Найти площадь прямоугольного треугольника
- Главная
- /
- Математика
- /
- Геометрия
- /
- Найти площадь прямоугольного треугольника
Чтобы посчитать площадь прямоугольного треугольника воспользуйтесь нашим очень удобным онлайн калькулятором:
Онлайн калькулятор
Чтобы вычислить площадь прямоугольного треугольника вам нужно знать следующие параметры (либо-либо):
- длины катетов a и b
- длину гипотенузы с и длину любого из катетов (a или b)
- длину катета (a или b) и прилежащий к нему острый угол (β или α, соответственно)
- длину катета (a или b) и противолежащий к нему острый угол (α или β, соответственно)
- длину гипотенузы с и один из острых углов (α или β)
Найти площадь прямоугольного треугольника по двум катетам
Катет a =
Катет b =
S =
0
Просто введите длины двух катетов, и получите ответ.
Теория
Чему равна площадь (S) прямоугольного треугольника если известны оба катета (a и b)?
Формула
S = ½ ⋅ a ⋅ b
Пример
К примеру найдём площадь прямоугольного треугольника у которого сторона a = 2 см, а сторона b = 4 см:
S = 2 ⋅ 4 / 2 = 8 / 2 = 4 см²
Найти площадь прямоугольного треугольника по катету и гипотенузе
Гипотенуза c =
Катет (a или b) =
S =
0
Введите длины гипотенузы и одного из катетов, и получите ответ.
Теория
Чему равна площадь (S) прямоугольного треугольника если известны его гипотенуза (c) и один из катетов (a или b)?
Формула
S = ½ ⋅ a ⋅ √c² — a² = ½ ⋅ b ⋅ √c² — b²
Пример
К примеру посчитаем чему равна площадь прямоугольного треугольника у которого катет a = 2 см, а гипотенуза c = 5 см:
S = 2 ⋅ √5² — 2² / 2 = √25 — 4 ≈ 4.58 см²
Найти площадь прямоугольного треугольника по катету и прилежащему к нему острому углу
Катет (a или b) =
Прилежащий угол (β или α) = °
S =
0
Введите длину одного из катетов и прилежащий к нему острый угол в градусах.
То есть к катету a прилежащий ∠β, а к катету b — ∠α
Теория
Чему равна площадь (S) прямоугольного треугольника если известны один из катетов (a или b) и прилежащий к нему угол?
Формула
S = ½ ⋅ a² ⋅ tg(β) = ½ ⋅ b² ⋅ tg(α)
Пример
К примеру посчитаем чему равна площадь прямоугольного треугольника у которого катет a = 4 см, а прилежащий к нему ∠β = 45°:
S = ½ ⋅ 4² ⋅ tg(45) = ½ ⋅ 16 ⋅ 1 = 16 / 2 = 8 см²
Найти площадь прямоугольного треугольника по катету и противолежащему к нему острому углу
Катет (a или b) =
Противолежащий угол (α или β) = °
S =
0
Введите длину одного из катетов и противолежащий к нему острый угол в градусах.
То есть к катету a противолежащий ∠α, а к катету b — ∠β
Теория
Чему равна площадь (S) прямоугольного треугольника если известны один из катетов (a или b) и противолежащий к нему угол?
Формула
S = ½ ⋅ a² ⋅ tg(90 — α) = ½ ⋅ b² ⋅ tg(90 — β)
Пример
К примеру посчитаем чему равна площадь прямоугольного треугольника у которого катет a = 4 см, а противолежащий к нему ∠α = 45°:
S = 4² / 2⋅ tg(45) = 16 / 2 ⋅ 1 = 8 см²
Найти площадь прямоугольного треугольника зная длину гипотенузы и один из острых углов
Гипотенуза c =
Угол (α или β) = °
S =
0
Введите длину гипотенузы и один из острых угол в градусах.
Теория
Чему равна площадь (S) прямоугольного треугольника если известны длина гипотенузы (c) и один из острых углов?
Формула
S = ½ ⋅ c² ⋅ sin(α) ⋅ cos(α) = ½ ⋅ c² ⋅ sin(β) ⋅ cos(β)
Пример
К примеру посчитаем чему равна площадь прямоугольного треугольника у которого гипотенуза c = 8 см, а ∠α = 45°:
S = ½ ⋅ 8² ⋅ sin(45) ⋅ cos(45) ≈ ½ ⋅ 64 ⋅ 0.7071067812 ⋅ 0.7071067812 ≈ 16 см²
Основные определения
Прямоугольный треугольник — это такой треугольник, в котором один из углов равен 90° (прямой угол).
Катеты — стороны, прилежащие к прямому углу 90°.
Гипотенуза — сторона, противолежащая прямому углу.
Чтобы найти площадь прямоугольного треугольника, можно воспользоваться несколькими формулами.
Формула площади прямоугольного треугольника через катеты
(S = {{a*b} over 2})
a, b — катеты
Формула площади прямоугольного треугольника через гипотенузу
(S =1/2(c*h))
(c) — длина гипотенузы,
(h) — высота.
В прямоугольном треугольнике высота находится по формуле:
(h = frac{a*b}{c})
(a) — длина одного катета,
(b) — длина второго катета.
Формула площади прямоугольного треугольника через острый угол и гипотенузу
Если известны острый угол и гипотенуза, то посчитать площадь можно так:
(S = frac{c^2*sinalpha*cosalpha}{2}= frac{c^2*sin(2alpha)}{4})
(S = frac{c^2*sinbeta*cosbeta}{2}= frac{c^2*sin(2beta)}{4})
(c) — гипотенуза
(alpha) и (beta) — острые углы
Формула площади прямоугольного треугольника через катет и острый угол
Если известен один катет и острый угол, то рассчитываем площадь так:
(S = {{a^2*tgbeta} over 2})
(S = {{b^2*tgalpha} over 2})
(a), (b) — катеты
Формула площади прямоугольного треугольника через радиус вписанной окружности и гипотенузу
(S = r (r+c))
(r) — радиус вписанной окружности
(с) — гипотенуза
Прямоугольный треугольник, так же как и любой другой треугольник, имеет три стороны и три угла. Разница только в том, что один угол прямой, т. е. 90 градусов и два остальных, острых угла в сумме составляют, тоже 90 градусов.
Две стороны, которые формируют прямой угол, называют катетами, а третья сторона напротив прямого угла, называется — гипотенуза
1. Если известны только катеты
a, b — катеты треугольника
Формула площади треугольника через катеты ( S ) :
2. Если известны острый угол и гипотенуза или катет
c — гипотенуза
a, b — катеты
α, β — острые углы
Формулы площади прямоугольного треугольника через гипотенузу и угол ( S ) :
Формулы площади прямоугольного треугольника через катет и угол ( S ) :
Как известно, сумма острых углов в прямоугольном треугольнике равна 90 градусов, а если
то справедливы следующие тождества:
3. Если известны радиус вписанной окружности и гипотенуза
c — гипотенуза
c1, c2 — отрезки полученные делением гипотенузы, точкой касания окружности
r — радиус вписанной окружности
О — центр вписанной окружности
Формулы площади прямоугольного треугольника через радиус вписанной окружности и гипотенузу ( S ) :
- Подробности
-
Опубликовано: 07 сентября 2011
-
Обновлено: 13 августа 2021
Расчёт площади прямоугольного треугольника по катету и гипотенузе
Калькулятор рассчитывает площадь прямоугольного треугольника по катету и гипотенузе.
Введите катет
Введите гипотенузу
Формула площади прямоугольного треугольника по катету и гипотенузе
Где a — катет прямоугольного треугольника
c — гипотенуза прямоугольного треугольника
Разберём пример
Дан прямоугольный треугольник с катетом 4 и гипотенузой 5, нужно найти площадь
Какие размеры известны:
Два катета
Катет и гиппотенуза
Укажите размеры:
Результат:
Решение:
Ссылка на страницу с результатом:
# Теория
Треугольник — это геометрическая фигура, образованная тремя отрезками соединяющихся тремя точками, у которой все углы внутренние.
Треугольники бывают прямоугольный, равнобедренный, равносторонний.
Катет — это прилежащая прямому углу сторона треугольника.
Гипотенуза — это сторона треугольника противолежащая прямому углу.
Формула площади прямоугольного треугольника
Чтобы посчитать площадь прямоугольного треугольника, необходимо знать размеры двух сторон треугольника.
Площадь прямоугольного треугольника расчитывается по формуле:
a
b
c
S = dfrac{a cdot b}{2}
- S — площадь треугольника
- a — катет
- b — катет
- c — гипотенуза
Если известены размеры только одного катета и гипотенузы, тогда площадь прямоугольного треугольника можно расчитать по формулам:
S = dfrac{a cdot sqrt{c^2 — a^2}}{2}
S = dfrac{b cdot sqrt{c^2 — b^2}}{2}
Похожие калькуляторы:
Войдите чтобы писать комментарии