Как найти площадь трехмерной фигуры


Загрузить PDF


Загрузить PDF

Площадь поверхности – это суммарная площадь всех поверхностей, которые составляют объемную фигуру. Площадь поверхности является числовой характеристикой поверхности.[1]
Вычислить площадь поверхности объемной (трехмерной) фигуры довольно просто, если знать соответствующую формулу. Существует определенная формула для каждой фигуры, поэтому сначала нужно определить, какая фигура дана. Чтобы быстро вычислять площадь поверхности, запомните соответствующие формулы для разных фигур. В данной статье рассматриваются наиболее распространенные фигуры.

  1. Изображение с названием Find Surface Area Step 1

    1

    Запишите формулу для вычисления площади поверхности куба. У куба шесть равных квадратных граней. Так как стороны квадрата равны, площадь квадрата равна a2, где а – сторона. Так как у куба шесть равных квадратных граней, чтобы найти площадь поверхности, умножьте площадь одной грани (квадрата) на 6. Формула для вычисления площади поверхности (SA) куба: SA = 6а2, где а – ребро куба (сторона квадрата).[2]

    • Площадь поверхности измеряется в квадратных единицах, например, в мм2, см2, м2 и так далее.
  2. Изображение с названием Find Surface Area Step 2

    2

    Измерьте ребро куба. Ребра куба равны, поэтому можно измерить только одно (любое) ребро. Ребро измерьте с помощью линейки (или рулетки). Обратите внимание на используемые единицы измерения.

    • Запишите значение, обозначив его через а.
    • Например: а = 2 см
  3. Изображение с названием Find Surface Area Step 3

    3

    Значение а возведите в квадрат. То есть возведите в квадрат длину ребра куба. Для этого умножьте значение на себя. Если вы только приступили к изучению формул с квадратами, запишите формулу так: SA = 6*а*а.

    • Сейчас вы вычислили значение площади одной из граней куба.
    • Например: а = 2 см
    • a2 = 2 х 2 = 4 см2
  4. Изображение с названием Find Surface Area Step 4

    4

    Вычисленное значение умножьте на шесть. Помните, что у куба шесть равных граней. Вычислив площадь одной из граней, умножьте полученное значение на 6, чтобы включить все грани куба.

    • Это последний шаг в процессе вычисления площади поверхности куба.
    • Например: а 2 = 4 см2
    • SA = 6 х а2 = 6 х 4 = 24 см2

    Реклама

  1. Изображение с названием Find Surface Area Step 5

    1

    Запишите формулу для вычисления площади поверхности прямоугольной призмы. У прямоугольной призмы шесть граней, причем равными являются только противоположные грани.[3]
    Поэтому формула для вычисления площади поверхности прямоугольной призмы включает значения трех разных ребер: SA = 2ab + 2bc + 2ac.

    • Здесь а – ширина, b – высота, с – длина призмы.
    • Если проанализировать формулу, можно понять, что она суммирует площади всех граней.
    • Площадь поверхности измеряется в квадратных единицах, например, в мм2, см2, м2 и так далее.
  2. Изображение с названием Find Surface Area Step 6

    2

    Найдите значения высоты, ширины и длины призмы. Три ребра не являются равными, поэтому нужно выполнить три измерения. Измерьте соответствующие ребра с помощью линейки (или рулетки). Ребра измеряйте в одной единице измерения.

    • Измерьте длину грани, которая лежит в основании призмы; длину обозначьте через с.
    • Например: с = 5 см
    • Измерьте ширину грани, которая лежит в основании призмы; ширину обозначьте через а.
    • Например: а = 2 см
    • Измерьте высоту призмы; высоту обозначьте через b.
    • Например: b = 3 см
  3. Изображение с названием Find Surface Area Step 7

    3

    Вычислите площадь одной грани призмы, а затем полученное значение умножьте на два. Помните, что у прямоугольной призмы шесть граней, причем равными являются только противоположные грани. Умножьте длину на высоту (с на а), чтобы найти площадь одной грани. Затем полученное значение умножьте на 2, чтобы включить вторую (противоположную и равную) грань.[4]

    • Например: 2 x (a x c) = 2 x (2 x 5) = 2 x 10 = 20 см2
  4. Изображение с названием Find Surface Area Step 8

    4

    Вычислите площадь другой грани призмы, а затем полученное значение умножьте на два. Умножьте ширину на высоту (а на b), чтобы найти площадь другой грани. Затем полученное значение умножьте на 2, чтобы включить вторую (противоположную и равную) грань.[5]

    • Например: 2 x (a x b) = 2 x (2 x 3) = 2 x 6 = 12 см2
  5. Изображение с названием Find Surface Area Step 9

    5

    Вычислите площадь фронтальной грани, а затем полученное значение умножьте на два. Умножьте длину на ширину (с на b), чтобы найти площадь фронтальной грани. Затем полученное значение умножьте на 2, чтобы включить вторую (противоположную и равную) грань.[6]

    • Например: 2 x (b x c) = 2 x (3 x 5) = 2 x 15 = 30 см2
  6. Изображение с названием Find Surface Area Step 10

    6

    Сложите три значения. Так как площадь поверхности – это суммарная площадь всех граней фигуры, сложите найденные значения площадей отдельных граней. Вы получите площадь поверхности прямоугольной призмы.[7]

    • Например: SA = 2ab + 2bc + 2ac = 12 + 30 + 20 = 62 см2

    Реклама

  1. Изображение с названием Find Surface Area Step 11

    1

    Запишите формулу для вычисления площади поверхности треугольной призмы. Треугольная призма имеет две равные треугольные грани и три прямоугольные грани. Чтобы вычислить площадь поверхности треугольной призмы, нужно найти площади всех граней и сложить их. Формула для вычисления площади поверхности треугольной призмы: SA = 2S + РH, где S – площадь треугольной грани, Р – периметр треугольной грани, H – высота призмы.[8]

    • Здесь S – это площадь треугольника (треугольной грани), которая вычисляется по формуле S = 1/2bh, где b – основание треугольника, h – высота треугольника (которая опущена на основание).
    • Р – периметр треугольника (треугольной грани), который равен сумме всех сторон треугольника.
    • Площадь поверхности измеряется в квадратных единицах, например, в мм2, см2, м2 и так далее.
  2. Изображение с названием Find Surface Area Step 12

    2

    Вычислите площадь треугольной грани и умножьте ее на два. Площадь треугольника вычисляется по формуле S = 1/2bh, где b – основание треугольника, h – высота треугольника (которая опущена на основание). Так как треугольная призма имеет две равные треугольные грани, эту формулу можно умножить на два. Поэтому, чтобы вычислить площади двух треугольных граней, просто перемножьте основание и высоту треугольника (b*h).[9]

    • Основание треугольника b – это его нижняя сторона.
    • Например: b = 4 см
    • Высота треугольника h – это перпендикуляр, опущенный на основание из противоположной вершины.
    • Например: h = 3 см
    • Площадь двух треугольных граней равна: 2(1/2)b*h = b*h = 4*3 =12 см.
  3. Изображение с названием Find Surface Area Step 13

    3

    Измерьте каждую сторону треугольника и высоту призмы. Чтобы вычислить площадь поверхности треугольной призмы, нужно найти значение каждой стороны треугольника и высоты призмы. Высота призмы – это расстояние между треугольными гранями.

    • Например: Н = 5 см
    • Стороны треугольника – это три ребра одной (любой) из треугольных граней.
    • Например: а = 2 см, b = 4 см, с = 6 см
  4. Изображение с названием Find Surface Area Step 14

    4

    Вычислите периметр треугольника. Для этого сложите все стороны треугольника: Р = а + b + с.

    • Например: P = а + b + с = 2 + 4 + 6 = 12 см
  5. Изображение с названием Find Surface Area Step 15

    5

    Перемножьте периметр треугольной грани и высоту призмы. Помните, что высота призмы – это расстояние между треугольными гранями. Таким образом, Р умножьте на Н.

    • Например: Р х Н = 12 х 5 = 60 см2
  6. Изображение с названием Find Surface Area Step 16

    6

    Сложите полученные значения. Чтобы найти площадь поверхности треугольной призмы, сложите два значения, вычисленные ранее.[10]

    • Например: 2S + PH = 12 + 60 = 72 см2

    Реклама

  1. Изображение с названием Find Surface Area Step 17

    1

    Запишите формулу для вычисления площади поверхности шара. Шар имеет изогнутую поверхность, поэтому формула включает математическую константу π (число Пи). Чтобы вычислить площадь поверхности шара, воспользуйтесь формулой SA = 4π*r2.[11]

    • Здесь r – радиус шара, π ≈ 3,14.
    • Площадь поверхности измеряется в квадратных единицах, например, в мм2, см2, м2 и так далее.
  2. Изображение с названием Find Surface Area Step 18

    2

    Измерьте радиус шара. Радиус шара равен половине его диаметра, то есть половине отрезка, который проходит через центр шара и соединяет две точки, лежащие на его поверхности.[12]

    • Например: r = 3 см
  3. Изображение с названием Find Surface Area Step 19

    3

    Радиус шара возведите в квадрат. Для этого умножьте значение радиуса (r) на себя. Помните, что формулу можно записать так: SA = 4π*r*r.[13]

    • Например: r2 = r x r = 3 x 3 = 9 см2
  4. Изображение с названием Find Surface Area Step 20

    4

    Перемножьте квадрат радиуса и приблизительное значение числа Пи. Число Пи является математической константой, которая равна отношению длины окружности к ее диаметру.[14]
    Это иррациональное число со множеством цифр после десятичной запятой. Зачастую число Пи округляется до 3,14. Квадрат радиуса умножьте на π (на 3,14), чтобы вычислить площадь круглого сечения шара. [15]

    • Например: π*r2 = 3,14 x 9 = 28,26 см2
  5. Изображение с названием Find Surface Area Step 21

    5

    Полученное значение умножьте на четыре. Чтобы найти значение площади поверхности сферы, площадь круглого сечения умножьте на 4.[16]

    • Например: 4π*r2 = 4 x 28,26 = 113,04 см2

    Реклама

  1. Изображение с названием Find Surface Area Step 22

    1

    Запишите формулу для вычисления площади поверхности цилиндра. Цилиндрическая поверхность этой фигуры ограничена двумя круглыми параллельными плоскостями, которые называются основаниями. Формула для вычисления площади поверхности цилиндра: SA = 2π*r2 + 2π*rh, где r – радиус основания, h – высота цилиндра, π ≈ 3,14.[17]

    • 2π*г2 – это площадь двух оснований, а 2πrh – это площадь цилиндрической поверхности.
    • Площадь поверхности измеряется в квадратных единицах, например, в мм2, см2, м2 и так далее.
  2. Изображение с названием Find Surface Area Step 23

    2

    Измерьте радиус основания и высоту цилиндра. Радиус окружности равен половине ее диаметра, то есть половине отрезка, который проходит через центр окружности и соединяет две точки, лежащие на ней.[18]
    Высота цилиндра – это расстояние между его основаниями. Измерьте и запишите радиус основания и высоту цилиндра.

    • Например: r = 3 см
    • Например: h = 5 см
  3. Изображение с названием Find Surface Area Step 24

    3

    Вычислите площадь основания и умножьте ее на два. Чтобы найти площадь основания, воспользуйтесь формулой для вычисления площади круга: S = π*г2. Сначала радиус возведите в квадрат, а затем полученное значение умножьте на число Пи. Результат умножьте на два, чтобы учесть второе равное основание.[19]

    • Например: площадь основания = π*r2 = 3,14 х 3 х 3 = 28,26 см2
    • Например: 2π*r2 = 2 x 28,26 = 56,52 см2
  4. Изображение с названием Find Surface Area Step 25

    4

    Вычислите площадь цилиндрической поверхности. Для этого воспользуйтесь формулой S = 2π*rh, по которой можно найти площадь поверхности трубы. Здесь труба – это поверхность между двумя основаниями цилиндра. Перемножьте двойку, число Пи, радиус и высоту.[20]

    • Например: 2π*rh = 2 x 3,14 x 3 x 5 = 94,2 см2
  5. Изображение с названием Find Surface Area Step 26

    5

    Сложите полученные значения. Сложите площади двух оснований и площадь цилиндрической поверхности (между двумя основаниями), чтобы вычислить общую площадь поверхности цилиндра. Обратите внимание, что при сложении этих величин получится исходная формула: SA = 2π*r2 + 2π*rh.[21]

    • Например: 2π*r2 + 2π*rh = 56,52 + 94,2 = 150,72 см2

    Реклама

  1. Изображение с названием Find Surface Area Step 27

    1

    Запишите формулу для вычисления площади поверхности квадратной пирамиды. Квадратная пирамида имеет одно квадратное основание и четыре треугольные грани. Помните, что площадь квадрата равна квадрату его стороны. Площадь треугольника равна 1/2sl (половина основания треугольника, умноженная на его высоту). Так как пирамида имеет четыре треугольные грани, нужно площадь треугольника умножить на 4. Таким образом, площадь поверхности квадратной пирамиды вычисляется по формуле: SA = s2 + 2sl.[22]

    • В этой формуле s – ребро квадратной грани (сторона квадрата), l – апофема пирамиды.
    • Площадь поверхности измеряется в квадратных единицах, например, в мм2, см2, м2 и так далее.
  2. Изображение с названием Find Surface Area Step 28

    2

    Найдите значения апофемы и ребра квадратной грани. Апофема (l) – это высота треугольной грани, то есть расстояние между основанием треугольника и его вершиной. Ребро квадратной грани (s) – это сторона квадрата. Помните, что у квадрата все стороны равны, поэтому измерьте любое ребро квадратной грани, а также измерьте апофему пирамиды.[23]

    • Например: l = 3 см
    • Например: s = 1 см
  3. Изображение с названием Find Surface Area Step 29

    3

    Найдите площадь квадратной грани. Для этого возведите в квадрат ребро этой грани (сторону квадрата), то есть умножьте значение s на себя.[24]

    • Например: s2 = s х s = 1 х 1 = 1 см2
  4. Изображение с названием Find Surface Area Step 30

    4

    Вычислите общую площадь четырех треугольных граней. Вторая часть формулы включает суммарную площадь четырех треугольных граней. Согласно формуле 2ls, перемножьте 2, s и l. Так вы найдете суммарную площадь 4-х треугольных граней.[25]

    • Например: 2 х s х l = 2 х 1 х 3 = 6 см2
  5. Изображение с названием Find Surface Area Step 31

    5

    Сложите полученные значения. Сложите площадь квадратной грани и общую площадь четырех треугольных граней, чтобы вычислить площадь поверхности пирамиды.[26]

    • Например: s2 + 2sl = 1 + 6 = 7 см2

    Реклама

  1. Изображение с названием Find Surface Area Step 32

    1

    Запишите формулу для вычисления площади поверхности конуса. Конус имеет круглое основание и закругленную боковую поверхность, которая сужается в вершине этой фигуры. Чтобы найти площадь поверхности конуса, нужно вычислить значения площади круглого основания и площади боковой поверхности, а затем сложить эти значения. Формула для вычисления площади поверхности конуса: SA = π*r2 + π*rl, где r – радиус круглого основания, l – образующая (расстояние между вершиной конуса и точкой, которая лежит на окружности круга), π ≈ 3,14.[27]

    • Площадь поверхности измеряется в квадратных единицах, например, в мм2, см2, м2 и так далее.
  2. Изображение с названием Find Surface Area Step 33

    2

    Измерьте радиус основания и высоту конуса. Радиус – это отрезок, соединяющий центр круга и точку, которая лежит на его окружности. Высота – это расстояние между центром круга и высотой конуса.[28]

    • Например: r = 2 см
    • Например: h = 4 см
  3. Изображение с названием Find Surface Area Step 34

    3

    Найдите значение образующей конуса (l). Образующая конуса является гипотенузой треугольника, поэтому воспользуйтесь теоремой Пифагора, чтобы вычислить образующую: l = √(r2 + h2), где r – радиус круглого основания, h – высота конуса.[29]

    • Например: l = √(r2 + h2) = √(2 х 2 + 4 х 4) = √(4 + 16) = √(20) = 4,47 см
  4. Изображение с названием Find Surface Area Step 35

    4

    Вычислите площадь круглого основания. Площадь круга вычисляется по формуле S = π*r2. Измерив радиус, возведите его в квадрат (умножьте r на себя), а затем квадрат радиуса умножьте на число Пи.[30]

    • Например: π*r2 = 3,14 x 2 x 2 = 12,56 см2
  5. Изображение с названием Find Surface Area Step 36

    5

    Вычислите площадь боковой поверхности конуса. Сделайте это по формуле S = π*rl, где r – радиус круга, l – образующая, которая найдена ранее.[31]

    • Например: π*rl = 3,14 x 2 x 4,47 = 28,07 см
  6. Изображение с названием Find Surface Area Step 37

    6

    Сложите полученные значения, чтобы найти площадь поверхности конуса. Площадь поверхности конуса равна сумме площади круглого основания и площади боковой поверхности конуса.[32]

    • Например: π*r2 + π*rl = 12,56 + 28,07 = 40,63 см2

    Реклама

Что вам понадобится

  • Линейка
  • Ручка или карандаш
  • Бумага

Об этой статье

Эту страницу просматривали 70 452 раза.

Была ли эта статья полезной?

Формулы объёма и площади поверхности. Многогранники.

Изучение стереометрии начинается со знания формул. Для решения задач ЕГЭ по стереометрии нужны всего две вещи:

  1. Формулы объёма — например, объём куба, объём призмы, объем пирамиды — и формулы площади поверхности.
  2. Элементарная логика.

Все формулы объёма и формулы площади поверхности многогранников есть в нашей таблице.


Куб
V=a^3 S = 6a^2
d=asqrt{3}, d- диагональ

Параллелепипед
V=S_text{OCH}h, h - высота

Прямоугольный параллелепипед
V=abc S = 2ab+2bc+2ac
d=sqrt{a^2+b^2+c^2}

Призма
V=S_text{OCH}h S = 2S_text{OCH}+

Пирамида
V=frac{1}{3}S_text{OCH}h S = S_text{OCH}+

Проще всего найти объём куба — это куб его стороны. Вот, оказывается, откуда берётся выражение «возвести в куб».

Объём параллелепипеда тоже легко найти. Надо просто перемножить длину, ширину и высоту.

Объём призмы — это произведение площади её основания на высоту. Если в основании треугольник — находите площадь треугольника. Если квадрат — ищите площадь квадрата. Напомним, что высота — это перпендикуляр к основаниям призмы.

Объём пирамиды — это треть произведения площади основания на высоту. Высота пирамиды — это перпендикуляр, проведенный из её вершины к основанию.

Некоторые задачи по стереометрии решаются вообще без формул! Например, эта.

Задача 1.Объём куба равен 12. Найдите объём четырёхугольной пирамиды, основанием которой является грань куба, а вершиной — центр куба.

Решение:

Пирамида в кубе
Обойдёмся без формул! Просто посчитайте, сколько нужно таких четырёхугольных пирамидок, чтобы сложить из них этот куб :-)

Очевидно, их 6, поскольку у куба 6 граней.

Стереометрия — это просто! Для начала выучите формулы объёма и площади поверхности многогранников и тел вращения. А дальше — читайте о приемах решения задач по стереометрии.

Разберем задачи, где требуется найти площадь поверхности многогранника.

Мы рассмотрим призмы и пирамиды. Начнем с призмы.

Площадь полной поверхности призмы можно найти как сумму площадей всех ее граней. А это площади верхнего и нижнего оснований плюс площадь боковой поверхности.

Площадь боковой поверхности призмы – это сумма площадей боковых граней, которые являются прямоугольниками. Она равна периметру основания, умноженному на высоту призмы.

Задача 2. Найдите площадь поверхности многогранника, изображенного на рисунке (все двугранные углы прямые).

Пирамида в кубе

Решение.

Многогранник на рисунке – это прямая призма с высотой 12.

P_text{OCH}=8+6+6+2+2+4=28.

Пирамида в кубе

Чтобы найти площадь основания, разделим его на два прямоугольника и найдем площадь каждого:

S_1=6cdot 6=36 (больший квадрат), S_2=2cdot 4=8 (маленький прямоугольник), S_text{OCH}=36+8=44

Подставим все данные в формулу: и найдем площадь поверхности многогранника:

S=28cdot12+2cdot44=336+88=424.

Ответ: 424.

Задача 3. Найдите площадь поверхности многогранника, изображённого на рисунке (все двугранные углы прямые).

Пирамида в кубе

Решение.

Пирамида в кубе

Перевернем многогранник так, чтобы получилась прямая призма с высотой 1.
Площадь поверхности этой призмы находится по формуле:

P_text{OCH}=4+5+2+1+2+4=18.

Пирамида в кубе

Найдем площадь основания. Для этого разделим его на два прямоугольника и посчитаем площадь каждого:

S_1=4cdot4=16;~S_2=2cdot1=2 (большой прямоугольник), S_text{OCH}=16+2=18 (маленький прямоугольник).

Найдем площадь полной поверхности: =18cdot1+2cdot18=54

Ответ: 54

Задача 4.Найдите площадь поверхности многогранника, изображенного на рисунке (все двугранные углы прямые).

Пирамида в кубе

Решение.

Покажем еще один способ решения задачи.

Посмотрим, как получился такой многогранник. Можно сказать, что к «кирпичику», то есть прямоугольному параллелепипеду со сторонами 4, 1 и 3, сверху приклеен «кубик», все стороны которого равны 1.

И значит, площадь поверхности данного многогранника равна сумме площадей поверхностей прямоугольного параллелепипеда со сторонами 4,1,3 и
куба со стороной 1, без удвоенной площади квадрата со стороной 1:

S=((4+1+4+1)cdot 3+2cdot 4 cdot 1)+6cdot 1-2cdot 1=42.

Почему мы вычитаем удвоенную площадь квадрата? Представьте себе, что нам надо покрасить это объемное тело. Мы красим все грани параллелепипеда, кроме квадрата на верхней его грани, где на него поставлен кубик. И у куба мы покрасим все грани, кроме этого квадрата.

Ответ: 42

Задача 5. . Основание прямой призмы – треугольник со сторонами 5 см и 3 см и углом 120° между ними. Наибольшая из площадей боковых граней равна 35 см². Найдите площадь боковой поверхности призмы.

Пирамида в кубе

Решение.

Пусть АВ = 5 см, ВС = 3 см, тогда angle{ABC}=120^{circ}

Из Delta ABC по теореме косинусов найдем ребро АС:

AC^2=AB^2+BC^2-2cdot ABcdot BC cdot cos120^{circ}

AC^2=25+9-2cdot5cdot3cdotleft(-frac{1}{2}right)=47, ~AC = 7

Отрезок АС – большая сторона Delta ABC, следовательно, ACC_1A_1 - большая боковая грань призмы.

Поэтому ACcdot CC_1=35, или 7cdot h=35, откуда h=5.

(5+3+7)cdot5=75.

Ответ: 75

Теперь две задачи на площадь боковой поверхности пирамиды.

Задача 6. Основанием пирамиды DАВС является треугольник АВС, у которого АВ = АС = 13, ВС = 10; ребро АD перпендикулярно к плоскости основания и равно 9. Найдите площадь боковой поверхности пирамиды.

Пирамида в кубе

Решение.

Площадь боковой поверхности пирамиды – это сумма площадей всех ее боковых граней.

Проведем AKperp BC, тогда BC perp DK (по теореме о 3-х перпендикулярах), то есть DК – высота треугольника DВС.

Delta ABC – равнобедренный (по условию АВ = АС), то высота АК, проведенная к основанию ВС, является и медианой, то есть ВК = КС = 5.

Из прямоугольного Delta ABK получим:

AK=sqrt{AB^2-BK^2}=sqrt{13^2-5^2}=sqrt{169-25}=sqrt{144}=12.

Из прямоугольного Delta DAK имеем:

DK=sqrt{DA^2+AK^2}=sqrt{9^2+12^2}=sqrt{81+144}=sqrt{225}=15.

Delta ADB=Delta ADC (по двум катетам), тогда S_{ADB}=S_{ADC}, следовательно

=2S_{ADB}+S_{BDC},=2cdotfrac{1}{2}cdot13cdot9+frac{1}{2}cdot10cdot15=117+75=192.

Ответ: 192

Задача 8. Стороны основания правильной четырехугольной пирамиды равны 24, боковые ребра равны 37. Найдите площадь поверхности пирамиды.

Пирамида в кубе

Решение:

Так как четырехугольная пирамида правильная, то в основании лежит квадрат, а все боковые грани — равные равнобедренные треугольники.

Площадь поверхности пирамиды равна

=pcdot h+a^2, где р – полупериметр основания, h — апофема (высота боковой грани правильной пирамиды), a – сторона основания.

Значит, полупериметр основания p = 24 cdot 2 = 48.

Апофему найдем по теореме Пифагора:

h=sqrt{37^2-12^2}=sqrt{(37-12)(37+12)}=sqrt{25cdot49}=5cdot7=35

S = 48cdot 35+24^2=1680+576=2256.

Ответ: 2256

Как решать задачи на нахождение объема многогранника сложной формы?

Покажем два способа.

Первый способ

1.Составной многогранник достроить до полного параллелепипеда или куба.
2.Найти объем параллелепипеда.
3.Найти объем лишней части фигуры.
4.Вычесть из объема параллелепипеда объем лишней части.

Второй способ.

1.Разделить составной многогранник на несколько параллелепипедов.
2.Найти объем каждого параллелепипеда.
3.Сложить объемы.

Задача 9. Найдите объем многогранника, изображенного на рисунке (все двугранные углы прямые).

Пирамида в кубе

Решение.

Пирамида в кубе

1) Достроим составной многогранник до параллелепипеда.

2) Найдем объем параллелепипеда – для этого перемножим его длину, ширину и высоту: V=9cdot 4cdot10=360

3) Найдем объем лишней части, то есть маленького параллелепипеда.

Его длина равна 9 – 4 = 5, ширина 4, высота 7, тогда его объем V_1=5cdot4cdot7=140.

4) Вычтем из объема параллелепипеда объем лишней части и получим объем заданной фигуры: V=360-140=220.

Ответ: 220.

Задача 10. Основанием прямой треугольной призмы служит прямоугольный треугольник с катетами 6 и 7, боковое ребро равно 6. Найдите объем призмы.

Пирамида в кубе

Объем призмы равен V=S_{OCH}cdot h, а так как призма прямая, то ее боковое ребро является и высотой, то есть h=6.

Основанием призмы является прямоугольный треугольник c катетами 6 и 7, тогда площадь основания

S_{OCH}=frac{1}{2}cdot ab=frac{1}{2}cdot6cdot7=21.

V=21cdot6=126.

Ответ: 126

Задача 11. В сосуд, имеющий форму правильной треугольной призмы, налили воду. Уровень воды достигает 324 см. На какой высоте будет находиться уровень воды, если ее перелить в другой сосуд, у которого сторона в 9 раз больше, чем у первого? Ответ выразите в сантиметрах.

Пирамида в кубе

Решение.

Объем призмы равен V = S_{OCH}cdot h

Воду перелили в другой такой же сосуд. Это значит, что другой сосуд также имеет форму правильной треугольной призмы, но все стороны основания второго сосуда в 9 раз больше, чем у первого.

Основанием второго сосуда также является правильный треугольник. Он подобен правильному треугольнику в основании первого сосуда. Отношение площадей подобных фигур равно квадрату коэффициента подобия.

Если все стороны треугольника увеличить в 9 раз, его площадь увеличится в 9^2 = 81 раз. Мы получили, что площадь основания второго сосуда в 81 раз больше, чем у первого.

Объем воды не изменился, V=S_1cdot h_1=S_2 cdot h_2. Так как S_2=81S_1, высота воды h_2 должна быть в 81 раз меньше, чем h_1. Она равна 324:81 = 4 (см).

Ответ: 4

Задача 12. Объем параллелепипеда ABCDA_1B_1C_1D_1. Найдите объем треугольной пирамиды ABDA_1.

Пирамида в кубе

Решение.
Опустим из вершины A_1 высоту A_1H Н на основание ABCD.

=S_{ABCD}cdot A_1H

=frac{1}{3}S_{ABD}cdot A_1H

Пирамида в кубе

Диагональ основания делит его на два равных треугольника, следовательно, S_{ABD}=frac{1}{2}S_{ABCD}.

Имеем:

ABDA_1=frac{1}{3}S_{ABD}cdot A_1H=frac{1}{3}cdotfrac{1}{2}S_{ABCD}cdot A_1H=frac{1}{6}V_{ABCDA_1B_1C_1D_1}=frac{1}{6}cdot21=3,5.

Ответ: 3,5

Задача 13. Найдите объем правильной треугольной пирамиды, стороны основания которой равны 8, а высота равна 6sqrt{3}.

Пирамида в кубе

Решение.
По формуле объема пирамиды, .

В основании пирамиды лежит правильный треугольник. Его площадь равна S_{OCH}=frac{a^2sqrt{3}}{4}.

S_{OCH}=frac{8^2sqrt{3}}{4}=frac{64sqrt{3}}{4}=16sqrt{3}.

Объем пирамиды V=frac{1}{3}cdot16sqrt{3}cdot6sqrt{3}=16cdot6=96.

Ответ: 96

Задача 14. Через середины сторон двух соседних ребер основания правильной четырехугольной призмы проведена плоскость, параллельная боковому ребру. Найдите объем меньшей из частей, на которые эта плоскость делит призму, если объем призмы равен 32.

Пирамида в кубе

Решение.

По условию, призма правильная, значит, в ее основании лежит квадрат, а высота равна боковому ребру.

Пусть AD=x, тогда S_{OCH}=x^2.

Так как точки М и К – середины АD и DС соответственно, то DM=DK=frac{x}{2}.

S_{MDK}=frac{1}{2}MDcdot DK=frac{1}{2}cdotfrac{x}{2}cdotfrac{x}{2}=frac{1}{8}x^2.

Площадь треугольника MDK, лежащего в основании новой призмы, составляет frac{1}{8} часть площади квадрата в основании исходной призмы.
Высоты обеих призм одинаковые. Согласно формуле объема призмы: V=S_{OCH}cdot h, и значит, объем маленькой призмы в 8 раз меньше объема большой призмы. Он равен 32:8=4.

Ответ: 4

Докажем полезную теорему.

Теорема: Площадь боковой поверхности наклонной призмы равна произведению периметра перпендикулярного сечения на боковое ребро.

Доказательство:

Пирамида в кубе

Плоскость перпендикулярного сечения призмы перпендикулярна к боковым ребрам, поэтому стороны перпендикулярного сечения призмы являются высотами параллелограммов.

S=a_1l+a_2l+dots+a_nl,

S=(a_1+a_2+dots+a_n)l,

S=P_{perp}cdot l.

Больше задач на формулы объема и площади поверхности здесь.

Спасибо за то, что пользуйтесь нашими материалами.
Информация на странице «Формулы объёма и площади поверхности. Многогранники.» подготовлена нашими редакторами специально, чтобы помочь вам в освоении предмета и подготовке к экзаменам.
Чтобы успешно сдать нужные и поступить в высшее учебное заведение или техникум нужно использовать все инструменты: учеба, контрольные, олимпиады, онлайн-лекции, видеоуроки, сборники заданий.
Также вы можете воспользоваться другими статьями из данного раздела.

Публикация обновлена:
08.05.2023

Площади и объемы многогранников

Что такое многогранник

Простейшей геометрической фигурой является прямая. Ею называется линия, которая имеет свое продолжение вправо и влево. Если эту прямую ограничить с двух сторон, получится отрезок. Для определения его величины достаточно одного измерения — длины. Прямая, ограниченная с одной стороны, имеет свое название. Это отрезок.

луч

Источник: rusinfo.info

Осторожно! Если преподаватель обнаружит плагиат в работе, не избежать крупных проблем (вплоть до отчисления). Если нет возможности написать самому, закажите тут.

В пределах одной плоскости, кроме прямой, которую можно измерить одной величиной, существуют геометрические фигуры, измеряемые длиной и шириной. Это многоугольники.

много

Источник: sun9-19.userapi.com

Они могут иметь различное количество углов и характеризуются таким понятием как площадь.

Фигура, которая располагается в нескольких плоскостях, характеризуется пространственными величинами или трехмерным измерением. К таким фигурам относят многогранники.

Многогранник — геометрическая фигура, имеющая замкнутую поверхность, которую можно представить совокупностью многоугольников.

Для полной характеристики многогранника необходимо назвать следующие свойства:

  • стороны обязательно являются смежными с одной соседней стороной;
  • при необходимости можно, начав движение от одного из многоугольников, достигнуть любого другого, используя принцип смежности;
  • площадь поверхности многогранника равна сумме площадей многоугольников, ограничивающих фигуру.

При этом каждый многоугольник — это грань, сторона — ребро, а вершина — вершина многогранника.

 Многогранник, как геометрическое тело, может быть представлен несколькими параллелепипедами, которые соединены по одной из граней. В таком случае их площадь будет равна сумме площадей свободных сторон и одной стороны, по которой произошло соединение. Объем такого тела будет равен сумме объемов каждого из параллелепипедов.

куб

Источник: examer.ru

Многогранники бывают:

  • выпуклыми (каждая из точек фигуры находится по одну сторону от плоскости);
  • невыпуклыми (не все точки располагаются по одну сторону плоскости).

Проще говоря, выпуклый многогранник можно поставить на одну из сторон, и он будет на ней «уверенно стоять». С невыпуклым такого действия совершить нельзя.

Примечание 1

Важно помнить, что многогранник — это не только поверхность, состоящая из нескольких многоугольников. Это еще и тот внутренний объем, который ограничивает данная поверхность. Именно поэтому в стереометрии отделяют два понятия: площадь многогранника и его объем.

Как найти площадь: формулы

В зависимости от того, какой фигурой представлен многогранник, выбирают формулу для расчета площади его поверхности. Рассмотрим примеры.

1. Дана призма (многогранник, у которого в параллельных плоскостях расположены два многоугольника, являющихся гранями. Прочие грани представлены параллелограммами).

призма

Источник: osiktakan.ru

Найти площадь данной фигуры можно следующим образом:

фрмула

Источник: osiktakan.ru

2. Дан параллелепипед (один из вариантов призмы, все шесть граней которой являются параллелограммами).

параллел

Источник: osiktakan.ru

В этом случае S=2(ab+bc+ac)

3.Дана пирамида (вид многогранника с основанием в виде n-угольника и боковыми гранями по форме треугольниками. Обязательное условие: все треугольники имеют одну общую вершину, у которой есть свое название — вершина пирамиды).

пирамида

Источник: osiktakan.ru

Площадь пирамиды можно найти по формуле:

формула2

Источник: osiktakan.ru

Примечание 2

Особый случай, когда у пирамиды нет вершины. Такая фигура носит название усеченной. Ее можно себе представить, если мысленно параллельно основанию провести сечение (см. рисунок).

нет

Источник: osiktakan.ru

 Sбок усеченной пирамиды находят по формуле:

формула3

Источник: osiktakan.ru

В стереометрии существует понятие правильного многогранника. Его вводят для фигур, у которых:

  • все грани представлены правильными многоугольниками;
  • число граней у всех углов идентично;
  • ребра являются равными отрезками;
  • величины плоских углов идентичны.

Перечисленным требованиям отвечают 5 видов многогранников, представленных в таблице:

  Наименование фигуры Пример
1 Правильный четырехгранник Правильный тетраэдр
2 Правильный шестигранник Куб
3 Правильный восьмигранник Правильный октаэдр
4 Правильный двенадцатигранник Правильный додекаэдр
5 Правильный двадцатигранник Правильный икосаэдр

Определить площадь правильных многогранников также несложно, зная следующие формулы (нумерация согласно строке таблицы):

1. S=a2√3

2. S=6a2

3. S=2a2√3

4. формула4

Источник: osiktakan.ru

5. S=5a2√3

Использовать данный формулы нужно в задачах, требующих определить площадь поверхности многогранника, без учета его внутреннего объема.

Объем многогранника: формулы

Объем многогранника, в отличие от площади его поверхности, не может быть определен только касательно поверхности. Ведь он представляет собой все внутреннее пространство, которое ограничивается имеющейся поверхностью. На практике говорят, что объем является величиной, с помощью которой описывают размер трехмерных фигур. Эти фигуры так и называют: объемные (тела). У объемной фигуры имеется не только длина и ширина, но и высота – параметр, измеряемый в третьей плоскости.

Решить задачи по определению объема многогранника также можно с использованием формул.

Рассмотрим следующий рисунок:

рисунок

Источник: interneturok.ru

Объем такого тела определяется по формуле:

V=a*b*c

Поскольку по рисунку видно, что a*b=S, а c является высотой (h), то формулу можно записать в виде: V=S*h

Рассмотренный вариант касается прямоугольного параллелепипеда. Если же произвольный параллелепипед имеет наклонные вертикальные грани, то данная формула также верна, однако проведенная высота отличается от бокового ребра, и, возможно, лежит внутри либо вне самого тела:

2

Источник: interneturok.ru

Формула определения объема через площадь и высоту подходит и для такого трехмерного тела, как призма (причем как для прямой, так и наклонной):

3

Источник: interneturok.ru

В быту часто происходит образование новых многогранников в процессе обрезания кусков от старых и приставления их к уже имеющимся. Как же вычислить объем такого геометрического тела? В геометрии используется принцип Кавальери. Суть его в следующем. Площади прямоугольника и параллелограмма равны потому что они в своей структуре имеют отрезки одинакового размера. Проще говоря, если представить рассечение обеих фигур плоскостями, параллельными основанию, величина отрезка слева всегда будет равна величине отрезка справа. Если третья фигура имеет такое же строение, по ее площадь будет такой же.

4

Источник: interneturok.ru

Объем многогранника, который может быть разделен на два и более многогранников, может определяться суммой их объемов.

найдите

Источник: image2.slideserve.com

Для систематизации формул, применяемых для определения объемов многогранников, рассмотрим таблицу:

  Наименование фигуры Формула объема
1 Параллелепипед непрямоугольный, призма V=S*h
  Параллелепипед прямоугольный V=a*b*c
2 Куб V=a3
3 Пирамида S=1/3(Sh)

На практике определить объем трехмерного тела можно и без формулы. Например, найти объем призмы можно, если умножить площадь ее основания на высоту фигуры. При этом вариант, когда в основании призмы лежит треугольник, предполагает, что нужно найти его площадь. Если основание квадрат, на первом этапе — нахождение площади квадрата. Величину высоты определяем, опуская перпендикуляр к основанию.

Примеры решения задач

Задача 1

Треугольник ABC — основание пирамиды DABC. При этом AC=AB=13см, BC=10см. AD=9см, это перпендикуляр к основанию. Найти S боковой поверхности.

задача1

Источник: ege-study.ru

Искомая величина равна сумме площадей боковых граней этой пирамиды. 

Из вершин A и D проведем перпендикуляры к стороне BC. Тогда высота треугольника DBC — DK. 

Треугольник ABC является равнобедренным, поскольку AB=AC. Тогда высота AK, которую провели по направлению основания BC, совпадает с медианой. Соответственно BK=KC=5см.

решение

Источник: ege-study.ru

Ответ: 192 см3

Задача 2

Имеется выпуклый многогранник. У него 8 граней, в т.ч. 4 пятиугольника и 4 четырехугольника. Определить, сколько у данного тела ребер и вершин. Определим сумму всех граней: 4*4+4*5=36

Поскольку смежные ребра посчитаны дважды, найденное количество необходимо разделить на два: 36/2=18

В+Г-Р=2

В+12-30=2

В+12-2=30

В+10=30

В=20

Ответ: вершин — 20, ребер — 30.

Задача 3

Если переплавить три куба из латуни, у которых ребра равны соответственно 3, 4, 5см, в один куб, какая величина ребра получится у нового куба?

Решение.

решение2

Источник: famiredo.ru

Подготовка к ЕГЭ по математике не может обойтись без изучения геометрии. Задачи на расчет площади и объема фигур, нахождение углов и длин сторон встречаются и в первой, и во второй части. В базовой математике ЕГЭ формулы на объем и площадь представлены в справочных материалах. Тем, кто сдает профильную, придется выучить их. Рассмотрим основную теорию.

Площадь — величина, которая есть у плоских фигур. Ее можно посчитать для квадрата, прямоугольника, параллелограмма, треугольника, ромба, трапеции, круга. Объем присущ трехмерным объектам, таким как куб, шар, параллелепипед, призма, пирамида, конус. Объемные тела условно делят на многогранники (состоят из нескольких многоугольников) и поверхности вращения (есть условная линия, вдоль которой вращается плоская фигура). На вычисление объема это не влияет.

В таблицах представлены основные формулы объемов и площадей фигур для ЕГЭ. Мы советуем сохранить их себе, чтобы пользоваться при подготовке к ЕГЭ и быстро повторить теорию перед экзаменом. 

многогранники

площадь

тела вращения

трапеция и круг егэ

прямоугольный треугольник егэ

  • Таблицы и формулы 2

Таблицы и формулы 2

Объем цилиндра

цилиндр

Объем цилиндра равен произведению площади его основания на высоту.

    Формулы объема цилиндра

  • V = 

    π R

    2 

    h

  • V = 

    So h

где 

V

 — объем цилиндра, 

So

 — площадь основания цилиндра, 

R

 — радиус цилиндра, 

h

 — высота цилиндра, 

π = 3.141592

.

Смотрите также онлайн калькулятор для расчета Объем цилиндра.

Объем конуса

конус

Объем конуса равен трети от произведению площади его основания на высоту.

Формулы объема конуса



где 

V

 — объем конуса, 

So

 — площадь основания конуса, 

R

 — радиус основания конуса, 

h

 — высота конуса, 

π = 3.141592

.

Смотрите также онлайн калькулятор для расчета объема конуса.

Объем шара

шар

Объем шара равен четырем третим от его радиуса в кубе помноженого на число пи.

Формула объема шара


где 

V

 — объем шара, 

R

 — радиус шара, 

π = 3.141592

.

Смотрите также онлайн калькулятор для расчета объема шара.

Площадь цилиндра

цилиндр

Площадь боковой поверхности круглого цилиндра равна произведению периметра его основания на высоту.

Формула для вычисления площади боковой поверхности цилиндра

Площадь полной поверхности круглого цилиндра равна сумме площади боковой поверхности цилиндра и удвоенной площади основания.

Формула для вычисления площади полной поверхности цилиндра

S = 2 

π R h

 + 2 

π R 

2 = 2 

π R

(

R

 + 

h

)


где 

S

 — площадь, 

R

 — радиус цилиндра, 

h

 — высота цилиндра, 

π = 3.141592

.

Смотрите также онлайн калькулятор для расчета площади цилиндра.

Площадь конуса

конус

Площадь боковой поверхности конуса равна произведению его радиуса и образующей умноженному на число 

π

.

Формула площади боковой поверхности конуса:

Площадь полной поверхности конуса равна сумме площади основания конуса и площади боковой поверхности.

Формула площади полной поверхности конуса:

S = 

π R

2 + 

π R l

 = 

π R

 (

R

 + 

l

)


где 

S

 — площадь, 

R

 — радиус основания конуса, 

l

 — образующая конуса, 

π = 3.141592

.

Смотрите также онлайн калькулятор для расчета площади конуса.

Площадь шара

шар

Формулы площади шара

  • Площадь поверхности шара равна четырем его радиусам в квадрате умноженным на число 

    π

    .

  • Площадь поверхности шара равна квадрату его диаметра умноженного на число 

    π

    .

где 

S

 — площадь шара, 

R

 — радиус шара, 

D

 — диаметр шара, 

π = 3.141592

.

Смотрите также онлайн калькулятор для расчета площади шара.

Понравилась статья? Поделить с друзьями:
  • Как найти совпадения по картинке
  • Как найти массу атома в молях
  • Как найти половину отрезка
  • Как составить претензию по страховке
  • Как найти бамбуковые джунгли в майнкрафте