Как найти площадь теоретическую

Формулы площади геометрических фигур

Площадь геометрической фигуры — численная характеристика геометрической фигуры показывающая размер этой фигуры (части поверхности, ограниченной замкнутым контуром данной фигуры). Величина площади выражается числом заключающихся в нее квадратных единиц.

Формулы площади треугольника

Треугольник

  1. Формула площади треугольника по стороне и высоте
    Площадь треугольника равна половине произведения длины стороны треугольника на длину проведенной к этой стороне высоты

  2. Формула площади треугольника по трем сторонам

    Формула Герона

    S = √p(p — a)(p — b)(p — c)

  3. Формула площади треугольника по двум сторонам и углу между ними

    Площадь треугольника равна половине произведения двух его сторон умноженного на синус угла между ними.

  4. Формула площади треугольника по трем сторонам и радиусу описанной окружности

  5. Формула площади треугольника по трем сторонам и радиусу вписанной окружности
    Площадь треугольника равна произведения полупериметра треугольника на радиус вписанной окружности.

    где S — площадь треугольника,
    a, b, c — длины сторон треугольника,
    h — высота треугольника,
    γ — угол между сторонами a и b,
    r — радиус вписанной окружности,
    R — радиус описанной окружности,

    p = a + b + c — полупериметр треугольника.
    2

Формулы площади квадрата

Квадрат

  1. Формула площади квадрата по длине стороны
    Площадь квадрата равна квадрату длины его стороны.

    S = a2

  2. Формула площади квадрата по длине диагонали
    Площадь квадрата равна половине квадрата длины его диагонали.

    где S — площадь квадрата,
    a — длина стороны квадрата,
    d — длина диагонали квадрата.

Формула площади прямоугольника

Прямоугольник

Площадь прямоугольника равна произведению длин двух его смежных сторон

S = a · b

где S — Площадь прямоугольника,
a, b — длины сторон прямоугольника.

Формулы площади параллелограмма

параллелограмм

  1. Формула площади параллелограмма по длине стороны и высоте
    Площадь параллелограмма равна произведению длины его стороны и длины опущенной на эту сторону высоты.

    S = a · h

  2. Формула площади параллелограмма по двум сторонам и углу между ними
    Площадь параллелограмма равна произведению длин его сторон умноженному на синус угла между ними.

    S = a · b · sin α

  3. Формула площади параллелограмма по двум диагоналям и углу между ними
    Площадь параллелограмма равна половине произведения длин его диагоналей умноженному на синус угла между ними.

    где S — Площадь параллелограмма,
    a, b — длины сторон параллелограмма,
    h — длина высоты параллелограмма,
    d1, d2 — длины диагоналей параллелограмма,
    α — угол между сторонами параллелограмма,
    γ — угол между диагоналями параллелограмма.

Формулы площади ромба

ромб

  1. Формула площади ромба по длине стороны и высоте
    Площадь ромба равна произведению длины его стороны и длины опущенной на эту сторону высоты.

    S = a · h

  2. Формула площади ромба по длине стороны и углу
    Площадь ромба равна произведению квадрата длины его стороны и синуса угла между сторонами ромба.

    S = a2 · sin α

  3. Формула площади ромба по длинам его диагоналей
    Площадь ромба равна половине произведению длин его диагоналей.

    где S — Площадь ромба,
    a — длина стороны ромба,
    h — длина высоты ромба,
    α — угол между сторонами ромба,
    d1, d2 — длины диагоналей.

Формулы площади трапеции

трапеция

  1. Формула Герона для трапеции

    S = a + b (p-a)(p-b)(p-a-c)(p-a-d)
    |ab|
  2. Формула площади трапеции по длине основ и высоте

    Площадь трапеции равна произведению полусуммы ее оснований на высоту

    где S — площадь трапеции,
    a, b — длины основ трапеции,
    c, d — длины боковых сторон трапеции,

    p = a + b + c + d — полупериметр трапеции.
    2

Формулы площади выпуклого четырехугольника

выпуклый четырехугольник

  1. Формула площади четырехугольника по длине диагоналей и углу между ними

    Площадь выпуклого четырехугольника равна половине произведения его диагоналей умноженному на синус угла между ними:

    где S — площадь четырехугольника,
    d1, d2 — длины диагоналей четырехугольника,
    α — угол между диагоналями четырехугольника.

  2. Формула площади описанного четырехугольника (по длине периметра и радиусу вписанной окружности)

    Площадь выпуклого четырехугольника равна произведению полупериметра на радиус вписанной окружности

    S = p · r

  3. выпуклый четырехугольник

    Формула площади четырехугольника по длине сторон и значению противоположных углов

    S = √(p — a)(p — b)(p — c)(p — d) — abcd cos2θ

    где S — площадь четырехугольника,

    a, b, c, d — длины сторон четырехугольника,

    p = a + b + c + d2 — полупериметр четырехугольника,

    θ = α + β2 — полусумма двух противоположных углов четырехугольника.

  4. Формула площади четырехугольника, вокруг которого можно описать окружность

    S = √(p — a)(p — b)(p — c)(p — d)

Формулы площади круга

круг

  1. Формула площади круга через радиус
    Площадь круга равна произведению квадрата радиуса на число пи.

    S = π r2

  2. Формула площади круга через диаметр
    Площадь круга равна четверти произведения квадрата диаметра на число пи.

    где S — Площадь круга,
    r — длина радиуса круга,
    d — длина диаметра круга.

Формулы площади эллипса

эллипс

Площадь эллипса равна произведению длин большой и малой полуосей эллипса на число пи.

S = π · a · b

где S — Площадь эллипса,

a — длина большей полуоси эллипса,

b — длина меньшей полуоси эллипса.



Задачка это школьная, но, несмотря на то, почти 100% встретится в вашем курсе высшей математики. Поэтому со всей серьёзностью отнесёмся ко ВСЕМ примерам, и первое, что нужно сделать – это ознакомиться с Приложением Графики функций, чтобы освежить в памяти технику построения элементарных графиков. …Есть? Отлично! Типовая формулировка задания звучит так:

Пример 10
Вычислить площадь фигуры, ограниченной линиями .

И первый важнейший этап решения состоит как раз в построении чертежа. При этом я рекомендую следующий порядок: сначала лучше построить все прямые (если они есть) и только потомпараболы, гиперболы, графики других функций.

В нашей задаче: прямая  определяет ось , прямые  параллельны оси  и парабола  симметрична относительно оси , для неё находим несколько опорных точек:

Искомую фигуру желательно штриховать:

Второй этап состоит в том, чтобы правильно составить и правильно вычислить определённый интеграл. На отрезке   график функции  расположен над осью , поэтому искомая площадь:

Ответ:

После того, как задание выполнено, полезно взглянуть на чертёж
и прикинуть, реалистичный ли получился ответ.

И мы «на глазок» подсчитываем количество заштрихованных клеточек – ну, примерно 9 наберётся, похоже на правду. Совершенно понятно, что если бы у нас получилось, скажем, 20 квадратных единиц, то, очевидно, где-то допущена ошибка – в построенную фигуру 20 клеток явно не вмещается, от силы десяток. Если ответ получился отрицательным, то задание тоже решено некорректно.

Пример 11
Вычислить площадь фигуры, ограниченной линиями  и осью

Быстренько разминаемся (обязательно!) и рассматриваем «зеркальную» ситуацию – когда криволинейная трапеция расположена под осью :

Пример 12
Вычислить площадь фигуры, ограниченной линиями ,  и координатными осями.

Решение: найдём несколько опорных точек для построения экспоненты:

и выполним чертёж, получая фигуру площадью около двух клеток:

Если криволинейная трапеция расположена не выше оси , то её площадь можно найти по формуле: .
В данном случае:

Ответ:  – ну что же, очень и очень похоже на правду.

На практике чаще всего фигура расположена и в верхней и в нижней полуплоскости, а поэтому от простейших школьных задачек мы переходим к более содержательным примерам:

Пример 13
Найти площадь плоской фигуры, ограниченной линиями , .

Решение: сначала нужно выполнить чертеж, при этом нас особо интересуют точки пересечения параболы  и прямой , поскольку здесь будут находиться пределы интегрирования.  Найти их можно двумя способами. Первый способ – аналитический. Составим и решим уравнение:

таким образом:

Достоинство аналитического способа состоит в его точности, а недостаток – в длительности (и в этом примере нам ещё повезло). Поэтому во многих задачах бывает выгоднее построить линии поточечно, при этом пределы интегрирования выясняются как бы «сами собой».

С прямой  всё понятно, а вот для построения параболы удобно найти её вершину, для этого возьмём производную и приравняем её к нулю:
 – именно в этой точке и будет находиться вершина. И, в силу симметрии параболы, остальные опорные точки найдём по принципу «влево-вправо»:

Выполним чертеж:

А теперь рабочая формула: если на отрезке  некоторая непрерывная функция  больше либо равна непрерывной функции , то площадь фигуры, ограниченной графиками этих функций и отрезками прямых , можно найти по формуле:

Здесь уже не надо думать, где расположена фигура – над осью или под осью, а, грубо говоря, важно, какой из двух графиков ВЫШЕ.

В нашем примере очевидно, что на отрезке  парабола располагается выше прямой, а поэтому из  нужно вычесть

Завершение решения может выглядеть так:

На отрезке : , по соответствующей формуле:

Ответ:

Следует отметить, что простые формулы, рассмотренные в начале параграфа – это частные случаи формулы . Поскольку ось  задаётся уравнением , то одна из функций будет нулевой, и в зависимости от того, выше или ниже лежит криволинейная трапеция, мы получим формулу  либо

А сейчас пара типовых задач для самостоятельного решения

Пример 14
Найти площадь фигур, ограниченных линиями:

а) , .

б) , ,

Решение с чертежами и краткими комментариями в конце книги

В ходе решения рассматриваемой задачи иногда случается забавный казус. Чертеж выполнен правильно, интеграл решён правильно, но по невнимательности… найдена площадь не той фигуры, именно так несколько раз ошибался ваш покорный слуга. Вот реальный случай из жизни:

Пример 15
Вычислить площадь фигуры, ограниченной линиями

Решение: выполним бесхитростный чертёж,

хитрость которого состоит в том, что искомая площадь заштрихована зелёным цветом (внимательно смотрИте на условие – чем ограничена фигура!). Но на практике по невнимательности нередко возникает «глюк», что нужно найти площадь фигуры, которая заштрихована серым цветом! Особое коварство состоит в том, что прямую  можно недочертить до оси , и тогда мы вовсе не увидим нужную фигуру.

Этот пример ещё и полезен тем, что в нём площадь фигуры считается с помощью двух определённых интегралов. Действительно:

1) на отрезке  над осью  расположен график прямой ;
2) на отрезке  над осью  расположен график гиперболы .

Совершенно понятно, что площади можно (и нужно) сложить:

Ответ:

И познавательный пример для самостоятельного решения:

Пример 16
Вычислить площадь фигуры, ограниченной линиями , ,  и координатными осями.

Итак, систематизируем важные моменты этой задачи:

На первом шаге ВНИМАТЕЛЬНО изучаем условие – КАКИЕ функции нам даны? Ошибки бывают даже здесь, в частности, арккотангенс  зачастую принимают за арктангенс. Это, кстати, относится и к другим заданием, где встречается арккотангенс.

Далее следует ПРАВИЛЬНО выполнить чертёж. Сначала лучше построить прямые (если они есть), затем графики других функций (если они есть J). Последние во многих случаях выгоднее строить поточечно – найти несколько опорных точек и аккуратно соединить их линией.

Но здесь могут подстерегать следующие трудности. Во-первых, из чертежа не всегда понятны пределы интегрирования – так бывает, когда они дробные. На mathprofi.ru в соответствующей статье я рассмотрел пример с параболой  и прямой , где из чертежа не понятна одна из точек их пересечения. В таких случаях следует использовать аналитический метод, составляем уравнение:

и находим его корни:
 – нижний предел интегрирования,  – верхний предел.

Во-вторых, не всегда понятен «внешний вид» линии, и функция  (Пример 16) – яркий тому пример. Я и сам «с ходу» не представляю, как выглядит график этой функции. Здесь можно воспользоваться специализированными программами или онлайн сервисами (а-ля «построить график онлайн»), а в экстремальной ситуации найти побольше опорных точек (штук 10-15), чтобы поточнее провести «неизвестную» кривую.
Ну и, конечно, я призываю вас повышать свои знания и навыки в графиках, в частности, приведу прямую ссылку на особо полезную статью:
http://mathprofi.ru/kak_postroit_grafik_funkcii_s_pomoshyu_preobrazovanii.html

После того, как чертёж построен, анализируем полученную фигуру – ещё раз окидываем взглядом предложенные функции и перепроверяем, ТА ЛИ это фигура. Затем анализируем её форму и расположение, бывает, что площадь достаточно сложнА и тогда её следует разделить на две, а то и на три части.

Составляем определённый интеграл или несколько интегралов по формуле , все основные вариации мы разобрали выше.

Решаем определённый интеграл (ы). При этом он может оказаться достаточно сложным, и тогда применяем поэтапный алгоритм: 1) находим первообразную и проверяем её дифференцированием, 2) используем формулу Ньютона-Лейбница.

Результат полезно проверить с помощью программного обеспечения / онлайн сервисов или просто «прикинуть» по чертежу по клеточкам. Но и то, и другое не всегда осуществимо, поэтому крайне внимательно относимся к каждому этапу решения!

1.9. Объём тела вращения

1.7. Геометрический смысл определённого интеграла

| Оглавление |



Полную и свежую версию данного курса в pdf-формате,
а также курсы по другим темам можно найти здесь.

Также вы можете изучить эту тему подробнее – просто, доступно, весело и бесплатно!

С наилучшими пожеланиями, Александр Емелин

Все формулы по геометрии. Площади фигур

Чтобы решать задачи по геометрии, надо знать формулы — такие, как площадь треугольника или площадь параллелограмма — а также простые приёмы, о которых мы расскажем.

Начнем с квадрата.

Площадь квадрата равна квадрату его стороны.

Площадь прямоугольника равна произведению его длины и ширины.

Площадь параллелограмма равна произведению его стороны на высоту, проведенную к этой стороне. Она также равна произведению его сторон на синус угла между ними.

Для площади треугольника есть целых 5 формул. И все они применяются в задачах ЕГЭ.

1) Площадь треугольника равна половине произведения его стороны на высоту, проведенную к этой стороне: S=displaystyle frac{1}{2}ah_a=displaystyle frac{1}{2}bh_b=displaystyle frac{1}{2}ch_c.

2) Она также равна половине произведения его сторон на синус угла между ними:

S=displaystyle frac{1}{2}ab{sin C=displaystyle frac{1}{2}ac{sin B= } }displaystyle frac{1}{2}bc{sin A }.

3) По формуле Герона, S=sqrt{pleft(p-aright)left(p-bright)left(p-cright)}, где p=displaystyle frac{1}{2}left(a+b+cright) полупериметр.

4) Также площадь треугольника равна произведению его полупериметра на радис вписанной окружности, S = pr.

5) Еще один способ. Площадь треугольника равна произведению его сторон, деленному на 4 радиуса описанной окружности, S=displaystyle frac{abc}{4R}.

Есть и другие формулы для площади треугольника. Но для решения заданий ЕГЭ, и первой, и второй части, достаточно этих пяти.

Площадь прямоугольного треугольника равна половине произведения его катетов. Она также равна половине произведения гипотенузы на высоту, проведенную к этой гипотенузе:

S=displaystyle frac{1}{2}ab=displaystyle frac{1}{2}ch_{ }

Площадь правильного треугольника равна квадрату его стороны, умноженному на sqrt{3} и деленному на 4:

Площадь трапеции равна произведению полусуммы оснований на высоту, S=displaystyle frac{a+b}{2}cdot h.

Также можно сказать, что площадь трапеции равна произведению ее средней линии на высоту, S=mcdot h

Площадь произвольного четырехугольника равна половине произведения его диагоналей на синус угла между ними, S=displaystyle frac{1}{2}ACcdot BDcdot {sin alpha  }

Площадь ромба равна произведению квадрата его стороны на синус угла ромба. Она также равна половине произведения диагоналей:

Площадь круга равна произведению числа pi и квадрата радиуса круга.

Ее также можно записать как произведение числа pi и квадрата диаметра круга, деленного на 4:

Вспомним важные свойства площадей фигур.

  1. Равные фигуры имеют равные площади.
    Иногда фигуры, имеющие равные площади, еще называют равновеликими.
  2. Если фигура составлена из нескольких фигур, не имеющих общих внутренних точек, то ее площадь равна сумме площадей этих фигур.

Пример. Найдем площадь фигуры, изображенной на клетчатой бумаге с размером клетки 1смtimes1см.

Решение:

Найдем площадь фигуры на рисунке как сумму площадей нескольких фигур.

На рисунке это три треугольника и трапеция, указаны их площади. Тогда площадь фигуры равна 10 + 3,5 + 1,5 + 3 = 18.

Ответ: 18.

3. Отношение площадей подобных фигур равно квадрату коэффициента подобия.

Треугольники АВС и A_1B_1C_1 на рисунке называются подобными.

У треугольника A_1B_1C_1 все стороны в k раз длиннее, чем у треугольника АВС. Высота треугольника A_1B_1C_1 в k раз длиннее, чем высота треугольника АВС. Тогда площадь треугольника A_1B_1C_1 в k^2 раз больше, чем площадь треугольника АВС.

4. На рисунке показаны треугольники АВС и BCD, имеющие общую высоту. Отношение площадей этих треугольников равно отношению АС к CD:

displaystyle frac{S_{ABC}}{S_{BCD}}=displaystyle frac{AC}{CD}

5. Треугольники АВС и АЕС на рисунке имеют одинаковое основание и разные высоты.

Отношение площадей этих треугольников равно отношению их высот:

displaystyle frac{S_{ABC}}{S_{AEC}}=displaystyle frac{BD}{EH}.

6. Медиана треугольника делит его на два равновеликих, то есть равных по площади, треугольника.

На рисунке СМ — медиана треугольника АВС. Площади треугольников АСМ и ВСМ равны.

7. Три медианы треугольника делят его на шесть равных по площади треугольников.

На рисунке все 6 треугольников, из которых состоит треугольник АВС, имеют равные лощади.

Задачи ЕГЭ и ОГЭ по теме: Площади фигур.

Задача 1. Найдите площадь треугольника, две стороны которого равны 8 и 12, а угол между ними равен {30}^circ.

Решение:

Площадь треугольника равна половине произведения его сторон на синус угла между ними. Поэтому

S=displaystyle frac{1}{2}cdot 8cdot 12cdot {sin 30{}^circ =displaystyle frac{1}{2}cdot 8cdot 12cdot displaystyle frac{1}{2}=24 }.

Ответ: 24.

Задача 2. Площадь треугольника ABC равна 4, DE — средняя линия, параллельная стороне AB. Найдите площадь треугольника CDE.

Решение:

Так как DE и АВ параллельны, треугольники CDE и САВ подобны с коэффициентом подобия displaystyle frac{1}{2}. Площади подобных фигур относятся как квадрат коэффициента подобия. Тогда

S=displaystyle frac{1}{4}cdot 4=1.

Ответ: 1.

Задача 3. У треугольника со сторонами 9 и 6 проведены высоты к этим сторонам. Высота, проведенная к первой стороне, равна 4. Чему равна высота, проведенная ко второй стороне?

Решение:

Выразим площадь двумя способами:
S_{ABC}=displaystyle frac{1}{2}CHcdot AB=displaystyle frac{1}{2}AKcdot CB.

Тогда AK=displaystyle frac{CHcdot AB}{CB}=displaystyle frac{4cdot 9}{6}=6.

Ответ: 6.

Задача 4. Площадь треугольника ABC равна 10, DE — средняя линия, параллельная стороне AB. Найдите площадь трапеции ABED.

Решение:

Треугольник CDE подобен треугольнику CAB с коэффициентом displaystyle frac{1}{2}. Площади подобных фигур относятся как квадрат коэффициента подобия, поэтому

S_{CDE}=displaystyle frac{1}{4}cdot 10=2.5.

Следовательно, .

Ответ: 7,5.

Задача 5. В параллелограмме ABCD AB = 3, AD = 21, {sin A=displaystyle frac{6}{7}}. Найдите большую высоту параллелограмма.

Решение:

Большая высота — это DH, потому что проведена к меньшей стороне. Из треугольника АDН:

DH=AD{sin A=21cdot displaystyle frac{6}{7}=3cdot 6=18 }.

Ответ: 18.

Задача 6. Найдите площадь квадрата, если его диагональ равна 1.

Решение:

Квадрат — это частный случай ромба. Площадь квадрата равна половине произведения его диагоналей. Поэтому она равна 0,5.

Ответ: 0,5.

Задача 7. Найдите периметр прямоугольника, если его площадь равна 18, а отношение соседних сторон равно 1:2.

Решение:

Площадь прямоугольника равна произведению его длины на ширину. Периметр прямоугольника равен сумме длин всех сторон. Пусть одна из сторон прямоугольника равна a, тогда вторая равна 2a. Площадь прямоугольника равна S = 2a^2= 18, тогда одна из сторон равна 3, а другая 6. Периметр P = 2 · 3 + 2 · 6 = 18.

Ответ: 18.

Задача 8. Параллелограмм и прямоугольник имеют одинаковые стороны. Найдите острый угол параллелограмма, если его площадь равна половине площади прямоугольника. Ответ дайте в градусах.

Решение:

Площадь параллелограмма равна произведению его сторон на синус угла между ними. Площадь прямоугольника равна произведению длины на ширину. Пусть одна сторона параллелограмма и прямоугольника равна a, вторая равна  b, а острый угол параллелограмма равен alpha . Тогда площадь параллелограмма равна S=acdot bcdot {sin alpha }, а площадь прямоугольника равна   S_2=acdot b.

По условию площадь прямоугольника вдвое больше:

{S_2=2S_1} . Следовательно, acdot b=2acdot bcdot {sin alpha Leftrightarrow {sin alpha  }=0,5 }Leftrightarrow alpha =30{}^circ.

Ответ: 30.

Задача 9. Площадь параллелограмма равна 40, две его стороны равны 5 и 10. Найдите большую высоту этого параллелограмма.

Решение:

Площадь параллелограмма равна произведению его основания на высоту, проведенную к этому основанию. Пусть высоты равны соответственно a и b. Тогда S = 5 · a = 10 · b = 40. Поэтому a = 8, b = 4. Большая высота равна 8.

Ответ: 8.

Задача 10. Найдите площадь ромба, если его высота равна 2, а острый угол 30{}^circ.

Решение:

Площадь ромба равна произведению квадрата его стороны на синус угла ромба. С другой стороны, площадь ромба равна произведению его основания на высоту, проведенную к этому основанию. Пусть сторона ромба равна a.

Получим уравнение:

a^2=a{sin alpha }.

Корень уравнения a = 4, поэтому S=2 cdot  4=8.

Ответ: 8.

Задача 11. Найдите площадь ромба, если его диагонали равны 4 и 12.

Решение:

Площадь ромба равна половине произведения его диагоналей. S=displaystyle frac{1}{2}cdot 4cdot 12=24.

Ответ: 24.

Задача 12. Основания равнобедренной трапеции равны 14 и 26, а ее периметр равен 60. Найдите площадь трапеции.

Решение:

Трапеция равнобедренная, значит,

AH=displaystyle frac{AB-DC}{2}=6;

AD=displaystyle frac{P_{ABCD}-left(AB+DCright)}{2}=10.

Тогда по теореме Пифагора из треугольника ADH:

DH=sqrt{{AD}^2-{AH}^2}=8;

S=displaystyle frac{AB+CD}{2}cdot DH=20cdot 8=160.

Ответ: 160.

Задача 13. Найдите площадь прямоугольной трапеции, основания которой равны 6 и 2, большая боковая сторона составляет с основанием угол 45{}^circ.

Решение:

Проведем высоту CH. Треугольник CHB — прямоугольный, в нем

angle B=45{}^circ , значит, он также равнобедренный, CH = HB = 4.
S_{ABCD}=displaystyle frac{AB+CD}{2}cdot CH=4cdot 4=16.

Ответ: 16.

Задача 14. Высота трапеции равна 5, площадь равна 75. Найдите среднюю линию трапеции.

Решение:

Средняя линия трапеции равна полусумме оснований. Выразим её из формулы площади трапеции:
S=displaystyle frac{a+b}{2}cdot hLeftrightarrow displaystyle frac{a+b}{2}cdot 5=75Leftrightarrow displaystyle frac{a+b}{2}=15.

Ответ: 15.

Задача 15. Основания трапеции равны 27 и 9, боковая сторона равна 8. Площадь трапеции равна 72. Найдите острый угол трапеции, прилежащий к данной боковой стороне. Ответ выразите в градусах.

Решение:

Площадь трапеции равна произведению полусуммы оснований на высоту. Пусть высота равна h, тогда

S=displaystyle frac{27+9}{2}cdot h=72.

Из этого уравнения получим: h = 4.

Рассмотрим прямоугольный треугольник, гипотенузой которого является боковая сторона трапеции, равная 8, а катетом — высота трапеции. Длина катета равна половине гипотенузы, следовательно, он лежит напротив угла {30}^circ.

Ответ: 30.

Как найти площадь нестандартной фигуры? Например, произвольного четырёхугольника? Простой приём — разобьём эту фигуру на такие, о которых мы всё знаем, и найдем её площадь — как сумму площадей этих фигур.

Задача 16. Найдем площадь четырехугольника на рисунке.

Решение:

Разделим этот четырёхугольник горизонтальной линией на два треугольника с общим основанием, равным 5. Высоты этих треугольников равны 2 и 3. Тогда площадь четырёхугольника равна сумме площадей двух треугольников: S=5+7,5=12,5.

Ответ: 12,5.

В некоторых случаях площадь фигуры можно представить как разность каких-либо площадей.

Задача 17. Найдем площадь треугольника, изображенного на клетчатой бумаге.

Не так-то просто посчитать, чему равны основание и высота в этом треугольнике! Зато мы можем сказать, что его площадь равна разности площадей квадрата со стороной 5 и трёх прямоугольных треугольников. Видите их на рисунке? Получаем:S=25-5-5-4,5=10,5.

Ответ: 10,5.

Иногда в задании надо найти площадь не всей фигуры, а её части. Обычно речь здесь идет о площади сектора — части круга.

Задача 18.

Найдите площадь сектора круга радиуса 1, длина дуги которого равна 2.

Решение:

На этом рисунке мы видим часть круга. Площадь всего круга равна pi R^2 =pi, так как R=1. Остается узнать, какая часть круга изображена. Поскольку длина всей окружности равна 2pi R=2pi (так как R = 1), а длина дуги данного сектора равна 2, следовательно, длина дуги в pi раз меньше, чем длина всей окружности. Угол, на который опирается эта дуга, также в pi раз меньше, чем полный круг (то есть 360 градусов). Значит, и площадь сектора будет в pi раз меньше, чем площадь всего круга.

Ответ: 1.

Формула Пика

Покажем, как вычислять площадь фигуры, изображенной на координатной плоскости, с помощью формулы Пика.

Задача 19. Найдите площадь многоугольника АВСDE, изображенного на рисунке.

Первый способ:

Площадь многоугольника ABCDE равна сумме площадей треугольника BCD, трапеции BKDE и треугольника AKE.

Имеем:

S_{vartriangle BCD}=displaystyle frac{1}{2}cdot 9cdot 2=9;

S_{BKDE}=displaystyle frac{1}{2}cdot (9+3)cdot 2=12;

S_{vartriangle AKE}=displaystyle frac{1}{2}cdot 3cdot 4=6;

S_{ABCDE}=9+12+6= 27.

Второй способ — применить формулу Пика.

Назовем точку координатной плоскости целочисленной, если обе ее координаты — целые числа. На нашем рисунке это точки на пересечениях линий, разделяющих клетчатую бумагу на клетки.

Площадь многоугольника с целочисленными вершинами равна

.

Здесь В — количество целочисленных точек внутри многоугольника, Г — количество целочисленных точек на границе многоугольника.

Главное — аккуратно посчитать. На нашем рисунке

В = 24 (показаны зеленым),

Г = 8 (показаны красным),

S = 24 + displaystyle frac{8}{2} — 1 = 27.

Ответ: 27.

Благодарим за то, что пользуйтесь нашими материалами.
Информация на странице «Все формулы по геометрии. Площади фигур» подготовлена нашими авторами специально, чтобы помочь вам в освоении предмета и подготовке к ЕГЭ и ОГЭ.
Чтобы успешно сдать нужные и поступить в высшее учебное заведение или техникум нужно использовать все инструменты: учеба, контрольные, олимпиады, онлайн-лекции, видеоуроки, сборники заданий.
Также вы можете воспользоваться другими материалами из разделов нашего сайта.

Публикация обновлена:
08.05.2023

1. Формула площади равнобедренной трапеции через стороны и угол

Формула площади равнобедренной трапеции через стороны и угол

b — верхнее основание

a — нижнее основание

c — равные боковые стороны

α — угол при нижнем основании

Формула площади равнобедренной трапеции через стороны, (S):

Формула площади равнобедренной трапеции через стороны

Формула площади равнобедренной трапеции через стороны и угол, (S):

Формула площади равнобедренной трапеции через стороны и угол

Формула площади равнобедренной трапеции через стороны и угол

Формула площади равнобедренной трапеции через стороны и угол

2. Формула площади равнобокой трапеции через радиус вписанной окружности

Формула площади равнобокой трапеции через радиус вписанной окружности

R — радиус вписанной окружности

D — диаметр вписанной окружности

O — центр вписанной окружности

H — высота трапеции

α, β — углы трапеции

Формула площади равнобокой трапеции через радиус вписанной окружности, (S):

Формула площади равнобокой трапеции через радиус вписанной окружности

СПРАВЕДЛИВО, для вписанной окружности в равнобокую трапецию:

площадь для вписанной окружности в равнобокую трапецию

3. Формула площади равнобедренной трапеции через диагонали и угол между ними

Формула площади равнобедренной трапеции через диагонали и угол между ними

d — диагональ трапеции

α, β — углы между диагоналями

Формула площади равнобедренной трапеции через диагонали и угол между ними, (S):

4. Формула площади равнобедренной трапеции через среднюю линию, боковую сторону и угол при основании

Формула площади равнобедренной трапеции через среднюю линию

m — средняя линия трапеции

c — боковая сторона

α, β — углы при основании

Формула площади равнобедренной трапеции через среднюю линию, боковую сторону и угол при основании, (S ):

Формула площади равнобедренной трапеции через среднюю линию

5. Формула площади равнобедренной трапеции через основания и высоту

Формула площади равнобедренной трапеции через основания и высоту

b — верхнее основание

a — нижнее основание

h — высота трапеции

Формула площади равнобедренной трапеции через основания и высоту, (S):

Формула площади равнобедренной трапеции через основания и высоту

Содержание:

Площади поверхностей геометрических тел:

Под площадью поверхности многогранника мы понимаем сумму площадей всех его граней. Как же определить площадь поверхности тела, не являющегося многогранником? На практике это делают так. Разбивают поверхность на такие части, которые уже мало отличаются от плоских. Тогда находят площади этих частей, как будто они являются плоскими. Сумма полученных площадей является приближенной площадью поверхности. Например, площадь крыши здания определяется как сумма площадей кусков листового металла. Еще лучше это видно на примере Земли. Приблизительно она имеет форму шара. Но площади небольших ее участков измеряют так, как будто эти участки являются плоскими. Более того, под площадью поверхности тела будем понимать предел площадей полных поверхностей описанных около него многогранников. При этом должно выполняться условие, при котором все точки поверхности этих многогранников становятся сколь угодно близкими к поверхности данного тела. Для конкретных тел вращения понятие описанного многогранника будет уточнено.

Понятие площади поверхности

Рассмотрим периметры Площади поверхностей геометрических тел - определение и примеры с решением

Применим данные соотношения к обоснованию формулы для площади боковой поверхности цилиндра.

При вычислении объема цилиндра были использованы правильные вписанные в него призмы. Найдем при помощи в чем-то аналогичных рассуждений площадь боковой поверхности цилиндра.

Опишем около данного цилиндра радиуса R и высоты h правильную n-угольную призму (рис. 220).

Площади поверхностей геометрических тел - определение и примеры с решением

Площадь боковой поверхности призмы равна

Площади поверхностей геометрических тел - определение и примеры с решением

где Площади поверхностей геометрических тел - определение и примеры с решением — периметр основания призмы.

При неограниченном возрастании n получим:

Площади поверхностей геометрических тел - определение и примеры с решением

так как периметры оснований призмы стремятся к длине окружности основания цилиндра, то есть к Площади поверхностей геометрических тел - определение и примеры с решением

Учитывая, что сумма площадей двух оснований призмы стремится к Площади поверхностей геометрических тел - определение и примеры с решением, получаем, что площадь полной поверхности цилиндра равна Площади поверхностей геометрических тел - определение и примеры с решением. Но сумма площадей двух оснований цилиндра равна Площади поверхностей геометрических тел - определение и примеры с решением. Поэтому найденную величину S принимают за площадь боковой поверхности цилиндра.

Итак, площадь боковой поверхности цилиндра вычисляется по формуле

Площади поверхностей геометрических тел - определение и примеры с решением

где R — радиус цилиндра, h — его высота.

Заметим, что эта формула аналогична соответствующей формуле площади боковой поверхности прямой призмы Площади поверхностей геометрических тел - определение и примеры с решением

За площадь полной поверхности цилиндра принимается сумма площадей боковой поверхности и двух оснований:

Площади поверхностей геометрических тел - определение и примеры с решением

Если боковую поверхность цилиндра радиуса R и высоты h разрезать по образующей АВ и развернуть на плоскость, то в результате получим прямоугольник Площади поверхностей геометрических тел - определение и примеры с решением который называется разверткой боковой поверхности цилиндра (рис. 221).

Очевидно, что сторона Площади поверхностей геометрических тел - определение и примеры с решением этого прямоугольника есть развертка окружности основания цилиндра, следовательно, Площади поверхностей геометрических тел - определение и примеры с решением. Сторона АВ равна образующей цилиндра, то есть АВ = h. Значит, площадь развертки боковой поверхности цилиндра равна Площади поверхностей геометрических тел - определение и примеры с решением. Таким образом, площадь боковой поверхности цилиндра равна площади ее развертки.

Площади поверхностей геометрических тел - определение и примеры с решениемПлощади поверхностей геометрических тел - определение и примеры с решением

Площади поверхностей геометрических тел - определение и примеры с решением

Пример:

Параллельно оси цилиндра на расстоянии d от нее проведена плоскость, отсекающая от основания дугу Площади поверхностей геометрических тел - определение и примеры с решением. Диагональ полученного сечения наклонена к плоскости основания под углом а. Определите площадь боковой поверхности цилиндра.

Решение:

Пусть дан цилиндр, в основаниях которого лежат равные круги с центрами Площади поверхностей геометрических тел - определение и примеры с решениемПлощади поверхностей геометрических тел - определение и примеры с решением — ось цилиндра. Рассмотрим плоскость, параллельную Площади поверхностей геометрических тел - определение и примеры с решением. Сечение цилиндра данной плоскостью представляет собой прямоугольник Площади поверхностей геометрических тел - определение и примеры с решением (рис. 222).

Пусть хорда АВ отсекает от окружности основания дугу Площади поверхностей геометрических тел - определение и примеры с решением. Тогда, по определению, Площади поверхностей геометрических тел - определение и примеры с решением. Так как образующие цилиндра перпендикулярны основаниям, Площади поверхностей геометрических тел - определение и примеры с решением. Значит, АВ — проекция Площади поверхностей геометрических тел - определение и примеры с решением на плоскость АОВ, тогда угол между Площади поверхностей геометрических тел - определение и примеры с решением и плоскостью АОВ равен углу Площади поверхностей геометрических тел - определение и примеры с решением. По условию Площади поверхностей геометрических тел - определение и примеры с решением.

В равнобедренном треугольнике Площади поверхностей геометрических тел - определение и примеры с решением проведем медиану ОК. Тогда OПлощади поверхностей геометрических тел - определение и примеры с решением Площади поверхностей геометрических тел - определение и примеры с решениемТак как Площади поверхностей геометрических тел - определение и примеры с решением то Площади поверхностей геометрических тел - определение и примеры с решением по признаку перпендикулярных плоскостей. Но тогда Площади поверхностей геометрических тел - определение и примеры с решением по свойству перпендикулярных плоскостей. Значит, ОК — расстояние между точкой О и плоскостью Площади поверхностей геометрических тел - определение и примеры с решением. Учитывая, что Площади поверхностей геометрических тел - определение и примеры с решением, по определению расстояния между параллельными прямой и плоскостью получаем, что ОК равно расстоянию между Площади поверхностей геометрических тел - определение и примеры с решением и плоскостью Площади поверхностей геометрических тел - определение и примеры с решением. По условию OK = d. Из прямоугольного треугольника АКО

Площади поверхностей геометрических тел - определение и примеры с решением имеем: Площади поверхностей геометрических тел - определение и примеры с решением

откуда Площади поверхностей геометрических тел - определение и примеры с решением Из прямоугольного треугольника Площади поверхностей геометрических тел - определение и примеры с решением

Площади поверхностей геометрических тел - определение и примеры с решением

Итак, Площади поверхностей геометрических тел - определение и примеры с решением

В случае, когда Площади поверхностей геометрических тел - определение и примеры с решениемПлощади поверхностей геометрических тел - определение и примеры с решением

Площади поверхностей геометрических тел - определение и примеры с решением

Аналогично предыдущему, и в этом случае получаем тот же результат для площади боковой поверхности.

Ответ:Площади поверхностей геометрических тел - определение и примеры с решением

Площадь поверхности конуса и усеченного конуса

Связь между цилиндрами и призмами полностью аналогична связи между конусами и пирамидами. В частности, это касается формул для площадей их боковых поверхностей.

Опишем около данного конуса с радиусом основания R и образующей I правильную л-угольную пирамиду (рис. 223). Площадь ее боковой поверхности равна

Площади поверхностей геометрических тел - определение и примеры с решением

где Площади поверхностей геометрических тел - определение и примеры с решением — периметр основания пирамиды, Площади поверхностей геометрических тел - определение и примеры с решением — апофема.

Площади поверхностей геометрических тел - определение и примеры с решением

При неограниченном возрастании n получим:

Площади поверхностей геометрических тел - определение и примеры с решением

так как периметры оснований пирамиды стремятся к длине окружности основания конуса, а апофемы Площади поверхностей геометрических тел - определение и примеры с решением равны I.

Учитывая, что площадь основания пирамиды стремится к Площади поверхностей геометрических тел - определение и примеры с решением, получаем, что площадь полной поверхности конуса равна Площади поверхностей геометрических тел - определение и примеры с решением. Но площадь основания конуса равна Площади поверхностей геометрических тел - определение и примеры с решением. Поэтому найденную величину S принимают за площадь боковой поверхности конуса. Итак, площадь боковой поверхности конуса вычисляется по формуле

Площади поверхностей геометрических тел - определение и примеры с решением

где R — радиус основания, I — образующая.

За площадь полной поверхности конуса принимается сумма площадей его основания и боковой поверхности:

Площади поверхностей геометрических тел - определение и примеры с решением

Если боковую поверхность конуса разрезать по образующей РА и развернуть на плоскость, то в результате получим круговой сектор Площади поверхностей геометрических тел - определение и примеры с решением который называется разверткой боковой поверхности конуса (рис. 224).

Площади поверхностей геометрических тел - определение и примеры с решением

Очевидно, что радиус сектора развертки равен образующей конуса I, а длина дуги Площади поверхностей геометрических тел - определение и примеры с решением — длине окружности основания конуса, то есть Площади поверхностей геометрических тел - определение и примеры с решением. Учитывая, что площадь соответствующего круга равна Площади поверхностей геометрических тел - определение и примеры с решением, получаем: Площади поверхностей геометрических тел - определение и примеры с решением, значит, Площади поверхностей геометрических тел - определение и примеры с решением Таким образом, площадь боковой поверхности конуса равна площади ее развертки.

Учитывая формулу для площади боковой поверхности конуса, нетрудно найти площадь боковой поверхности усеченного конуса.

Рассмотрим усеченный конус, полученный при пересечении конуса с вершиной Р некоторой секущей плоскостью (рис. 225).

Пусть Площади поверхностей геометрических тел - определение и примеры с решением — образующая усеченного конуса Площади поверхностей геометрических тел - определение и примеры с решением точки Площади поверхностей геометрических тел - определение и примеры с решением — центры большего и меньшего оснований с радиусами R и г соответственно. Тогда площадь боковой поверхности усеченного конуса равна разности площадей боковых поверхностей двух конусов:

Площади поверхностей геометрических тел - определение и примеры с решением

Из подобия треугольников Площади поверхностей геометрических тел - определение и примеры с решением

следует, что Площади поверхностей геометрических тел - определение и примеры с решением

Тогда получаем Площади поверхностей геометрических тел - определение и примеры с решением

Таким образом, Площади поверхностей геометрических тел - определение и примеры с решением

Итак, мы получили формулу для вычисления площади боковой поверхности усеченного конуса: Площади поверхностей геометрических тел - определение и примеры с решением, где R и г — радиусы оснований усеченного конуса, I — его образующая.

Отсюда ясно, что площадь полной поверхности усеченного конуса равна Площади поверхностей геометрических тел - определение и примеры с решением

Такой же результат можно было бы получить, если найти площадь развертки боковой поверхности усеченного конуса или использовать правильные усеченные пирамиды, описанные около него. Попробуйте дать соответствующие определения и провести необходимые рассуждения самостоятельно.

Связь между площадями поверхностей и объемами

При рассмотрении объемов и площадей поверхностей цилиндра и конуса мы видели, что существует тесная взаимосвязь между этими фигурами и призмами и пирамидами соответственно. Оказывается, что и сфера (шар), вписанная в многогранник, связана с величиной его объема.

Определение:

Сфера (шар) называется вписанной в выпуклый многогранник, если она касается каждой его грани.

При этом многогранник называется описанным около данной сферы (рис. 226).

Рассмотрим, например, сферу, вписанную в тетраэдр (рис. 227).

Площади поверхностей геометрических тел - определение и примеры с решениемПлощади поверхностей геометрических тел - определение и примеры с решением

Плоскости, содержащие грани тетраэдра, являются касательными к вписанной сфере, а точки касания лежат в гранях тетраэдра. Заметим, что по доказанному в п. 14.2 радиусы вписанной сферы, проведенные в точку касания с поверхностью многогранника, перпендикулярны плоскостям граней этого многогранника.

Для описанных многоугольников на плоскости было доказано, что их площадь равна произведению полупериметра на радиус вписанной окружности. Аналогичное свойство связывает объем описанного многогранника и площадь его поверхности.

Теорема (о связи площади поверхности и объема описанного многогранника)

Объем описанного многогранника вычисляется по формуле

Площади поверхностей геометрических тел - определение и примеры с решением

где Площади поверхностей геометрических тел - определение и примеры с решением — площадь полной поверхности многогранника, г — радиус вписанной сферы.

Доказательство:

Соединим центр вписанной сферы О со всеми вершинами многогранника Площади поверхностей геометрических тел - определение и примеры с решением(рис. 228). Получим n пирамид, основаниями которых являются грани многогранника, вершины совпадают с точкой О, высоты равны г. Тогда объем многогранника, по аксиоме, равен сумме объемов этих пирамид. Используя формулу объема пирамиды, найдем объем данного многогранника:

Площади поверхностей геометрических тел - определение и примеры с решением

где Площади поверхностей геометрических тел - определение и примеры с решением — площади граней многогранника.

Теорема доказана.

Оказывается, что в любой тетраэдр можно вписать сферу, и только одну. Но не каждый выпуклый многогранник обладает этим свойством.

Рассматривают также сферы, описанные около многогранника.

Определение:

Сфера называется описанной около многогранника, если все его вершины лежат на сфере.

При этом многогранник называется вписанным в сферу (рис. 229).

Площади поверхностей геометрических тел - определение и примеры с решениемПлощади поверхностей геометрических тел - определение и примеры с решением

Также считается, что соответствующий шар описан около многогранника.

Около любого тетраэдра можно описать единственную сферу, но не каждый многогранник обладает соответствующим свойством.

Площадь сферы

Применим полученную связь для объемов и площадей поверхностей описанных многогранников к выводу формулы площади сферы.

Опишем около сферы радиуса R выпуклый многогранник (рис. 230).

Пусть S’ — площадь полной поверхности данного многогранника, а любые две точки одной грани удалены друг от друга меньше чем на е. Тогда объем многогранника равенПлощади поверхностей геометрических тел - определение и примеры с решением. Рассмотрим расстояние от центра сферы О до любой вершины многогранника, например А1 (рис. 231).

По неравенству треугольника Площади поверхностей геометрических тел - определение и примеры с решениемПлощади поверхностей геометрических тел - определение и примеры с решением где О’ — точка касания. Отсюда следует, что все вершины данного многогранника лежат внутри шара с центром О и радиусом Площади поверхностей геометрических тел - определение и примеры с решением.

Итак, объем V данного многогранника больше объема шара радиуса R и меньше объема шара радиуса Площади поверхностей геометрических тел - определение и примеры с решением, то есть Площади поверхностей геометрических тел - определение и примеры с решением

Отсюда получаем Площади поверхностей геометрических тел - определение и примеры с решением

Если неограниченно уменьшать размеры граней многогранника, то есть при е, стремящемся к нулю, левая и правая части последнего неравенства будут стремиться к Площади поверхностей геометрических тел - определение и примеры с решением, а многогранник все плотнее примыкать к сфере. Поэтому полученную величину для предела S’ принимают за площадь сферы.

Итак, площадь сферы радиуса R вычисляется по формуле Площади поверхностей геометрических тел - определение и примеры с решением

Доказанная формула означает, что площадь сферы равна четырем площадям ее большого круга (рис. 232).

Площади поверхностей геометрических тел - определение и примеры с решениемПлощади поверхностей геометрических тел - определение и примеры с решениемПлощади поверхностей геометрических тел - определение и примеры с решением

Исходя из аналогичных рассуждений, можно получить формулу для площади сферической части шарового сегмента с высотой Н:

Площади поверхностей геометрических тел - определение и примеры с решением

Оказывается, что эта формула справедлива и для площади сферической поверхности шарового слоя (пояса):

Площади поверхностей геометрических тел - определение и примеры с решением

где Н — высота слоя (пояса).

Справочный материал

Формулы объемов и площадей поверхностей геометрических тел

Площади поверхностей геометрических тел - определение и примеры с решением

Площади поверхностей геометрических тел - определение и примеры с решением

Историческая справка

Многие формулы для вычисления объемов многогранников были известны уже в Древнем Египте. В так называемом Московском папирусе, созданном около 4000 лет назад, вероятно, впервые в истории вычисляется объем усеченной пирамиды. Но четкие доказательства большинства формул для объемов появились позднее, в работах древнегреческих ученых.

Так, доказательства формул для объемов конуса и пирамиды связаны с именами Демокрита из Абдеры (ок. 460-370 гг. до н. э.) и Евдокса Книдского (ок. 408-355 гг. до н. э.). На основании их идей выдающийся математик и механик Архимед (287-212 гг. до н. э.) вычислил объем шара, нашел формулы для площадей поверхностей цилиндра, конуса, сферьГг

Дальнейшее развитие методы, предложенные Архимедом, получили благодаря трудам средневекового итальянского монаха и математика Бонавентуры Кавальери (1598-1647). В своей книге «Геометрия неделимых» он сформулировал принцип сравнения объемов, при котором используются площади сечений. Его рассуждения стали основой интегральных методов вычисления объемов, разработанных Исааком Ньютоном (1642 (1643)-1727) и Готфридом Вильгельмом фон Лейбницем (1646-1716). Во многих учебниках по геометрии объем пирамиды находится с помощью * чертовой лестницы» — варианта древнегреческого метода вычерпывания, предложенного французским математиком А. М. Лежандром (1752-1833).

Площади поверхностей геометрических тел - определение и примеры с решениемПлощади поверхностей геометрических тел - определение и примеры с решениемПлощади поверхностей геометрических тел - определение и примеры с решением

На II Международном конгрессе математиков, который состоялся в 1900 году в Париже, Давид Гильберт сформулировал, в частности, такую проблему: верно ли, что любые два равновеликих многогранника являются равносоставленными? Уже через год отрицательный ответ на этот вопрос был обоснован учеником Гильберта Максом Деном (1878-1952). Другое доказательство этого факта предложил в 1903 году известный геометр В. Ф. Каган, который в начале XX века вел плодотворную научную и просветительскую деятельность в Одессе. В частности, из работ Дена и Кагана следует, что доказательство формулы объема пирамиды невозможно без применения пределов.

Весомый вклад в развитие теории площадей поверхностей внесли немецкие математики XIX века. Так, в 1890 году Карл Герман Аман-дус Шварц (1843-1921) построил пример последовательности многогранных поверхностей, вписанных в боковую поверхность цилиндра («сапог Шварца»). Уменьшение их граней не приводит к приближению суммы площадей этих граней к площади боковой поверхности цилиндра. Это стало толчком к созданию выдающимся немецким математиком и физиком Германом Минков-ским (1864-1909) современной теории площадей поверхностей, в которой последние связаны с объемом слоя около данной поверхности.

Учитывая огромный вклад Архимеда в развитие математики, в частности теории объемов и площадей поверхностей, именно его изобразили на Филдсовской медали — самой почетной в мире награде для молодых математиков. В 1990 году ею был награжден Владимир Дрин-фельд (род. в 1954 г.), который учился и некоторое время работал в Харькове. Вот так юные таланты, успешно изучающие геометрию в школе, становятся в дальнейшем всемирно известными учеными.

Площади поверхностей геометрических тел - определение и примеры с решениемПлощади поверхностей геометрических тел - определение и примеры с решениемПлощади поверхностей геометрических тел - определение и примеры с решениемПлощади поверхностей геометрических тел - определение и примеры с решением

Площади поверхностей геометрических тел - определение и примеры с решением

Уравнения фигур в пространстве

Напомним, что уравнением фигуры F на плоскости называется уравнение, которому удовлетворяют координаты любой точки фигуры F и не удовлетворяют координаты ни одной точки, не принадлежащей фигуре F. Так же определяют и уравнение фигуры в пространстве; но, в отличие от плоскости, где уравнение фигуры содержит две переменные х и у, в пространстве уравнение фигуры является уравнением с тремя переменными х, у и z.

Выведем уравнение плоскости, прямой и сферы в пространстве. Для получения уравнения плоскости рассмотрим в прямоугольной системе координат плоскость а (рис. 233) и определим свойство, с помощью которого можно описать принадлежность произвольной точки данной плоскости. Пусть ненулевой вектор Площади поверхностей геометрических тел - определение и примеры с решением перпендикулярен а (то есть принадлежит прямой, перпендикулярной данной плоскости,— такой вектор называют вектором нормали или нормалью к плоскости а), а точка Площади поверхностей геометрических тел - определение и примеры с решением принадлежит данной плоскости.

Так как Площади поверхностей геометрических тел - определение и примеры с решением, то вектор га перпендикулярен любому вектору плоскости а. Поэтому если Площади поверхностей геометрических тел - определение и примеры с решением — произвольная точка плоскости а, то Площади поверхностей геометрических тел - определение и примеры с решением, то есть Площади поверхностей геометрических тел - определение и примеры с решением. Более того, если векторы Площади поверхностей геометрических тел - определение и примеры с решением перпендикулярны, то, поскольку плоскость, проходящая через точку М0 перпендикулярно вектору Площади поверхностей геометрических тел - определение и примеры с решением, единственна, имеем Площади поверхностей геометрических тел - определение и примеры с решением, то есть Площади поверхностей геометрических тел - определение и примеры с решением. Таким образом, уравнение Площади поверхностей геометрических тел - определение и примеры с решением — критерий принадлежности точки М плоскости а. На основании этого векторного критерия выведем уравнение плоскости в пространстве.

Теорема (уравнение плоскости в пространстве)

В прямоугольной системе координат уравнение плоскости имеет вид Площади поверхностей геометрических тел - определение и примеры с решением, где А, В, С и D — некоторые числа, причем числа А, В и С одновременно не равны нулю.

Доказательство:

Запишем в координатной форме векторное равенство Площади поверхностей геометрических тел - определение и примеры с решением, где Площади поверхностей геометрических тел - определение и примеры с решением — вектор нормали к данной плоскости, Площади поверхностей геометрических тел - определение и примеры с решением — фиксированная точка плоскости, M(x;y;z) — произвольная точка плоскости. Имеем Площади поверхностей геометрических тел - определение и примеры с решением

Следовательно, Площади поверхностей геометрических тел - определение и примеры с решением

После раскрытия скобок и приведения подобных членов это уравнение примет вид: Площади поверхностей геометрических тел - определение и примеры с решением

Обозначив числовое выражение в скобках через D, получим искомое уравнение, в котором числа А, В и С одновременно не равны нулю, так как Площади поверхностей геометрических тел - определение и примеры с решением.

Покажем теперь, что любое уравнение вида Ах + Ву +Cz+D = 0 задает в пространстве плоскость. Действительно, пусть Площади поверхностей геометрических тел - определение и примеры с решением — одно из решений данного уравнения. Тогда Площади поверхностей геометрических тел - определение и примеры с решением. Вычитая это равенство из данного, получим Площади поверхностей геометрических тел - определение и примеры с решением Так как это уравнение является координатной записью векторного равенства Площади поверхностей геометрических тел - определение и примеры с решением, то оно является уравнением плоскости, проходящей через точку Площади поверхностей геометрических тел - определение и примеры с решением перпендикулярно вектору Площади поверхностей геометрических тел - определение и примеры с решением.

Обратим внимание на то, что в доказательстве теоремы приведен способ составления уравнения плоскости по данным координатам произвольной точки плоскости и вектора нормали.

Пример:

Напишите уравнение плоскости, которая перпендикулярна отрезку MN и проходит через его середину, если М{-1;2;3), N(5;-4;-1).

Решение:

Найдем координаты точки О — середины отрезка MN:

Площади поверхностей геометрических тел - определение и примеры с решением

Значит, О (2; -1; l). Так как данная плоскость перпендикулярна отрезку MN, то вектор Площади поверхностей геометрических тел - определение и примеры с решением — вектор нормали к данной плоскости. Поэтому искомое уравнение имеет вид: Площади поверхностей геометрических тел - определение и примеры с решением.

И наконец, так как данная плоскость проходит через точку О(2;-l;l), то, подставив координаты этой точки в уравнение, получим: Площади поверхностей геометрических тел - определение и примеры с решением

Таким образом, уравнение Площади поверхностей геометрических тел - определение и примеры с решением искомое.

Ответ: Площади поверхностей геометрических тел - определение и примеры с решением

Заметим, что правильным ответом в данной задаче является также любое уравнение, полученное из приведенного умножением обеих частей на число, отличное от нуля.

Значения коэффициентов А, В, С и D в уравнении плоскости определяют особенности расположения плоскости в системе координат. В частности:

  • если Площади поверхностей геометрических тел - определение и примеры с решением, уравнение плоскости примет вид Ax+By+Cz = 0; очевидно, что такая плоскость проходит через начало координат (рис. 234, а);
  • если один из коэффициентов А, В и С равен нулю, a Площади поверхностей геометрических тел - определение и примеры с решением, плоскость параллельна одной из координатных осей: например, при условии А = 0 вектор нормали Площади поверхностей геометрических тел - определение и примеры с решением перпендикулярен оси Ох, а плоскость By + Cz + D = Q параллельна оси Ох (рис. 234, б)
  • если два из коэффициентов А, В и С равны нулю, а Площади поверхностей геометрических тел - определение и примеры с решением, плоскость параллельна одной из координатных плоскостей: например, при условиях А = 0 и В-О вектор нормали Площади поверхностей геометрических тел - определение и примеры с решением перпендикулярен плоскости Оху, а плоскость Cz+D = 0 параллельна плоскости Оху (рис. 234, в);
  • если два из коэффициентов А, В и С равны нулю и D = 0, плоскость совпадает с одной из координатных плоскостей: например, при условиях Площади поверхностей геометрических тел - определение и примеры с решением и В = С = D = 0 уравнение плоскости имеет вид Ах = О, или х= 0, то есть является уравнением плоскости Оуz (рис. 234, г).

Предлагаем вам самостоятельно составить полную таблицу частных случаев расположения плоскости Ax + By+Cz+D = 0 в прямоугольной системе координат в зависимости от значений коэффициентов А, В, С и D.

Площади поверхностей геометрических тел - определение и примеры с решением

Пример: (о расстоянии от точки до плоскости)

Расстояние от точки Площади поверхностей геометрических тел - определение и примеры с решением до плоскости а, заданной уравнением Ax + By + Cz+D = О, вычисляется по формуле

Площади поверхностей геометрических тел - определение и примеры с решением Докажите.

Решение:

Если Площади поверхностей геометрических тел - определение и примеры с решением, то по уравнению плоскости Площади поверхностей геометрических тел - определение и примеры с решениемПлощади поверхностей геометрических тел - определение и примеры с решением, откуда Площади поверхностей геометрических тел - определение и примеры с решением = 0.

Если Площади поверхностей геометрических тел - определение и примеры с решением, то проведем перпендикуляр КМ к плоскости a, Площади поверхностей геометрических тел - определение и примеры с решением.

Тогда Площади поверхностей геометрических тел - определение и примеры с решением, поэтому Площади поверхностей геометрических тел - определение и примеры с решением, то есть Площади поверхностей геометрических тел - определение и примеры с решением. Так как Площади поверхностей геометрических тел - определение и примеры с решением, то Площади поверхностей геометрических тел - определение и примеры с решением, откуда Площади поверхностей геометрических тел - определение и примеры с решением

Таким образом, Площади поверхностей геометрических тел - определение и примеры с решениемПлощади поверхностей геометрических тел - определение и примеры с решением

Рассмотрим теперь возможность описания прямой в пространстве с помощью уравнений.

Пусть в пространстве дана прямая k (рис. 235). Выберем ненулевой вектор Площади поверхностей геометрических тел - определение и примеры с решением, параллельный данной прямой или принадлежащий ей (такой вектор называют направляющим вектором прямой k), и зафиксируем точку Площади поверхностей геометрических тел - определение и примеры с решением, принадлежащую данной прямой. Тогда произвольная точка пространства М (х; у; z) будет принадлежать прямой k в том и только в том случае, когда векторы Площади поверхностей геометрических тел - определение и примеры с решением коллинеарны, то есть существует число t такое, что Площади поверхностей геометрических тел - определение и примеры с решением

Представим это векторное равенство в координатной форме. Если ни одна из координат направляющего вектора не равна нулю, из данного равенства можно выразить t и приравнять полученные результаты:

Площади поверхностей геометрических тел - определение и примеры с решением

Эти равенства называют каноническими уравнениями прямой в пространстве.

Площади поверхностей геометрических тел - определение и примеры с решением

Пример:

Напишите уравнение прямой, проходящей через точки А(1;-3;2) и В(-l;0;l).

Решение:

Так как точки А и В принадлежат данной прямой, то Площади поверхностей геометрических тел - определение и примеры с решением — направляющий вектор прямой АВ. Таким образом, подставив вместо Площади поверхностей геометрических тел - определение и примеры с решением координаты точки А, получим уравнение прямой АВ:

Площади поверхностей геометрических тел - определение и примеры с решением

Ответ:Площади поверхностей геометрических тел - определение и примеры с решением

Заметим, что ответ в этой задаче может иметь и другой вид: так, в числителях дробей можно использовать координаты точки В, а как направляющий вектор рассматривать любой ненулевой вектор, коллинеарный Площади поверхностей геометрических тел - определение и примеры с решением (например, вектор Площади поверхностей геометрических тел - определение и примеры с решением).

Вообще, если прямая в пространстве задана двумя точками Площади поверхностей геометрических тел - определение и примеры с решением, то Площади поверхностей геометрических тел - определение и примеры с решением — направляющий вектор прямой, а в случае, если соответствующие координаты данных точек не совпадают, канонические уравнения прямой Площади поверхностей геометрических тел - определение и примеры с решением имеют вид Площади поверхностей геометрических тел - определение и примеры с решением

С помощью уравнений удобно исследовать взаимное расположение прямых и плоскостей в пространстве. Рассмотрим прямые Площади поверхностей геометрических тел - определение и примеры с решением направляющими векторами Площади поверхностей геометрических тел - определение и примеры с решением соответственно. Определение угла между данными прямыми связано с определением угла между их направляющими векторами. Действительно, пусть ф — угол между прямыми Площади поверхностей геометрических тел - определение и примеры с решением. Так как по определению Площади поверхностей геометрических тел - определение и примеры с решением, а угол между векторами может быть больше 90°, то Площади поверхностей геометрических тел - определение и примеры с решением либо равен углу ср (рис. 236, а), либо дополняет его до 180° (рис. 236, б).

Площади поверхностей геометрических тел - определение и примеры с решением

Так как cos(l80°-ф) = -coscp, имеем Площади поверхностей геометрических тел - определение и примеры с решением, то есть

Площади поверхностей геометрических тел - определение и примеры с решением

Отсюда, в частности, следует необходимое и достаточное условие перпендикулярности прямых Площади поверхностей геометрических тел - определение и примеры с решением:

Площади поверхностей геометрических тел - определение и примеры с решением

Кроме того, прямые Площади поверхностей геометрических тел - определение и примеры с решением параллельны тогда и только тогда, когда их направляющие векторы коллинеарны, то есть существует число t такое, что Площади поверхностей геометрических тел - определение и примеры с решением, или, при условии отсутствия у векторов р и q нулевых координат,

Площади поверхностей геометрических тел - определение и примеры с решением

Проанализируем теперь отдельные случаи взаимного расположения двух плоскостей в пространстве. Очевидно, что если Площади поверхностей геометрических тел - определение и примеры с решением —вектор нормали к плоскости а, то все ненулевые векторы, коллинеарные л, также являются векторами нормали к плоскости а. Из этого следует, что две плоскости, заданные уравнениями Площади поверхностей геометрических тел - определение и примеры с решением:

  • совпадают, если существует число t такое, что Площади поверхностей геометрических тел - определение и примеры с решениемПлощади поверхностей геометрических тел - определение и примеры с решением, или, если числа Площади поверхностей геометрических тел - определение и примеры с решением ненулевые Площади поверхностей геометрических тел - определение и примеры с решением
  • параллельны, если существует число t такое, что Площади поверхностей геометрических тел - определение и примеры с решениемПлощади поверхностей геометрических тел - определение и примеры с решением, или, если координаты Площади поверхностей геометрических тел - определение и примеры с решением ненулевые, Площади поверхностей геометрических тел - определение и примеры с решением (на практике это означает, что уравнения данных плоскостей можно привести к виду Ax+By+Cz+D1= 0 и Ax+By+Cz+D2=0, где Площади поверхностей геометрических тел - определение и примеры с решением).

В остальных случаях данные плоскости Площади поверхностей геометрических тел - определение и примеры с решением пересекаются, причем угол между ними связан с углом между векторами нормалей Площади поверхностей геометрических тел - определение и примеры с решением и Площади поверхностей геометрических тел - определение и примеры с решением. Предлагаем вам самостоятельно обосновать формулу для определения угла между плоскостями Площади поверхностей геометрических тел - определение и примеры с решением:

Площади поверхностей геометрических тел - определение и примеры с решением

В частности, необходимое и достаточное условие перпендикулярности плоскостей Площади поверхностей геометрических тел - определение и примеры с решением выражается равенством Площади поверхностей геометрических тел - определение и примеры с решением.

Заметим также, что прямая в пространстве может быть описана как линия пересечения двух плоскостей, то есть системой уравнений

Площади поверхностей геометрических тел - определение и примеры с решением

где векторы Площади поверхностей геометрических тел - определение и примеры с решением не коллинеарны.

Пример:

Напишите уравнение плоскости, которая проходит через точку М(4;2;3) и параллельна плоскости x-y + 2z-S = 0.

Решение:

Так как искомая плоскость параллельна данной, то вектор нормали к данной плоскости Площади поверхностей геометрических тел - определение и примеры с решением является также вектором нормали к искомой плоскости. Значит, искомое уравнение имеет вид Площади поверхностей геометрических тел - определение и примеры с решением. Так как точка М принадлежит искомой плоскости, ее координаты удовлетворяют уравнению плоскости, то есть 4-2 + 2-3 + 2) = 0, D = -8. Следовательно, уравнение x-y+2z-8=0 искомое.

Ответ: x-y+2z-8 = 0.

Аналогично уравнению окружности на плоскости, в пространственной декартовой системе координат можно вывести уравнение сферы с заданным центром и радиусом.

Теорема (уравнение сферы)

В прямоугольной системе координат уравнение сферы радиуса R с центром в точке Площади поверхностей геометрических тел - определение и примеры с решением имеет вид Площади поверхностей геометрических тел - определение и примеры с решением Доказательство

Пусть Площади поверхностей геометрических тел - определение и примеры с решением — произвольная точка сферы радиуса R с центром Площади поверхностей геометрических тел - определение и примеры с решением (рис. 237). Расстояние между точками О и М вычисляется по формуле Площади поверхностей геометрических тел - определение и примеры с решением

Площади поверхностей геометрических тел - определение и примеры с решением

Так как OM=R, то есть ОМ2 = R2, то координаты точки М удовлетворяют уравнению Площади поверхностей геометрических тел - определение и примеры с решением. Если же точка М не является точкой сферы, то Площади поверхностей геометрических тел - определение и примеры с решением, значит, координаты точки М не удовлетворяют данному уравнению.

Следствие

Сфера радиуса R с центром в начале координат задается уравнением вида

Площади поверхностей геометрических тел - определение и примеры с решением

Заметим, что фигуры в пространстве, как и на плоскости, могут задаваться не только уравнениями, но и неравенствами. Например, шар радиуса R с центром в точке Площади поверхностей геометрических тел - определение и примеры с решением задается неравенством Площади поверхностей геометрических тел - определение и примеры с решением (убедитесь в этом самостоятельно).

Пример:

Напишите уравнение сферы с центром А (2;-8; 16), которая проходит через начало координат.

Решение:

Так как данная сфера проходит через точку 0(0;0;0), то отрезок АО является ее радиусом. Значит,

Площади поверхностей геометрических тел - определение и примеры с решением

Таким образом, искомое уравнение имеет вид:

Площади поверхностей геометрических тел - определение и примеры с решением

Ответ: Площади поверхностей геометрических тел - определение и примеры с решением

Доказательство формулы объема прямоугольного параллелепипеда

Теорема (формула объема прямоугольного параллелепипеда)

Объем прямоугольного параллелепипеда равен произведению трех его измерений:

Площади поверхностей геометрических тел - определение и примеры с решением

где Площади поверхностей геометрических тел - определение и примеры с решением— измерения параллелепипеда.

Доказательство:

Докажем сначала, что объемы двух прямоугольных параллелепипедов с равными основаниями относятся как длины их высот.

Пусть Площади поверхностей геометрических тел - определение и примеры с решением — два прямоугольных параллелепипеда с равными основаниями и объемами Площади поверхностей геометрических тел - определение и примеры с решением соответственно. Совместим данные параллелепипеды. Для этого достаточно совместить их основания. Теперь рассмотрим объемы параллелепипедов Площади поверхностей геометрических тел - определение и примеры с решением (рис. 238). Для определенности будем считать, что Площади поверхностей геометрических тел - определение и примеры с решением. Разобьем ребро Площади поверхностей геометрических тел - определение и примеры с решением на n равных отрезков. Пусть на отрезке Площади поверхностей геометрических тел - определение и примеры с решением лежит m точек деления. Тогда:

Площади поверхностей геометрических тел - определение и примеры с решением

проведем через точки деления параллельные основанию ABCD (рис. 239). Они разобьют параллелепипед Площади поверхностей геометрических тел - определение и примеры с решением на n равных параллелепипедов. Каждый из них имеет объем Площади поверхностей геометрических тел - определение и примеры с решением. Очевидно, что параллелепиппед Площади поверхностей геометрических тел - определение и примеры с решением содержит в себе объединение m параллелепипедов и сам содержится в объединении Площади поверхностей геометрических тел - определение и примеры с решением параллелепипедов.

Площади поверхностей геометрических тел - определение и примеры с решениемПлощади поверхностей геометрических тел - определение и примеры с решением

Таким образом, Площади поверхностей геометрических тел - определение и примеры с решением откуда Площади поверхностей геометрических тел - определение и примеры с решением или Площади поверхностей геометрических тел - определение и примеры с решением

Сравнивая выражения (1) и (2), видим, что оба отношения Площади поверхностей геометрических тел - определение и примеры с решением находятся между Площади поверхностей геометрических тел - определение и примеры с решением, то есть отличаются не больше чем на Площади поверхностей геометрических тел - определение и примеры с решениемДокажем методом от противного, что эти отношения равны.

Допустим, что это не так, то есть Площади поверхностей геометрических тел - определение и примеры с решением Тогда найдется такое натуральное число n, что Площади поверхностей геометрических тел - определение и примеры с решением Отсюда Площади поверхностей геометрических тел - определение и примеры с решением Из полученного противоречия следует, что Площади поверхностей геометрических тел - определение и примеры с решением то есть объемы двух прямоугольных параллелепипедов с равными основаниями относятся как длины их высот.

Рассмотрим теперь прямоугольные параллелепипеды с измерениями Площади поверхностей геометрических тел - определение и примеры с решением объемы которых равны V, Площади поверхностей геометрических тел - определение и примеры с решением соответственно (рис. 240).

Площади поверхностей геометрических тел - определение и примеры с решением

По аксиоме объема V3 =1. По доказанному Площади поверхностей геометрических тел - определение и примеры с решениемПлощади поверхностей геометрических тел - определение и примеры с решением Перемножив эти отношения, получим: V = abc.

Теорема доказана.

* Выберем Площади поверхностей геометрических тел - определение и примеры с решением, например, Площади поверхностей геометрических тел - определение и примеры с решением, где Площади поверхностей геометрических тел - определение и примеры с решением — целая часть дроби Площади поверхностей геометрических тел - определение и примеры с решением.

  • Вычисление площадей плоских фигур
  • Преобразование фигур в геометрии
  • Многоугольник
  • Площадь многоугольника
  • Решение задач на вычисление площадей
  • Тела вращения: цилиндр, конус, шар
  • Четырехугольник
  • Площади фигур в геометрии

Понравилась статья? Поделить с друзьями:
  • Ошибка error loading operating system как исправить
  • Как найти недорогого дизайнера интерьера
  • Составить предложение со словом по моему как вводное слово или нет
  • Sec угла как найти
  • Как найти машину по спутнику сигнализации