Как найти площадь шарового пояса

Формулы объема

Объем и площадь шарового слоя и шарового пояса.

Шаровой пояс и шаровой слой

Объем шара равен 4/3π3 , а площадь сферы равна 4πr2.

Шаровой слой — это часть шара между двумя параллельными плоскостями. На рисунке выше PQRS — шаровой слой.

Шаровой пояс — это сферическая поверхность шарового слоя.

Площадь шарового пояса на рисунке выше S=2 πhr;

Объем шарового слоя V=(πh/6)*(h2+3r12+3r22)

Пример1. Определение объема шарового слоя шара.

Определить объем шарового слоя шара с диаметром 50 см, если верхний и нижний диаметры слоя есть 25 и 40 см, а его высота 7,2 см.

Решение:

Как было сказано выше, объем шарового слоя

V=(πh/6)*(h2+3r12+3r22),

где h=7,2 см, r1= 25/2=12,5 см, r2=40/2=20 см

Следовательно, объем шарового слоя равен

V=(7,2π/6)*(7,22+3*12,52+3*202)=6483,18 см2 .

Пример 2. Определение площади шарового пояса.

Определить площадь шарового пояса из предыдущего примера.

Решение:

Площадь шарового пояса S=2πrh (как было определено выше), где радиус сферы r=50/2=25 см, а h=7,2 см.

Следовательно, площадь шарового пояса равна

S=2π*25*7,2=1130,4 см2

Пример 3. Определение объема заполнения сферического резервуара по уровню.

Сферический резервуар

Сферический резервуар наполнен жидкостью до высоты 30 см. Определить объем жидкости в резервуаре (1л=1000 см3), если его внутренний диаметр равен 40 см.

Жидкость представлена в виде заштрихованной области в показанном на рис. ниже сечении.

Объем жидкости включает полусферу и шаровой пояс высотой 6 см.

Следовательно, объем жидкости есть V=(2/3)*πr3+(πh/6)*(h2+ 3r12+3r22), где

r2=40/2=20 см и r1=(202-62)1/2=19,1 см

Объем жидкости V=2/3 π *203+(6π)/6*(62+3*19,12+3*202)=24064,22 см3

Поскольку 1 литр =1000 см3, то количество литров жидкости равно

24064,22/1000=24,06422 л.

Содержание:

Великий греческий ученый Архимед был очень взволнован, когда он обнаружил, что отношение площади поверхности шара и описанного около него цилиндра и отношение их объемов равно 2:3. Великий математик, физик, инженер, Архимед, среди всех своих работ самой значимой считал именно эту. Он завещал на своей могильной плите выгравировать доказательство данной теоремы. Из истории известно, что долгое время его родной город Сиракузы, располагающийся на Сицилии, противостоял римлянам именно благодаря оружию, которое изобрел Архимед. Поэтому при взятии города римский военачальники приказал сохранить ученому жизнь. Но римский воин, который не знал Архимеда в лицо, убил его. Великий философ и писатель Цицерон потратил много времени, чтобы отыскать могилу Архимеда (по историческим сведениям он нашел ее через 137 лет). Это дело Цицерона стало идеей для работ многих художников.

Определение фигур вращения

Гончарное ремесло позволяет создавать керамическую посуду из глины. Форму глиняной лепешке придают вращением вокруг оси. Затем полученную форму обжигают. Это ремесло живо и по сей день. В различных районах Азербайджана есть ремесленники, которые изготавливают керамическую посуду. Исследуйте принцип работы по которому кусок глины приобретает какую-либо форму.

Фигуры вращения: цилиндр, конус, шар - с примерами решения

Плоские фигуры (плоская часть ограниченная кривой), совершая один полный оборот вокруг определенной оси, образуют пространственные фигуры. Эта ось называется осью вращении.

Цилиндр, конус и сфера являются простыми пространственными фигурами, полученными при вращении.

Например, при вращении прямоугольного треугольника вокруг одного из катетов получается конус, при вращении прямоугольника вокруг стороны образуется цилиндр, а при вращении полукруга вокруг диаметра — шар.

Фигуры вращения: цилиндр, конус, шар - с примерами решения

Цилиндр

Наглядно образование фигур вращения можно увидеть на примере вращающихся стеклянных дверей, которые мы часто видим в общественных зданиях, отелях и больницах. Прямоугольный слой двери, прикрепленный к неподвижной стойке, при вращении очерчивает цилиндр.

Фигуры вращения: цилиндр, конус, шар - с примерами решения

Цилиндром называется пространственная фигура, образованная двумя параллельными и конгруэнтными плоскими фигурами, которые совпадают при параллельном переносе, и отрезками, соединяющими соответствующие точки данных фигур. Плоские фигуры называются основаниями цилиндра, отрезки, соединяющие соответствующие точки основания называются образующими цилиндра. Если образующая перпендикулярна основанию, то цилиндр называется прямым, иначе — наклонным. Расстояние между основаниями называется высотой цилиндра.

Фигуры вращения: цилиндр, конус, шар - с примерами решения

На рисунках ниже изображены прямые и наклонные цилиндрические фигуры.

Фигуры вращения: цилиндр, конус, шар - с примерами решения

Сравнивая рисунки, изображенные ниже, можно сделать вывод, что призму можно рассматривать как частный случай цилиндра.

Фигуры вращения: цилиндр, конус, шар - с примерами решения

Прямой цилиндр, в основании которого лежит круг, называют прямым круговым цилиндром.

Далее, говоря о цилиндре, мы будем иметь в виду прямой круговой цилиндр. В любом другом случае будут отмечены его особенности.

Прямой круговой цилиндр также можно рассматривать как фигуру, полученную вращением прямоугольника вокруг одной из его сторон. Высота прямого кругового цилиндра равна его образующей. Радиусом цилиндра называется радиус круга в основании.

Вращая прямоугольник вокруг любой стороны, можно получить цилиндр, высота которого равна стороне прямоугольника.

Фигуры вращения: цилиндр, конус, шар - с примерами решения

Прямая, проходящая через центры оснований прямого кругового цилиндра называется осью цилиндра.

Фигуры вращения: цилиндр, конус, шар - с примерами решения

Площадь поверхности цилиндра

Площадь боковой и полной поверхностей цилиндра.

Изобразите на листе бумаги рисунки разверток цилиндров различных размеров, вырежьте и склейте цилиндры.

Фигуры вращения: цилиндр, конус, шар - с примерами решения

Мустафа красит стену цилиндрической кистью. Чтобы подсчитать время, потраченное на покраску, он захотел узнать, какую площадь покрывает кисть при одном полном обороте? Какие советы вы могли бы дать мальчику?

Так как кисть имеет цилиндрическую форму, то за один полный оборот кисть покрывает площадь в форме прямоугольника, равную боковой поверхности цилиндра.

Полная поверхность цилиндра находится но формуле схожей с формулой полной поверхности призмы. Полная поверхность цилиндра состоит из боковой поверхности и двух конгруэнтных кругов.

Боковую поверхность цилиндра с высотой Фигуры вращения: цилиндр, конус, шар - с примерами решения и радиусом Фигуры вращения: цилиндр, конус, шар - с примерами решения можно рассматривать как свернутый вокруг окружности прямоугольник со сторонами Фигуры вращения: цилиндр, конус, шар - с примерами решения и Фигуры вращения: цилиндр, конус, шар - с примерами решения

Фигуры вращения: цилиндр, конус, шар - с примерами решения

Боковая поверхность цилиндра равна произведению длины окружности основания и высоты.

Фигуры вращения: цилиндр, конус, шар - с примерами решения

Площадь полной поверхности цилиндра равна сумме площади боковой поверхности и площадей оснований

Фигуры вращения: цилиндр, конус, шар - с примерами решения

Пример №1

Найдите площадь полной поверхности цилиндра выстой 12 см и радиусом 5 см.

Фигуры вращения: цилиндр, конус, шар - с примерами решения

Решение: Фигуры вращения: цилиндр, конус, шар - с примерами решения

Фигуры вращения: цилиндр, конус, шар - с примерами решения

Пример №2

По данным рисунка, найдите площадь боковой поверхности прямого цилиндра, основанием которой являются полукруг.

Фигуры вращения: цилиндр, конус, шар - с примерами решения

Решение: Фигуры вращения: цилиндр, конус, шар - с примерами решения

Фигуры вращения: цилиндр, конус, шар - с примерами решения

Пример №3

По данным на рисунке найдите площадь полной поверхности прямого цилиндра, основанием которой является круговой сектор с углом 40°.

Фигуры вращения: цилиндр, конус, шар - с примерами решения

Решение: известно, что Фигуры вращения: цилиндр, конус, шар - с примерами решения

По формуле площади сектора:

Фигуры вращения: цилиндр, конус, шар - с примерами решения

Боковая поверхность фигуры равна Фигуры вращения: цилиндр, конус, шар - с примерами решения части боковой поверхности цилиндра с радиусом 9 см и высотой 20 см плюс площадь двух конгруэнтных прямоугольников размерами Фигуры вращения: цилиндр, конус, шар - с примерами решения

Фигуры вращения: цилиндр, конус, шар - с примерами решения

Таким образом,

Фигуры вращения: цилиндр, конус, шар - с примерами решения

Конус

Конусом называется пространственная фигура, образованная всеми отрезками, соединяющими какую-либо плоскую фигуру с точкой, не принадлежащей данной плоскости. Плоскую фигуру называют основанием конуса, а точку —вершиной конуса.

Фигуры вращения: цилиндр, конус, шар - с примерами решения

Перпендикуляр, проведенный из вершины конуса на плоскость его основания, называется высотой конуса. Конус, в основании которого лежит круг, называется круговым конусом. Если ортогональная проекция вершины конуса лежит в центре основания, то конус называется прямым круговым конусом. Отрезок, соединяющий вершину конуса с любой точкой окружности основания кругового конуса, называется образующей конуса. В дальнейшем, говоря о конусе, будем иметь ввиду прямой круговой конус.

Конус можно рассматривать как фигуру, образованную вращением прямоугольного треугольника вокруг одного из катетов.

Прямая, выходящая из вершины конуса и проходящая через центр основания, называется осью конуса, радиус основания называется радиусом конуса. Для образующей, высоты и радиуса конуса справедливо отношение Фигуры вращения: цилиндр, конус, шар - с примерами решения (по теореме Пифагора)

Фигуры вращения: цилиндр, конус, шар - с примерами решения

Сооружение конуса

Известно, что при сворачивании прямоугольника можно получить цилиндр. Скручивая круговой сектор можно соорудить конус.

Фигуры вращения: цилиндр, конус, шар - с примерами решения

Радиус сектора равен образующей конуса, а длина дуги сектора равна длине окружности основания.

Боковая поверхность конуса, полная поверхность конуса

Поверхность конуса состоит из боковой поверхности и круга в основании. На рисунке показаны радиус основания Фигуры вращения: цилиндр, конус, шар - с примерами решения и образующая Фигуры вращения: цилиндр, конус, шар - с примерами решения

Фигуры вращения: цилиндр, конус, шар - с примерами решения

Боковая поверхность конуса — круговой сектор с радиусом Фигуры вращения: цилиндр, конус, шар - с примерами решения и соответствующим центральным углом Фигуры вращения: цилиндр, конус, шар - с примерами решения

Значит, площадь сектора и есть площадь боковой поверхности.

Фигуры вращения: цилиндр, конус, шар - с примерами решения

Фигуры вращения: цилиндр, конус, шар - с примерами решения

Значит, сектор составляет Фигуры вращения: цилиндр, конус, шар - с примерами решения часть окружности.

* Зная, что площадь круга Фигуры вращения: цилиндр, конус, шар - с примерами решения тогда Фигуры вращения: цилиндр, конус, шар - с примерами решения часть площади круга будет Фигуры вращения: цилиндр, конус, шар - с примерами решения

Значит,

Фигуры вращения: цилиндр, конус, шар - с примерами решения

Боковая поверхность конуса равна произведению половины длины окружности основания и образующей.

* Площадь полной поверхности конуса

Фигуры вращения: цилиндр, конус, шар - с примерами решения

Пример №4

По рисунку найдите площадь боковой и полной поверхностей конуса.

Решение: Дано: Фигуры вращения: цилиндр, конус, шар - с примерами решения

Фигуры вращения: цилиндр, конус, шар - с примерами решения

Найти: Фигуры вращения: цилиндр, конус, шар - с примерами решения и Фигуры вращения: цилиндр, конус, шар - с примерами решения

Фигуры вращения: цилиндр, конус, шар - с примерами решения и Фигуры вращения: цилиндр, конус, шар - с примерами решения

Чтобы найти образующую Фигуры вращения: цилиндр, конус, шар - с примерами решения применим теорему Пифагора

Фигуры вращения: цилиндр, конус, шар - с примерами решения

Сечения цилиндра и конуса плоскостью

Сечения поверхности конуса плоскостью (теория конических сечений) считались одной из вершин античной геометрии. Исследования Аполлония (3-й в.до н.э.) показали, что сечением плоскостью конуса, с бесконечной образующей (лучом) является: эллине (плоскость пересекает все образующие), парабола (плоскость сечения параллельна одной из образующих) или ветвь гиперболы (плоскость сечения параллельна двум образующим).

Сечения цилиндра плоскостью

Сечением цилиндра плоскостью, параллельной основанию, является круг. Сечение цилиндра плоскостью, проходящей через ось симметрии, называется осевым сечением. Осевое сечение цилиндра является прямоугольником со сторонами Фигуры вращения: цилиндр, конус, шар - с примерами решения и Фигуры вращения: цилиндр, конус, шар - с примерами решения Значит, Фигуры вращения: цилиндр, конус, шар - с примерами решения Цилиндр, осевое сечение которого является квадратом Фигуры вращения: цилиндр, конус, шар - с примерами решения называется равносторонним цилиндром.

Фигуры вращения: цилиндр, конус, шар - с примерами решения

Сечения конуса плоскостью

Сечением конуса плоскостью, параллельной основанию, является круг. Сечение конуса, проходящее через ось конуса называется осевым сечением конуса. Это сечение является равнобедренным треугольником, боковые стороны которого являются образующими, а основание равно диаметру конуса: Фигуры вращения: цилиндр, конус, шар - с примерами решения Если осевое сечение конуса является правильным треугольником Фигуры вращения: цилиндр, конус, шар - с примерами решения то конус называется равносторонним конусом.

Фигуры вращения: цилиндр, конус, шар - с примерами решения

Пример №5

Сечением цилиндра плоскостью, проведенного параллельно оси цилиндра на расстоянии 3 см от оси, является квадрат, площадь которого равна 64 Фигуры вращения: цилиндр, конус, шар - с примерами решения Найдите площадь полной поверхности цилиндра.

Фигуры вращения: цилиндр, конус, шар - с примерами решения

Решение: сначала найдем радиус и высоту цилиндра. По условию Фигуры вращения: цилиндр, конус, шар - с примерами решения и Фигуры вращения: цилиндр, конус, шар - с примерами решения Отсюда Фигуры вращения: цилиндр, конус, шар - с примерами решения значит Фигуры вращения: цилиндр, конус, шар - с примерами решения Из Фигуры вращения: цилиндр, конус, шар - с примерами решения Фигуры вращения: цилиндр, конус, шар - с примерами решения отсюда Фигуры вращения: цилиндр, конус, шар - с примерами решения Таким образом, Фигуры вращения: цилиндр, конус, шар - с примерами решения

Усеченный конус и площадь поверхности

Усеченный конус

Если параллельно основанию прямого кругового конуса провести плоскость, то получим маленький конус и усеченный конус.

Фигуры вращения: цилиндр, конус, шар - с примерами решения

Фигуры вращения: цилиндр, конус, шар - с примерами решения

Усеченным конусом называется часть конуса, заключенная между основанием и секущей плоскостью, параллельной основанию.

Боковая поверхность усеченного конуса равна разности боковых поверхностей большого конуса и маленького конуса, отсеченного плоскостью, параллельной основанию, от большого конуса. Используя обозначения на рисунке, можно записать:

Фигуры вращения: цилиндр, конус, шар - с примерами решения

Фигуры вращения: цилиндр, конус, шар - с примерами решения

Из подобия треугольников запишем следующее отношение Фигуры вращения: цилиндр, конус, шар - с примерами решения

Тогда, подставив Фигуры вращения: цилиндр, конус, шар - с примерами решения или Фигуры вращения: цилиндр, конус, шар - с примерами решения в формулу для нахождения боковой поверхности, получим:

Фигуры вращения: цилиндр, конус, шар - с примерами решения

В данной формуле введем обозначение Фигуры вращения: цилиндр, конус, шар - с примерами решения среднего радиуса

усеченного конуса. Тогда

Фигуры вращения: цилиндр, конус, шар - с примерами решения

Полная поверхность усеченного конуса равна сумме боковой поверхности и площадей нижнего и верхнего оснований.

Фигуры вращения: цилиндр, конус, шар - с примерами решения

Пример №6

Конус высотой 8 см и радиусом 6 см рассечен плоскостью, параллельной основанию. Высота полученного усеченного конуса равна 4 см. Найдите площади боковой и полной поверхностей усеченного конуса

Решение: дано: Фигуры вращения: цилиндр, конус, шар - с примерами решения

Найти:

Фигуры вращения: цилиндр, конус, шар - с примерами решения

Фигуры вращения: цилиндр, конус, шар - с примерами решения

Фигуры вращения: цилиндр, конус, шар - с примерами решения

Площадь поверхности шара и его частей

Шаром называется множество всех точек пространства находящихся от данной точки на расстоянии, не больше данного. Данная точка называется центром шара, данное расстояние радиусом Фигуры вращения: цилиндр, конус, шар - с примерами решения шара.

Фигуры вращения: цилиндр, конус, шар - с примерами решения

Множество всех точек, расположенных на расстоянии Фигуры вращения: цилиндр, конус, шар - с примерами решения от центра шара, образует поверхность шара. Поверхность шара называется сферой. Прямая, соединяющая любые две точки на поверхности шара, называется хордой Фигуры вращения: цилиндр, конус, шар - с примерами решения Хорда, проходящая через центр шара называется диаметром шара Фигуры вращения: цилиндр, конус, шар - с примерами решения

Шар получается, при вращении полукруга вокруг диаметра.

Фигуры вращения: цилиндр, конус, шар - с примерами решения Любое сечение шара плоскостью является кругом. Центр этого круга является основанием перпендикуляра, проведенного к плоскости и проходящего через центр шара. Если Фигуры вращения: цилиндр, конус, шар - с примерами решения — радиус шара, Фигуры вращения: цилиндр, конус, шар - с примерами решения — расстояние между плоскостью и центром, а Фигуры вращения: цилиндр, конус, шар - с примерами решения — радиус сечения, то получим:

Фигуры вращения: цилиндр, конус, шар - с примерами решения

Фигуры вращения: цилиндр, конус, шар - с примерами решения

Пример №7

Шар радиуса 10 см пересечена плоскостью на расстояние

8 см от центра. Вычислите площадь сечения.

Решение: По условию Фигуры вращения: цилиндр, конус, шар - с примерами решения

Тогда Фигуры вращения: цилиндр, конус, шар - с примерами решения

Сечение шара плоскостью, проходящей через центр шара, называется

большим кругом. Центр, радиус и диаметр большого круга равны

центру, радиусу и диаметру шара.

Фигуры вращения: цилиндр, конус, шар - с примерами решения

Также для шара известны следующие части:

Фигуры вращения: цилиндр, конус, шар - с примерами решения

Площадь поверхности шара

Площадь поверхности шара находится по формуле Фигуры вращения: цилиндр, конус, шар - с примерами решения Здесь Фигуры вращения: цилиндр, конус, шар - с примерами решения радиус шара.

В окружность радиусом Фигуры вращения: цилиндр, конус, шар - с примерами решения впишем правильный многоугольник. Поверхность шара, полученного при вращении относительно диаметра соответствующих кругов, можно рассматривать как сумму пределов боковых поверхностей фигур — конуса,усеченного конуса и цилиндра, образующие которых являются сторонами данного многоугольника.

Фигуры вращения: цилиндр, конус, шар - с примерами решения

Покажем, что при вращении сторон многоугольника вокруг оси получается тело (конус, усеченный конус, цилиндр), площадь боковой поверхности которого равна площади боковой поверхности цилиндра, высота которого равна высоте данного тела, радиус основания равен апофеме многоугольника. Обозначим апофему многоугольника через Фигуры вращения: цилиндр, конус, шар - с примерами решения

Фигуры вращения: цилиндр, конус, шар - с примерами решения

Фигуры вращения: цилиндр, конус, шар - с примерами решения— площадь боковой поверхности конуса с образующей Фигуры вращения: цилиндр, конус, шар - с примерами решения Так как Фигуры вращения: цилиндр, конус, шар - с примерами решениято Фигуры вращения: цилиндр, конус, шар - с примерами решения Умножим на 2 обе части равенства

Фигуры вращения: цилиндр, конус, шар - с примерами решения Учитывая, что Фигуры вращения: цилиндр, конус, шар - с примерами решения Фигуры вращения: цилиндр, конус, шар - с примерами решения получим Фигуры вращения: цилиндр, конус, шар - с примерами решения Значит, Фигуры вращения: цилиндр, конус, шар - с примерами решения

Фигуры вращения: цилиндр, конус, шар - с примерами решения — площадь боковой поверхности усеченного конуса.

Зная, что Фигуры вращения: цилиндр, конус, шар - с примерами решения получим, что Фигуры вращения: цилиндр, конус, шар - с примерами решения

Так как Фигуры вращения: цилиндр, конус, шар - с примерами решения то Фигуры вращения: цилиндр, конус, шар - с примерами решения

Фигуры вращения: цилиндр, конус, шар - с примерами решения

Умножим на 2 обе части равенства Фигуры вращения: цилиндр, конус, шар - с примерами решения Учитывая,что

Фигуры вращения: цилиндр, конус, шар - с примерами решения и Фигуры вращения: цилиндр, конус, шар - с примерами решения получим Фигуры вращения: цилиндр, конус, шар - с примерами решения

Значит, Фигуры вращения: цилиндр, конус, шар - с примерами решения

Понятно, что площадь боковой поверхности цилиндра с образующей Фигуры вращения: цилиндр, конус, шар - с примерами решения равна Фигуры вращения: цилиндр, конус, шар - с примерами решения Аналогично получаем, что площадь боковых поверхностей усеченного конуса с образующей Фигуры вращения: цилиндр, конус, шар - с примерами решения и конуса с образующей Фигуры вращения: цилиндр, конус, шар - с примерами решения можно найти но формулам Фигуры вращения: цилиндр, конус, шар - с примерами решения Таким образом, поверхность тела, полученного вращением многоугольника вокруг диаметра, равна :

Фигуры вращения: цилиндр, конус, шар - с примерами решения

При бесконечном увеличении количества сторон многоугольника значение

Фигуры вращения: цилиндр, конус, шар - с примерами решения стремится к радиусу, а площадь поверхности полученного тела к площади

поверхности шара, т. е. Фигуры вращения: цилиндр, конус, шар - с примерами решения

Площадь поверхности шара

Доказательство Архимеда:

Пусть, в правильный многоугольник вписан круг, как показано на рисунке.

Фигуры вращения: цилиндр, конус, шар - с примерами решения

При вращении получается шар и покрывающее шар тело

Фигуры вращения: цилиндр, конус, шар - с примерами решения

Это тело состоит из двух усеченных конусов и цилиндра.

Фигуры вращения: цилиндр, конус, шар - с примерами решения

При увеличении количества сторон до бесконечности, тело будет стремится принять форму шара.

Фигуры вращения: цилиндр, конус, шар - с примерами решения

Найдя сумму поверхностей усеченных конусов и цилиндра, можно найти площадь поверхности шара. Рассмотрим осевое сечение одного из усеченных конусов. Пусть радиус средней окружности равен Фигуры вращения: цилиндр, конус, шар - с примерами решения а высота Фигуры вращения: цилиндр, конус, шар - с примерами решения радиус шара Фигуры вращения: цилиндр, конус, шар - с примерами решения сторона многоугольника, описанного вокруг большего круга равна Фигуры вращения: цилиндр, конус, шар - с примерами решения Площадь боковой поверхности усеченного конуса будет Фигуры вращения: цилиндр, конус, шар - с примерами решения а также Фигуры вращения: цилиндр, конус, шар - с примерами решения т. е. боковая поверхность усеченного конуса равна боковой поверхности цилиндра, радиус основания которого равен Фигуры вращения: цилиндр, конус, шар - с примерами решения и высота Фигуры вращения: цилиндр, конус, шар - с примерами решения

Фигуры вращения: цилиндр, конус, шар - с примерами решения

Значит, фигуру, описанную вокруг шара, можно принять за цилиндр. Отсюда получается, что площадь поверхности шара равна площади боковой поверхности цилиндра с радиусом основания Фигуры вращения: цилиндр, конус, шар - с примерами решения и высотой Фигуры вращения: цилиндр, конус, шар - с примерами решения

Т. е., Фигуры вращения: цилиндр, конус, шар - с примерами решения

Фигуры вращения: цилиндр, конус, шар - с примерами решения

Площадь сегмента шара

Часть шара, отсекаемая плоскостью сечения называется сегментом. Круг, полученный при сечении плоскостью, называется основанием сегмента. Часть диаметра шара, перпендикулярного основанию сегмента, расположенная внутри него, называется высотой сегмента.

Фигуры вращения: цилиндр, конус, шар - с примерами решения

Из доказательства формулы поверхности шара, аналогично, можно показать, что для шара радиуса Фигуры вращения: цилиндр, конус, шар - с примерами решения площадь сферической поверхности сегмента высотой Фигуры вращения: цилиндр, конус, шар - с примерами решения вычисляется по формуле Фигуры вращения: цилиндр, конус, шар - с примерами решения

Фигуры вращения: цилиндр, конус, шар - с примерами решения

Площадь шарового пояса

Часть поверхности шара, расположенная между двумя параллельными плоскостями, называется шаровым поясом. Расстояние между параллельными плоскостями называется высотой шарового пояса.

Фигуры вращения: цилиндр, конус, шар - с примерами решения

Площадь поверхности шарового пояса можно найти, как разность площадей сегментов, отсекаемых параллельными плоскостями.

Площадь поверхности шарового пояса высотой Фигуры вращения: цилиндр, конус, шар - с примерами решения отсекаемого от шара радиуса Фигуры вращения: цилиндр, конус, шар - с примерами решения вычисляется по формуле Фигуры вращения: цилиндр, конус, шар - с примерами решения

Пример №8

Радиус шара разбит на три равные части и через эти точки проведены перпендикулярные к радиусу плоскости. Зная, что радиус шара Фигуры вращения: цилиндр, конус, шар - с примерами решения найдите площадь поверхности шарового пояса.

Фигуры вращения: цилиндр, конус, шар - с примерами решения

Решение: если Фигуры вращения: цилиндр, конус, шар - с примерами решения и Фигуры вращения: цилиндр, конус, шар - с примерами решения то площадь поверхности шарового пояса будет Фигуры вращения: цилиндр, конус, шар - с примерами решения

Площади поверхностей подобных фигур

Отношение соответствующих линейных размеров подобных пространственных фигур постоянно и равно коэффициенту подобия.

Фигуры вращения: цилиндр, конус, шар - с примерами решения

Например, чтобы проверить подобны ли конусы на рисунке, найдем отношение соответствующих размеров. Если эти конусы подобны, то отношение радиусов должно быть равно отношению высот.

Фигуры вращения: цилиндр, конус, шар - с примерами решения

Значит эти конусы подобны и коэффициент подобия равен 2. Это говорит о том, что если все линейные размеры маленького конуса пропорционально увеличить в два раза, то получим конус, конгруэнтный большому конусу. Или наоборот, пропорционально уменьшив размеры большого конуса в два раза, получим конус, конгруэнтный маленькому. Если пропорционально увеличить или уменьшить размеры какой-либо фигуры, то можно получить подобные фигуры.

Отношение площадей подобных фигур равно квадрату отношения соответствующих линейных размеров или квадрату коэффициента подобия

Фигуры вращения: цилиндр, конус, шар - с примерами решения

  • Объем фигур вращения
  • Длина дуги кривой
  • Геометрические фигуры и их свойства
  • Основные фигуры геометрии и их расположение в пространстве
  • Вписанные и описанные многоугольники
  • Площадь прямоугольника
  • Объем пространственных фигур
  • Объёмы поверхностей геометрических тел

Площадь поверхности шарового слоя, формула

Площадь поверхности шарового слоя

Шаровой слой — это часть шара, заключенная между двумя секущими параллельными плоскостями.
Шаровой пояс или Шаровая зона — это кривая поверхность шарового слоя. Круги ABC и DEF это основания шарового пояса. Расстояние между основаниями это высота шарового слоя.

Кривая поверхность шарового слоя равна произведению его высоты на окружность большого круга шара:

[ S = 2pi R h ]

(R — радиус большого круга шара, h=NO — высота шарового слоя)

Формулы шара, сферы

Вычислить, найти площадь поверхности шарового слоя по формуле (1)

Ссылки по теме

Площадь поверхности шарового слоя

стр. 316

Как рассчитать площадь шарового слоя

На данной странице можно быстро и точно рассчитать площадь шарового слоя онлайн. Для этого нужно знать радиус и высоту.
На данной странице калькулятор поможет рассчитать площадь поверхности шарового слоя онлайн. Для расчета задайте радиус и высоту.

Шаровой слой — это часть шара, ограниченная двумя секущими параллельными плоскостями.

Через радиус и высоту


Площадь шарового слоя


Формула площади шарового слоя через радиус и высоту:

π — константа равная (3.14); r — радиус шара; h — высота шарового сегмента.

Понравилась статья? Поделить с друзьями:
  • Как составить диаграмму ганта в ворде
  • Как найти объем одного моля идеального газа
  • Как найти своего нотариуса в новосибирске
  • Как найти своих фейков в инстаграме
  • Как найти наименьшее значение с экспонентой