сторонами данного многоугольника.

Фигуры вращения: цилиндр, конус, шар - с примерами решения

Покажем, что при вращении сторон многоугольника вокруг оси получается тело (конус, усеченный конус, цилиндр), площадь боковой поверхности которого равна площади боковой поверхности цилиндра, высота которого равна высоте данного тела, радиус основания равен апофеме многоугольника. Обозначим апофему многоугольника через Фигуры вращения: цилиндр, конус, шар - с примерами решения

Фигуры вращения: цилиндр, конус, шар - с примерами решения

Фигуры вращения: цилиндр, конус, шар - с примерами решения— площадь боковой поверхности конуса с образующей Фигуры вращения: цилиндр, конус, шар - с примерами решения Так как Фигуры вращения: цилиндр, конус, шар - с примерами решениято Фигуры вращения: цилиндр, конус, шар - с примерами решения Умножим на 2 обе части равенства

Фигуры вращения: цилиндр, конус, шар - с примерами решения Учитывая, что Фигуры вращения: цилиндр, конус, шар - с примерами решения Фигуры вращения: цилиндр, конус, шар - с примерами решения получим Фигуры вращения: цилиндр, конус, шар - с примерами решения Значит, Фигуры вращения: цилиндр, конус, шар - с примерами решения

Фигуры вращения: цилиндр, конус, шар - с примерами решения — площадь боковой поверхности усеченного конуса.

Зная, что Фигуры вращения: цилиндр, конус, шар - с примерами решения получим, что Фигуры вращения: цилиндр, конус, шар - с примерами решения

Так как Фигуры вращения: цилиндр, конус, шар - с примерами решения то Фигуры вращения: цилиндр, конус, шар - с примерами решения

Фигуры вращения: цилиндр, конус, шар - с примерами решения

Умножим на 2 обе части равенства Фигуры вращения: цилиндр, конус, шар - с примерами решения Учитывая,что

Фигуры вращения: цилиндр, конус, шар - с примерами решения и Фигуры вращения: цилиндр, конус, шар - с примерами решения получим Фигуры вращения: цилиндр, конус, шар - с примерами решения

Значит, Фигуры вращения: цилиндр, конус, шар - с примерами решения

Понятно, что площадь боковой поверхности цилиндра с образующей Фигуры вращения: цилиндр, конус, шар - с примерами решения равна Фигуры вращения: цилиндр, конус, шар - с примерами решения Аналогично получаем, что площадь боковых поверхностей усеченного конуса с образующей Фигуры вращения: цилиндр, конус, шар - с примерами решения и конуса с образующей Фигуры вращения: цилиндр, конус, шар - с примерами решения можно найти но формулам Фигуры вращения: цилиндр, конус, шар - с примерами решения Таким образом, поверхность тела, полученного вращением многоугольника вокруг диаметра, равна :

Фигуры вращения: цилиндр, конус, шар - с примерами решения

При бесконечном увеличении количества сторон многоугольника значение

Фигуры вращения: цилиндр, конус, шар - с примерами решения стремится к радиусу, а площадь поверхности полученного тела к площади

поверхности шара, т. е. Фигуры вращения: цилиндр, конус, шар - с примерами решения

Площадь поверхности шара

Доказательство Архимеда:

Пусть, в правильный многоугольник вписан круг, как показано на рисунке.

Фигуры вращения: цилиндр, конус, шар - с примерами решения

При вращении получается шар и покрывающее шар тело

Фигуры вращения: цилиндр, конус, шар - с примерами решения

Это тело состоит из двух усеченных конусов и цилиндра.

Фигуры вращения: цилиндр, конус, шар - с примерами решения

При увеличении количества сторон до бесконечности, тело будет стремится принять форму шара.

Фигуры вращения: цилиндр, конус, шар - с примерами решения

Найдя сумму поверхностей усеченных конусов и цилиндра, можно найти площадь поверхности шара. Рассмотрим осевое сечение одного из усеченных конусов. Пусть радиус средней окружности равен Фигуры вращения: цилиндр, конус, шар - с примерами решения а высота Фигуры вращения: цилиндр, конус, шар - с примерами решения радиус шара Фигуры вращения: цилиндр, конус, шар - с примерами решения сторона многоугольника, описанного вокруг большего круга равна Фигуры вращения: цилиндр, конус, шар - с примерами решения Площадь боковой поверхности усеченного конуса будет Фигуры вращения: цилиндр, конус, шар - с примерами решения а также Фигуры вращения: цилиндр, конус, шар - с примерами решения т. е. боковая поверхность усеченного конуса равна боковой поверхности цилиндра, радиус основания которого равен Фигуры вращения: цилиндр, конус, шар - с примерами решения и высота Фигуры вращения: цилиндр, конус, шар - с примерами решения

Фигуры вращения: цилиндр, конус, шар - с примерами решения

Значит, фигуру, описанную вокруг шара, можно принять за цилиндр. Отсюда получается, что площадь поверхности шара равна площади боковой поверхности цилиндра с радиусом основания Фигуры вращения: цилиндр, конус, шар - с примерами решения и высотой Фигуры вращения: цилиндр, конус, шар - с примерами решения

Т. е., Фигуры вращения: цилиндр, конус, шар - с примерами решения

Фигуры вращения: цилиндр, конус, шар - с примерами решения

Площадь сегмента шара

Часть шара, отсекаемая плоскостью сечения называется сегментом. Круг, полученный при сечении плоскостью, называется основанием сегмента. Часть диаметра шара, перпендикулярного основанию сегмента, расположенная внутри него, называется высотой сегмента.

Фигуры вращения: цилиндр, конус, шар - с примерами решения

Из доказательства формулы поверхности шара, аналогично, можно показать, что для шара радиуса Фигуры вращения: цилиндр, конус, шар - с примерами решения площадь сферической поверхности сегмента высотой Фигуры вращения: цилиндр, конус, шар - с примерами решения вычисляется по формуле Фигуры вращения: цилиндр, конус, шар - с примерами решения

Фигуры вращения: цилиндр, конус, шар - с примерами решения

Площадь шарового пояса

Часть поверхности шара, расположенная между двумя параллельными плоскостями, называется шаровым поясом. Расстояние между параллельными плоскостями называется высотой шарового пояса.

Фигуры вращения: цилиндр, конус, шар - с примерами решения

Площадь поверхности шарового пояса можно найти, как разность площадей сегментов, отсекаемых параллельными плоскостями.

Площадь поверхности шарового пояса высотой Фигуры вращения: цилиндр, конус, шар - с примерами решения отсекаемого от шара радиуса Фигуры вращения: цилиндр, конус, шар - с примерами решения вычисляется по формуле Фигуры вращения: цилиндр, конус, шар - с примерами решения

Пример №8

Радиус шара разбит на три равные части и через эти точки проведены перпендикулярные к радиусу плоскости. Зная, что радиус шара Фигуры вращения: цилиндр, конус, шар - с примерами решения найдите площадь поверхности шарового пояса.

Фигуры вращения: цилиндр, конус, шар - с примерами решения

Решение: если Фигуры вращения: цилиндр, конус, шар - с примерами решения и Фигуры вращения: цилиндр, конус, шар - с примерами решения то площадь поверхности шарового пояса будет Фигуры вращения: цилиндр, конус, шар - с примерами решения

Площади поверхностей подобных фигур

Отношение соответствующих линейных размеров подобных пространственных фигур постоянно и равно коэффициенту подобия.

Фигуры вращения: цилиндр, конус, шар - с примерами решения

Например, чтобы проверить подобны ли конусы на рисунке, найдем отношение соответствующих размеров. Если эти конусы подобны, то отношение радиусов должно быть равно отношению высот.

Фигуры вращения: цилиндр, конус, шар - с примерами решения

Значит эти конусы подобны и коэффициент подобия равен 2. Это говорит о том, что если все линейные размеры маленького конуса пропорционально увеличить в два раза, то получим конус, конгруэнтный большому конусу. Или наоборот, пропорционально уменьшив размеры большого конуса в два раза, получим конус, конгруэнтный маленькому. Если пропорционально увеличить или уменьшить размеры какой-либо фигуры, то можно получить подобные фигуры.

Отношение площадей подобных фигур равно квадрату отношения соответствующих линейных размеров или квадрату коэффициента подобия

Фигуры вращения: цилиндр, конус, шар - с примерами решения

  • Объем фигур вращения
  • Длина дуги кривой
  • Геометрические фигуры и их свойства
  • Основные фигуры геометрии и их расположение в пространстве
  • Вписанные и описанные многоугольники
  • Площадь прямоугольника
  • Объем пространственных фигур
  • Объёмы поверхностей геометрических тел
Определение конуса

Конус — это совокупность всех лучей, которые исходят из какой-либо точки пространства и пересекают плоскую поверхность.

Онлайн-калькулятор площади поверхности конуса

Точка, которая является началом этих лучей, называется вершиной конуса. В случае когда в основании конуса лежит многоугольник, конус превращается в пирамиду.

Конус состоит из некоторых элементов, знать которые необходимо для решения задач.

Образующая — отрезок, соединяющий точку, лежащую на окружности круга, который является основанием, и вершину конуса.
Высота — расстояние от плоскости основания до точки вершины конуса.

Виды конуса

Конус может быть нескольких видов:

Прямым, если его основанием является эллипс или круг. Причем вершина должна точно проектироваться в центр основания.
Косым — это тот случай, когда центр фигуры, лежащей в основании, не совпадает с проекцией вершины на это основание.
Круговым — соответственно, если основание — круг.
Усеченным — область конуса, которая будет лежать между основанием и сечением плоскости, параллельной основанию и пересекающей этот конус.

Формула площади поверхности конуса

Для нахождения полной площади поверхности конуса нужно найти сумму площади основания (или оснований, если конус усеченный) конуса и площади его боковой поверхности:

S=Sосн+SбокS=S_{text{осн}}+S_{text{бок}}

SоснS_{text{осн}} — площадь основания (оснований) конуса;

SбокS_{text{бок}} — площадь боковой поверхности конуса.

Рассмотрим примеры нахождения площади поверхности обычного прямого кругового конуса, а также усеченного этого же конуса.

Формула площади поверхности кругового конуса

Sосн=π⋅r2S_{text{осн}}=picdot r^2
Sбок=π⋅r⋅lS_{text{бок}}=picdot rcdot l

rr — радиус круга (основания) кругового конуса;
ll — длина образующей этого конуса.

Пример

найти площадь конуса

Найти площадь поверхности кругового конуса, если радиус основания равен 3 (см.), а высота hh треугольника, путем вращения которого образовался данный конус, равна 4 (см.)

Решение

r=3r=3
h=4h=4

Образующую можно найти, если рассмотреть треугольник, катетами которого являются радиус и высота, а гипотенузой — сама образующая ll. По теореме Пифагора имеем:

l2=r2+h2l^2=r^2+h^2
l2=32+42l^2=3^2+4^2
l2=25l^2=25
l=5l=5

Вычислим площадь основания конуса:

Sосн=π⋅r2=π⋅32≈28.26S_{text{осн}}=picdot r^2=picdot 3^2approx28.26 (см. кв.)

Площадь боковой поверхности:

Sбок=π⋅r⋅l=π⋅3⋅5≈47.10S_{text{бок}}=picdot rcdot l=picdot 3cdot 5approx47.10 (см. кв.)

Полная площадь

S=Sосн+Sбок≈28.26+47.10=75.36S=S_{text{осн}}+S_{text{бок}}approx28.26+47.10=75.36 (см. кв.)

Ответ: 75.36 см. кв.

Формула площади поверхности усеченного кругового конуса

Для усеченного кругового конуса площадь боковой поверхности можно найти по формуле:

Sбок=π⋅l⋅(r+r′)S_{text{бок}}=picdot lcdot (r+r’)

ll — длина образующей конуса;
rr — радиус основания;
r′r’ — радиус круга, получаемый при усечении кругового конуса.

Пример

площадь конуса  радиус второго основания

Условие возьмем из предыдущей задачи, добавив к нему только лишь радиус второго основания r′r’. Пусть он будет равен 2 (см.). Требуется вычислить полную площадь поверхности этого усеченного конуса.

Решение

l=5l=5
r=3r=3
r′=2r’=2

Оснований у нас теперь два, поэтому полная площадь оснований будет равна сумме площадей этих оснований с радиусами rr и r′r’:

Sосн=Sосн r+Sосн r’S_{text{осн}}=S_{text{осн r}}+S_{text{осн r’}}

Площадь основания радиуса rr:

Sосн r=π⋅r2=π⋅32≈28.26S_{text{осн r}}=picdot r^2=picdot 3^2approx28.26 (см. кв.)

Площадь основания радиуса r′r’:

Sосн r’=π⋅r′2=π⋅22≈12.56S_{text{осн r’}}=picdot r’^2=picdot 2^2approx12.56 (см. кв.)

Площадь боковой поверхности:

Sбок=π⋅l⋅(r+r′)=π⋅5⋅(3+2)≈78.50S_{text{бок}}=picdot lcdot (r+r’)=picdot 5cdot (3+2)approx78.50 (см. кв.)

Полная площадь:

S=Sосн+Sбок=Sосн r+Sосн r’+Sбок≈28.26+12.56+78.50=119,32S=S_{text{осн}}+S_{text{бок}}=S_{text{осн r}}+S_{text{осн r’}}+S_{text{бок}}approx28.26+12.56+78.50=119,32 (см. кв.)

Ответ: 119,32 см. кв.

Не знаете, как решить задачу по геометрии? Наши эксперты оперативно помогут вам с решением!

Тест по теме «Площадь поверхности конуса»

Формулы объема и площади поверхности. Цилиндр, конус и шар

Тела вращения, изучаемые в школе, — это цилиндр, конус и шар.

Если в задаче на ЕГЭ по математике вам надо посчитать объем конуса или площадь сферы — считайте, что повезло.

Применяйте формулы объема и площади поверхности цилиндра, конуса и шара. Все они есть в нашей таблице. Учите наизусть. Отсюда начинается знание стереометрии.

Формулы объема и площади поверхности. Цилиндр, конус и шар

Смотрите также: Формулы объема и площади поверхности многогранников.
Кроме формул, в решении задач по стереометрии нужны также элементарная логика и пространственное воображение. Есть и свои небольшие секреты.

Например, такой важный факт:

Если все линейные размеры объемного тела увеличить в 2 раза, то площадь его поверхности увеличится в 4 раза, а объем — в 8 раз. 

(ведь 2^2=4, 2^3=8).

Вот такая задача. Как и остальные на нашем сайте, она взята из банка заданий ФИПИ.

1. Объем конуса равен 16. Через середину высоты параллельно основанию конуса проведено сечение, которое является основанием меньшего конуса с той же вершиной. Найдите объем меньшего конуса.
Рисунок к задаче 1
Очевидно, что объем меньшего конуса в 8 раз меньше объема большого и равен двум.

Для решения некоторых задач полезны начальные знания стереометрии. Например — что такое правильная пирамида или прямая призма. Полезно помнить, что у цилиндра, конуса и шара есть еще общее название — тела вращения. Что сферой называется поверхность шара. А, например, фраза «образующая конуса наклонена к плоскости основания под углом 30 градусов предполагает, что вы знаете, что такое угол между прямой и плоскостью. Вам также может пригодиться теорема Пифагора и простые формулы площадей фигур.

Иногда неплохо нарисовать вид сверху. Или, как в этой задаче, — снизу.

2. Во сколько раз объем конуса, описанного около правильной четырехугольной пирамиды, больше объема конуса, вписанного в эту пирамиду?
Рисунок к задаче 2
Всё просто — рисуем вид снизу. Видим, что радиус большего круга в sqrt{2} раз больше, чем радиус меньшего. Высоты у обоих конусов одинаковы. Следовательно, объем большего конуса будет в 2 раза больше.

Говорят, что хороший чертеж — это уже половина решения. Читайте о том, как строить чертежи в задачах по стереометрии.

Еще один важный момент. Помним, что в задачах части В вариантов ЕГЭ по математике ответ записывается в виде целого числа или конечной десятичной дроби. Поэтому никаких sqrt{2} или pi у вас в ответе в части В быть не должно. Подставлять приближенное значение числа pi тоже не нужно! Оно обязательно должно сократиться! Именно для этого в некоторых задачах задание формулируется, например, так: «Найдите площадь боковой поверхности цилиндра, деленную на pi».

А где же еще применяются формулы объема и площади поверхности тел вращения? Конечно же, в задаче 14 Профильного ЕГЭ по математике.
Мы тоже расскажем о ней.


Спасибо за то, что пользуйтесь нашими публикациями.
Информация на странице «Формулы объема и площади поверхности. Цилиндр, конус и шар» подготовлена нашими авторами специально, чтобы помочь вам в освоении предмета и подготовке к ЕГЭ и ОГЭ.
Чтобы успешно сдать нужные и поступить в высшее учебное заведение или колледж нужно использовать все инструменты: учеба, контрольные, олимпиады, онлайн-лекции, видеоуроки, сборники заданий.
Также вы можете воспользоваться другими материалами из данного раздела.

Публикация обновлена:
08.05.2023


Download Article


Download Article

The surface area of a cone is the sum of the lateral surface area and the base surface area. If you know the radius of the base and the slant height of the cone, you can easily find the total surface area using a standard formula. Sometimes, however, you might have the radius and some other measurement, such as the height or volume of the cone. In these instances, you can use the Pythagorean Theorem and the volume formula to derive the slant height, and thus the surface area of the cone.

  1. Image titled Find the Surface Area of Cones Step 1

    1

  2. Image titled Find the Surface Area of Cones Step 2

    2

    Plug the value of the radius into the formula. This length should be given, or you should be able to measure it. Make sure you substitute for both r variables in the formula.

    • For example, if the radius of the base of a cone is 5 cm, your formula will look like this: {text{SA}}=(pi )(5)(s)+(pi )(5^{{2}}).

    Advertisement

  3. Image titled Find the Surface Area of Cones Step 3

    3

    Plug the value of the slant height into the formula. This length should be given, or you should be able to measure it.

    • For example, if the slant height of a cone is 10 cm, your formula will look like this: {text{SA}}=(pi )(5)(10)+(pi )(5^{{2}}).
  4. Image titled Find the Surface Area of Cones Step 4

    4

  5. Image titled Find the Surface Area of Cones Step 5

    5

  6. Image titled Find the Surface Area of Cones Step 6

    6

    Add the lateral surface area and the base area of the cone. This will give you the total surface area of the cone, in square units.

    • For example:
      {text{SA}}=157+78.5=235.5
      So, the surface area of a cone with a radius of 5 cm and a slant height of 10 cm is 235.5 square centimeters.
  7. Advertisement

  1. Image titled Find the Surface Area of Cones Step 7

    1

  2. Image titled Find the Surface Area of Cones Step 8

    2

  3. Image titled Find the Surface Area of Cones Step 9

    3

    Square the lengths of the radius and height, then add. Remember that squaring a number means to multiply it by itself.

  4. Image titled Find the Surface Area of Cones Step 10

    4

    Take the square root of each side of the equation. This will give you the length of the hypotenuse of the right triangle, which is equal to the slant height of the cone.[9]

  5. Image titled Find the Surface Area of Cones Step 11

    5

  6. Image titled Find the Surface Area of Cones Step 12

    6

    Plug all the known values into the formula. The radius should be given, and you already calculated the slant height. Make sure you use the slant height in the surface area formula, not the (perpendicular) height. If you are not using a calculator, use 3.14 for pi

    • For example, for a cone with a radius of 5 cm and a slant height of 13 cm, your formula will look like this: {text{SA}}=(3.14)(5)(13)+(3.14)(5^{{2}}).
  7. Image titled Find the Surface Area of Cones Step 13

    7

    Multiply to find the lateral area and the base area. Then, add these products together. The sum will give you the total surface area of the cone in square units.[11]

  8. Advertisement

  1. Image titled Find the Surface Area of Cones Step 14

    1

  2. Image titled Find the Surface Area of Cones Step 15

    2

    Plug the known values into the formula. You should know the volume and the length of the radius. If not, you cannot use this method. If you are not using a calculator, use 3.14 for pi .

    • For example, if you know a cone has a volume of 950 cubic centimeters and a radius of 6 centimeters, your formula will look like this: 950={frac  {1}{3}}(3.14)(6^{{2}})(h).
  3. Image titled Find the Surface Area of Cones Step 16

    3

  4. Image titled Find the Surface Area of Cones Step 17

    4

    Divide each side by the h coefficient. This will give you the value of h, which is the perpendicular height of the cone. You will need this information to find the slant height of the cone, which is necessary to know when solving for the surface area.

  5. Image titled Find the Surface Area of Cones Step 18

    5

    Set up the formula for the Pythagorean Theorem. The formula is a^{{2}}+b^{{2}}=c^{{2}}, where a and b equal the side lengths of a right triangle, and c equals the length of the hypotenuse (the side opposite the right angle).[15]

  6. Image titled Find the Surface Area of Cones Step 19

    6

  7. Image titled Find the Surface Area of Cones Step 20

    7

    Solve for c. This will give you the length of the right triangle’s hypotenuse, which is also the slant height of the cone.

  8. Image titled Find the Surface Area of Cones Step 21

    8

  9. Image titled Find the Surface Area of Cones Step 22

    9

    Plug all the known values into the formula. Make sure you use the slant height in the surface area formula, not the (perpendicular) height. If you are not using a calculator, use 3.14 for pi

    • For example, for a cone with a radius of 6 cm and a slant height of 25.91 cm, your formula will look like this: {text{SA}}=(3.14)(6)(25.91)+(3.14)(6^{{2}}).
  10. Image titled Find the Surface Area of Cones Step 23

    10

    Multiply to find the lateral area and the base area. Then, add these products together. The sum will give you the total surface area of the cone in square units.[17]

  11. Advertisement

References

Add New Question

  • Question

    What is the area of the base of a cone with a volume of 36 cubic inches and height of 9 inches?

    Community Answer

    The formula for volume of a cone is 1/3 x Base Area (i.e. area of a circle) x height.
    Solution:
    Volume = 1/3 x BA x H
    36 = 1/3 x (BA)* x 9
    36 x 3 = BA x 9 (we moved the 1/3 to the other side of the equation, hence it reciprocated)
    108/9 = BA
    Base area of the cone is 12 inches.

  • Question

    How do I show that slant height is 2r?

    Community Answer

    If you’re given the radius of the base and the height of the cone, you can do the Pythagorean theorem.

  • Question

    How do I find the radius of the base of a cone given its surface area of 500 pi and height of 15 cm?

    Donagan

    Assuming you are given the lateral surface area and the slant height, divide the lateral surface area by the product of pi and the slant height. If instead of the slant height you are given the perpendicular height, use Method 2 above to find the slant height, then multiply the slant height by pi, and divide that product into the lateral surface area to get the radius of the base.

See more answers

Ask a Question

200 characters left

Include your email address to get a message when this question is answered.

Submit

Advertisement

Video

  • The Pythagorean theorem applies to the radius, perpendicular height, and slant height, with the slant height acting as the hypotenuse: (radius)2 + (perpendicular height)2 = (slant height)2.

Thanks for submitting a tip for review!

Advertisement

About This Article

Article SummaryX

To find the surface area of a cone if you know the length of the slant, use the formula (πrs)+πr^2. Put the value of the radius of the circle at the bottom of the cone into the formula where you see an “r” and be sure to square it where necessary. Then, insert the length of the slant into the formula for “s,” and multiply the radius, slant, and pi together. Once you have the first part of the equation, multiply pi by the radius squared. To get the total surface area, add the two values together, and be sure to record your answer in units squared! For help finding the surface area of a cone if you know the radius and the perpendicular height, or the radius and the volume, read on!

Did this summary help you?

Thanks to all authors for creating a page that has been read 240,022 times.

Did this article help you?

§ 18. Конус

18.1.Определение конуса и его элементов

Определение. Тело, которое образуется при вращении прямоугольного треугольника вокруг прямой, содержащей его катет, называется прямым круговым конусом (рис. 165, 166).

Отрезок оси вращения, заключённый внутри конуса, называется осью конуса.

Круг, образованный при вращении второго катета, называется основанием конуса. Длина этого катета называется радиусом основания конуса или, короче, радиусом конуса. Вершина острого угла вращающегося треугольника, лежащая на оси вращения, называется вершиной конуса. На рисунках 165, б и 166 вершиной конуса является точка Р.

Высотой конуса называется отрезок, проведённый из вершины конуса перпендикулярно его основанию. Длину этого перпендикуляра также называют высотой конуса. Высота конуса имеет своим основанием центр круга — основания конуса — и совпадает с осью конуса.

Отрезки, соединяющие вершину конуса с точками окружности его основания, называются образующими конуса. Все образующие конуса равны между собой (почему?).

Как и в случае с цилиндром, можно рассматривать конус в более широком, чем у нас, понимании, когда в основании конуса может быть, например, эллипс (эллиптический конус), парабола (параболический конус). Мы будем изучать только определённый выше прямой круговой конус (конус вращения), поэтому слова «прямой круговой» мы будем опускать.

Рис. 165

Рис. 166

Рис. 167

Поверхность, полученная при вращении гипотенузы, называется боковой поверхностью конуса, а её площадь — площадью боковой поверхности конуса и обозначается Sбок. Боковая поверхность конуса является объединением всех его образующих.

Объединение боковой поверхности конуса и его основания называется полной поверхностью конуса, а её площадь называется площадью полной поверхности конуса или, короче, площадью поверхности конуса и обозначается Sкон. Из этого определения следует, что

Sкон = Sбок + Sосн.

Если вокруг данной прямой — оси — вращать пересекающую её прямую, то при этом вращении образуется поверхность, которую называют круговой конической поверхностью или конической поверхностью вращения. Уравнение  +  = 0 задаёт коническую поверхность вращения с осью вращения Oz (рис. 167). Из этого уравнения следует, что коническая поверхность является поверхностью второго порядка. (Подробнее о поверхностях второго порядка можно прочитать в «Дополнениях» — в конце этой книги.)

18.2. Сечения конуса

Определение. Сечение конуса плоскостью, проходящей через его ось, называется осевым сечением конуса.

Рис. 168

Рис. 169

Рис. 170

Так как все образующие конуса равны, то его осевым сечением является равнобедренный треугольник, боковыми сторонами которого являются образующие конуса, а основанием — диаметр конуса. При этом все осевые сечения конуса — равные равнобедренные треугольники. На рисунке 168 осевым сечением конуса является треугольник ABP (АР = ВР). Угол АPВ называют углом при вершине осевого сечения конуса.

Конус, в осевом сечении которого правильный треугольник, называется равносторонним конусом.

Если секущая плоскость проходит через вершину конуса, пересекает конус, но не проходит через его ось, то в сечении конуса также получается равнобедренный треугольник (см. рис. 168: DCP).

Так как конус — тело вращения, то любое сечение конуса плоскостью, перпендикулярной его оси (т. е. параллельной основанию конуса), есть круг, а сечение боковой поверхности конуса такой плоскостью — окружность этого круга; центром круга (окружности) является точка пересечения оси конуса и секущей плоскости (рис. 169).

Если секущая плоскость не параллельна плоскости основания конуса и не пересекает основание, то сечением боковой поверхности конуса такой плоскостью является эллипс (рис. 170). Поэтому эллипс называют коническим сечением.

Рис. 171

 Если сечением цилиндрической поверхности плоскостью может быть либо окружность, либо эллипс, либо две параллельные прямые, то сечением конической поверхности плоскостью может быть либо окружность (секущая плоскость перпендикулярна оси конической поверхности вращения и не проходит через её вершину, рис. 171, a), либо эллипс (секущая плоскость не перпендикулярна оси конической поверхности и пересекает все её образующие, рис. 171, б), либо парабола (секущая плоскость параллельна только одной образующей конической поверхности, рис. 171, в), либо гипербола (секущая плоскость параллельна оси конической поверхности, рис. 171, г), либо пара пересекающихся прямых (секущая плоскость проходит через вершину конической поверхности, рис. 171, д). Поэтому невырожденные кривые второго порядка — окружность, эллипс, параболу и гиперболу называют коническими сечениями или коротко  кониками.

О конических сечениях можно прочитать в очерках «Элементарная геометрия», «Проективная геометрия» в конце этой книги. 

ЗАДАЧА (3.047). Высота конуса равна радиусу R его основания. Через вершину конуса проведена плоскость, отсекающая от окружности основания дугу: а) в 60°; б) в 90°. Найти площадь сечения.

Решение. Рассмотрим случай а). Пусть плоскость α пересекает поверхность конуса с вершиной Р по образующим РА и РВ (рис. 172);  АВР — искомое сечение. Найдём площадь этого сечения.

Хорда АВ окружности основания стягивает дугу в 60°, значит,  AOB — правильный и АВ = R.

Рис. 172

Если точка С — середина стороны АB, то отрезок PC  высота треугольника АВР. Поэтому S ABP = АВРC. Имеем: ОР = R (по условию); в AOB: ОС = ; в ОСР: CP =  = .

Тогда S ABP = АВРС = .

Ответ: а) .

18.3. Касательная плоскость к конусу

Определение. Касательной плоскостью к конусу называется плоскость, проходящая через образующую конуса перпендикулярно осевому сечению, проведённому через эту образующую.

Рис. 173

Говорят, что плоскость α касается конуса по образующей РА (рис. 173): каждая точка образующей РА является точкой касания плоскости α и данного конуса.

Через любую точку боковой поверхности конуса проходит только одна его образующая. Через эту образующую можно провести только одно осевое сечение и только одну плоскость, перпендикулярную плоскости этого осевого сечения. Следовательно, через каждую точку боковой поверхности конуса можно провести лишь одну плоскость, касательную к данному конусу в этой точке.

18.4. Изображение конуса

Рис. 174

Для изображения конуса достаточно построить: 1) эллипс, изображающий окружность основания конуса (рис. 174); 2) центр О этого эллипса; 3) отрезок ОР, изображающий высоту конуса; 4) касательные прямые РА и PB из точки Р к эллипсу (их проводят с помощью линейки на глаз).

Для достижения наглядности изображения невидимые линии изображают штрихами.

Необходимо заметить, что отрезок АВ, соединяющий точки касания образующих и окружности основания конуса, ни в коем случае не является диаметром основания конуса, т. е. этот отрезок не содержит центра О эллипса. Следовательно,  АBP — не осевое сечение конуса. Осевым сечением конуса является  ACP, где отрезок AC проходит через точку О, но образующая PC не является касательной к окружности основания.

18.5. Развёртка и площадь поверхности конуса

Пусть l — длина образующей, R — радиус основания конуса с вершиной Р.

Рис. 175

Рис. 176

Поверхность конуса состоит из боковой поверхности конуса и его основания. Если эту поверхность разрезать по одной из образующих, например по образующей PA (рис. 175), и по окружности основания, затем боковую поверхность конуса развернуть на плоскости (рис. 176, a), то получим развёртку поверхности конуса (рис. 176, б), состоящую из: а) кругового сектора, радиус которого равен образующей l конуса, а длина дуги сектора равна длине окружности основания конуса; б) круга, радиус которого равен радиусу R основания конуса. Угол сектора развёртки боковой поверхности конуса называют углом развёртки конуса; его численная величина равна отношению длины окружности основания конуса к его образующей (радиусу сектора развёртки):

α = .

За площадь боковой поверхности конуса принимается площадь её развёртки. Выразим площадь боковой поверхности конуса через длину l его образующей и радиус R основания.

Площадь боковой поверхности — площадь кругового сектора радиуса длины l — вычисляется по формуле

Sбок = αl2,(1)

где α — величина угла (в радианах) сектора — развёртки. Учитывая, что α = , получаем:

Sбок = πRl.(2)

Таким образом, доказана следующая теорема.

Теорема 27. Площадь боковой поверхности конуса равна произведению половины длины окружности основания на образующую.

Площадь полной поверхности конуса равна сумме площадей его боковой поверхности и основания, т. е.

Sкон = πRl + πR2.(3)

Следствие. Пусть конус образован вращением прямоугольного треугольника ABC вокруг катета АС (рис. 177). Тогда Sбок = πBCАВ. Если D — середина отрезка АВ, то AB = 2AD, поэтому

Sбок = 2 πВСAD.(4)

Рис. 177

Проведём DE  АB ( l = ). Из подобия прямоугольных треугольников ADE и ACB (у них общий угол А) имеем

 = BCAD = DEАС.(5)

Тогда соотношение (4) принимает вид

Sбок = (2πDE)AC,(6)

т. е. площадь боковой поверхности конуса равна произведению высоты конуса на длину окружности, радиус которой равен длине серединного перпендикуляра, проведённого из точки на оси конуса к его образующей.

Это следствие будет использовано в п. 19.7.

18.6. Свойства параллельных сечений конуса

Теоремa 28. Если конус пересечён плоскостью, параллельной основанию, то: 1) все образующие и высота конуса делятся этой плоскостью на пропорциональные части; 2) в сечении получается круг; 3) площади сечения и основания относятся, как квадраты их расстояний от вершины.

Рис. 178

Доказательство. 1) Пусть конус с вершиной Р и основанием F пересечён плоскостью α, параллельной плоскости β основания конуса и расположенной между Р и β (рис. 178).

Проведём высоту РО конуса, где точка О — центр круга F. Так как РО  β, α || β, то α  РО. Значит, в сечении конуса плоскостью α получается круг с центром в точке O1 = α РО.  Обозначим этот круг F1.

Рассмотрим гомотетию с центром P, при которой плоскость β основания данного конуса отображается на параллельную ей плоскость α (при гомотетии плоскость, не проходящая через центр гомотетии, отображается на параллельную ей плоскость).

Так как при гомотетии её центр является неподвижной точкой, прямая, проходящая через центр гомотетии, отображается на себя, а пересечение двух фигур — на пересечение их образов, то гомотетия отображает основание F конуса на его параллельное сечение — круг F1, при этом центр О основания отображается на центр О1 круга F1 (почему?). Кроме того, если РХ — произвольная образующая конуса, где Х — точка окружности основания, то при гомотетии точка X отображается на точку X1 = РX  α. Учитывая, что отношение длин гомотетичных отрезков равно коэффициенту гомотетии, получаем:

 =  = k,(*)

где k — коэффициент гомотетии , т. е. параллельное сечение конуса делит его образующие и высоту на пропорциональные части.

А поскольку гомотетия является подобием, то круг F1, являющийся параллельным сечением конуса, подобен его основанию.

Вследствие того что отношение площадей гомотетичных фигур равно квадрату коэффициента гомотетии и k = PO1 : РО, где РO1 и PO — расстояния соответственно параллельного сечения и основания пирамиды от её вершины, то

Sсечен : Sоснов = k2 = : PO2.

Теорема доказана.

18.7.Вписанные в конус и описанные около конуса пирамиды

Определение. Пирамида называется вписанной в конус, если у них вершина общая, а основание пирамиды вписано в основание конуса. В этом случае конус называется описанным около пирамиды.

Для построения изображения правильной пирамиды, вписанной в конус:

строят изображение основания пирамиды — правильного многоугольника, вписанного в основание конуса;

соединяют отрезками прямых вершину конуса с вершинами построенного многоугольника;

выделяют видимые и невидимые (штрихами) линии изображаемых фигур.

На рисунках 179—182 изображена вписанная в конус пирамида, в основаниях которой лежит:

прямоугольный треугольник (см. рис. 179);

правильный треугольник (см. рис. 180);

квадрат (см. рис. 181);

правильный шестиугольник (см. рис. 182).

Рис. 179

Рис. 180

Рис. 181

Рис. 182

Определение. Пирамида называется описанной около конуса, если у них вершина общая, а основание пирамиды описано около основания конуса. В этом случае конус называют вписанным в пирамиду (рис. 183).

Рис. 183

Рис. 184

ЗАДАЧА (3.080). В равносторонний конус вписана правильная пирамида. Найти отношение площадей боковых поверхностей пирамиды и конуса, если пирамида: а) треугольная; б) четырёхугольная; в) шестиугольная.

Решение. Рассмотрим случай а). Пусть R — радиус основания равностороннего конуса, РАВС — правильная пирамида, вписанная в этот конус (рис. 184); DPE — осевое сечение конуса, CF — медиана АBС. Тогда в АВС (правильный): АВ = R, OF = R; в DPE (правильный): ОР =  = R; в ОРF (∠ FOP = 90°):

PF =  = .

Так как CF — медиана АВС, то PF — высота равнобедренного треугольника АВР. Поэтому

SABP = ABPF = R  = .

Обозначим: S1 — площадь боковой поверхности пирамиды, S2 — площадь боковой поверхности конуса. Тогда

S1 = 3S△ ABP = ,

S

2 = πRPA = πR2R = 2πR2.

Следовательно,

S1 : S2 = : 2πR2 = .

Ответ: а) .


 Во многих пособиях по геометрии за площадь боковой поверхности конуса принимают предел последовательности боковых поверхностей правильных вписанных в конус (или описанных около конуса) п-угольных пирамид при n +. Действительно, Sбок. пов. пирам = aPoсн. пирам, где Рoсн. пирам периметр основания пирамиды, а — апофема боковой грани. Для правильных описанных около конуса пирамид апофема a — постоянная величина, равная образующей l конуса, а предел последовательности периметров правильных многоугольников, описанных около окружности радиуса R основания конуса, равен 2πR — длине этой окружности. Таким образом, мы вновь получаем: Sбок = πRl.

18.8. Усечённый конус

Рис. 185

Пусть дан конус с вершиной Р. Проведём плоскость α, параллельную плоскости основания конуса и пересекающую этот конус (рис. 185). Эта плоскость пересекает данный конус по кругу и разбивает его на два тела: одно из них является конусом, а другое (расположенное между плоскостью основания данного конуса и секущей плоскостью) называют усечённым конусом. Таким образом, усечённый конус представляет собой часть полного конуса, заключённую между его основанием и параллельной ему плоскостью. Основание данного конуса и круг, полученный в сечении этого конуса плоскостью α, называются соответственно нижним и верхним основаниями усечённого конуса. Высотой усечённого конуса называется перпендикуляр, проведённый из какой-либо точки одного основания к плоскости другого. Длину этого перпендикуляра также называют высотой усечённого конуса. (Часто за высоту усечённого конуса принимают отрезок, соединяющий центры его оснований.)

Рис. 186

Рис. 187

Часть боковой поверхности данного конуса, ограничивающая усечённый конус, называется боковой поверхностью усечённого конуса, а отрезки образующих конуса, заключённые между основаниями усечённого конуса, называются образующими усечённого конуса. Так как все образующие данного конуса равны и равны все образующие отсечённого конуса, то равны все образующие усечённого конуса.

Построение изображения усечённого конуса следует начинать с изображения того конуса, из которого получился усечённый конус (рис. 186).

На рисунке 187 показана развёртка усечённого конуса.

Из теоремы 28 следует, что основания усечённого конуса — подобные круги.

Определения усечённой пирамиды, вписанной в усечённый конус и описанной около него, аналогичны определениям пирамиды, вписанной в конус и описанной около него.

Заметим, что построение изображений усечённой пирамиды, вписанной в усечённый конус и описанной около него, следует начинать с изображений того конуса или той пирамиды, из которых получены соответственно усечённые конус и пирамида.

Полной поверхностью усечённого конуса называется объединение боковой поверхности этого конуса и двух его оснований. Иногда полную поверхность усечённого конуса называют его поверхностью, а её площадь — площадью поверхности усечённого конуса. Эта площадь равна сумме площадей боковой поверхности и оснований усечённого конуса.

Усечённый конус может быть образован также вращением прямоугольной трапеции вокруг боковой стороны трапеции, перпендикулярной её основанию.

Рис. 188

На рисунке 188 изображён усечённый конус, образованный вращением прямоугольной трапеции ABCD вокруг стороны CD. При этом боковая поверхность усечённого конуса образована вращением боковой стороны АВ, а основания его — вращением оснований AD и ВС трапеции.

18.9. Поверхность усечённого конуса

Выразим площадь Sбок боковой поверхности усечённого конуса через длину l его образующей и радиусы R и r оснований (R > r).

Рис. 189

Пусть точка Р — вершина конуса, из которого получен усечённый конус; точки О, O1 — центры оснований усечённого конуса; AA1 = — одна из образующих усечённого конуса (рис. 189).

Используя формулу (2) п. 18.5, получаем

Sбок = πRPAπrРA1 =

= πR(РA1 + А1A) – πrPA1 =

= πRA1A + π(Rr)PA1.

Учитывая, что A1A = l, имеем

Sбок = πRl + π(Rr)PA1.(7)

Выразим PA1 через l, R и r. Так как O1A|| OA и OO1 — высота усечённого конуса, то прямоугольные треугольники POA и PO1A1 подобны. Поэтому АО : А1O1 = PA : PA1 или

R : r = (PA1 + A1A) : PA1, откуда

RPA1 = r(PA1 + l) (Rr)PA1 = rl PA1 = .

Подставив это значение РА1 в (7), получаем

Sбок = π(R + r)l.(8)

Таким образом, доказана следующая теорема.

Теорема 29. Площадь боковой поверхности усечённого конуса равна произведению полусуммы длин окружностей оснований на образующую.

Площадь полной поверхности усечённого конуса находится по формуле:

Sполн = π(R + r)l + πR2 + πr2.

Следствие. Пусть усечённый конус образован вращением прямоугольной трапеции ABCD вокруг её высоты AD (рис. 190). Тогда Sбок = π (АВ + DC)ВС. Если KЕ — средняя линия трапеции, то АВ + DC = 2KE, поэтому

Sбок = 2πKEBC.(9)

Рис. 190

Проведём EF  ВС.  Из подобия прямоугольных треугольников ВСН и EFK имеем

BC : EF = BH : KE ⇒ KEBC = EFBH.(10)

Тогда равенство (9) принимает вид

Sбок = (2πEF)ВH,(11)

т. е. боковая поверхность усечённого конуса равна произведению его высоты на длину окружности, радиус которой равен серединному перпендикуляру, проведённому из точки оси конуса к его образующей.

18.10. Объёмы конуса и усечённого конуса

Найдём объём конуса, высота которого равна h и радиус основания — R. Для этого расположим этот конус и правильную четырёхугольную пирамиду, высота которой равна h и сторона основания — R, так, чтобы их основания находились на одной и той же плоскости α, а вершины — также в одной и той же плоскости β, параллельной плоскости α и удалённой от неё на расстояние h (рис. 191).

Рис. 191

Каждая плоскость, параллельная данным плоскостям и пересекающая конус, пересекает также пирамиду; причём площади сечений, образованных при пересечении обоих тел, относятся к площадям оснований этих тел, как квадраты их расстояний от вершин. А так как секущие плоскости для пирамиды и для конуса равноудалены от их вершин, то  = . Тогда  =  =  = π, значит, для объёмов этих тел выполняется:

Vкон : Vпир = π : 1 или Vкон : R2h = π : 1, откуда

Vкон = πR2 h.

Рис. 192

Самостоятельно рассмотрите усечённые конус и пирамиду, расположенные в соответствии с условиями принципа Кавальери. Тогда вы получите формулу вычисления объёма усечённого конуса:

Vус. кон = πh(R2 + rR + r2).

Эту же формулу вы можете вывести, если используете идею подобия так же, как это сделано в случае с выводом формулы площади боковой поверхности усечённого конуса.

Используя принцип Кавальери, докажите, что объём каждого из тел, на которые конус разбивается его сечением плоскостью, проходящей через вершину (рис. 192), может быть вычислен по формуле V = hScегм, где — длина высоты конуса, а Sceгм — площадь соответствующего сегмента основания конуса.

Понравилась статья? Поделить с друзьями:
  • Ошибка в реквизитах договора как исправить
  • Как найти одну девушку на всю жизнь
  • Как найти друзей в общежитии
  • Созвездия северного полушария как найти на небе
  • Как найти мои файлы на ipad