Как найти площадь треугольника в геодезии

плотин, либо других гидротехнических сооружений, представляющих собой препятствие для свободного тока воды.

Для построения зоны затопления исходной величиной является абсолютная высота плотины или подпорного сооружения, а также положение самой плотины 1-2 на местности. Абсолютная высота плотины задает абсолютную высоту горизонтали (рис. 2.27), которую сравнительно легко провести между горизонталями, имеющимися на карте.

Граница зоны затопления показывает на карте местность, покрывающуюся водой после строительства плотины, что необходимо для принятия соответствующих предупредительных мер. Кроме того, использование горизонталей карты и отметки водного зеркала позволяет решить задачу о емкости водохранилища.

Существует несколько способов определения площадей: аналитический, графический и механический.

Аналитический метод заключается в определении площади земельного участка по результатам непосредственных или косвенных измерений линий, углов. Если площади земельных участков представляют собой простые геометрические фигуры (треугольники, многоугольники и т.п.), то их площадь определяют аналитически по размерам сторон треугольников, на которые следует разбить более сложные геометрические фигуры. В этом случае, если известны основания аi и высоты hi, то площадь S многоугольника определяется как сумма нескольких треугольников (рис. 2.28 б):

i= n

S = 0,5å ai hi

i= 1

(2.29) Если в треугольнике известны все стороны a, b и с, то для вычисления

площади можно воспользоваться другой формулой

S = P(P a)( P b)( P c)

(2.30)

где Р – полупериметр треугольника.

Если в треугольнике известны две стороны а и b и угол между ними β, то площадь находится по формуле

S = 0,5ab sin β

(2.31) Площадь треугольника может быть найдена также и по известной сторо-

не а и двум углам α и β, прилежащим к ней:

S =

a 2

2(ctg α + ctg β )

(2.32) Если известны прямоугольные координаты вершин многоугольника

(рис. 2.28 а), то значение его площади может быть получено по формуле:

60

S = 0,5[ X1 (Y2 Yn ) + X 2 (Y3 Y1 ) + … + X n (Y1 Yn−1 )]

(2.33)

или

S = 0,5[Y1 (X 2 X n ) + Y2 (X 3 X1 ) + … + Yn (X1 X n− 1 )]

(2.34) Т.е. удвоенная площадь полигона равна сумме произведений абсциссы (ординаты) каждой из точек на разность ординат последующей и преды-

дущей (абсцисс последующей и предыдущей) точек.

Рис. 2.28. Аналитичесий (а) и графический (б) способы определения площади многоугольника

В зависимости от направления обхода значение площади может получиться со знаком минус. В связи с этим площадь надо брать по абсолютной величине.

Вычисление площади многоугольника по координатам его вершин следует выполнять для контроля по формулам (2.33) и (2.34).

Пример 2.17. Определение площади полигона по координатам его вершин. Исходные данные

Точки

1

2

3

4

Х, м

2156,847

1921,315

1541,242

1756,211

Y, м

4600,212

4563,842

4781,747

4763,226

Решение.

S = 0,5 [2156,847(4563,842 – 4763,226) + 1921,315(4781,747 – 4600,212) + 1541,242 (4763,226 – 4563,842) + 1756,211(4600,212 – 4781,747)] = 0,5[2156,847 (-199,384) + +1921,315 (181,535) + 1541,242(199,384) + 1756,211(-181,535)] = 46384,816 м2.

S = 0,5 [4600,212(1921,315 – 1756,211) + 4563,842(1541,242 – 2156,847) + 4781,747 (1756,211 – 1921,315) + 4763,226(2156,847 – 1541,242)] = 0,5[4600,212 (165,104) + +4563,842 (-615,605) + 4781,747(-165,104) + 4763,226(615,605)] = 46384,816 м2.

Ответы совпали !

Графический и механический методы используются для определения площадей на картографических изображениях.

61

Графический метод (рис. 2.28 б) предусматривает измерение на плане элементов сравнительно простых фигур (треугольника, прямоугольника, трапеции и др.), позволяющих затем вычислить площадь. Сложные фигуры разбивают обычно на треугольники, в которых измеряют основание и высоту. В некоторых случаях и площади криволинейного контура также разбивают на треугольники или другие простые фигуры.

Фигуры, на которые производят разбивку площадей объектов, должны быть по возможности крупными, мало вытянутыми, большая точность будет достигаться, например, при основании треугольника, равном его высоте, опущенной на это основание.

Часто в пределах измеряемой площади есть линии или углы, величины которых известны из результатов непосредственных измерений на местности. В этом случае необходимо разбивку привязать к этим линиям или углам, и использовать известные данные при вычислении площади.

Для повышения точности площадь фигуры следует определять не менее двух-трех раз, причем следует использовать разные разбивки. Расхождение в результатах определения площади по нескольким разбивкам не должно превышать 1:50 от величины площади всего участка.

Рис. 2.29. Определение площади фигуры с помощью палеток а – квадратная палетка; б – линейная палетка; в – точечная палетка

Механический метод определения площадей предусматривает использование палеток, ротометров, планиметров или других приборов.

Определение площадей с помощью палеток. Принцип определения площади с помощью палетки пояснен на рис. 2.29. Палетка представляет собой прозрачную основу, на которой построена сетка квадратов с известной стороной (квадратная палетка), серия параллельных линий с известным расстоянием между ними (линейная палетка), упорядоченная группа точек с известными расстояниями между ними (точечная палетка).

При использовании квадратной палетки для данного картографического материала определяют площадь элементарной ячейки (квадрата). Например, сторона квадрата равна 2 мм, масштаб карты 1:10000. В этом случае сторона квадрата на местности будет равна 20 м, а площадь – 400 м2. Палетку накладывают произвольно на фигуру и определяют число полных квадратов (N) и число всех неполных квадратов (n). Площадь определяют по формуле

62

S = 0,5 ( 2N + n ) S0

(2.35)

Пример 2.18. Определение площади с помощью квадратной палетки. Исходные данные (рис. 2.29 а) : N = 107, n = 49.

Решение.

S = 400 (107 + 49/2) = 52600 м2 (при S0 = 400 м2).

Похожий принцип реализуется и при использовании линейной палетки (рис. 2.29 в). В качестве единичной площади здесь выступает элементарная полоса длиной lo , например, 1 см при известном расстоянии а между линиями. В пределах контура фигуры измеряют длины линий посредине между нанесенными на палетку параллельными линиями, суммируют их и переводят через значение S0 в площадь. Если крайние границы контура образуют криволинейный треугольник, как это получилось на рисунке, то величину измеренного отрезка делят пополам. Т.е. площадь определяется в этом случае так же, как и площадь треугольника. В примере, который приведен ниже, это учтено для соответствующих отрезков.

Пример 2.19. Определение площади с помощью линейной палетки.

Исходные данные (результаты измерения в пределах контура криволинейной фигуры): (9,0:2 + 17,2 + 22,4 + 24,6 + 25,0 + 25,8 + 27,0 + 27,0 + 27,2 + 29,3 + 28,0 + 28,0 + 28,5 + 25,0 + 9,4:2 ) мм = 344,2 мм = 34,42 см.

Площадь определяется на карте 1:5000. Расстояние между линиями палетки 2 мм. Длина единичного отрезка принята равной 1 см. Следовательно, единичная площадь

Sо = 50 м · 10 м = 500 м2.

Решение.

S = (500 · 34,42) = 17210 м2.

При использовании точечной палетки (рис. 2.29 б) определяют площадь зоны влияния каждой точки, которая, вообще говоря, равна площади квадрата, как и в квадратной палетке. В контуре подсчитывают число точек (N) и умножают его на значение элементарной площади. При этом рекомендуется не принимать во внимание точки, совпадающие с контуром измеряяемой площади.

Пример 2.20. Определение площади с помощью точечной палетки. Исходные данные: Sо = 200 м2. N = 87 (рис. 2.29 б).

Решение.

S = 200 · 87 = 17400 м2.

Для повышения точности площадь определяют несколько раз (5 – 6 раз) с произвольной перестановкой используемой палетки в любое положение в том числе и с поворотом относительно ее первоначального положения. За окончательное значение площади принимают среднее арифметическое из результатов измерений.

Более точным и простым в использовании является способ линейной палетки, в котором суммируются отрезки палетки, пересекающие контур.

Определение площадей с помощью планиметра (рис. 2.30).

Планиметр был изобретен в 1850 г. русским конструктором П.А.Зарубиным.

63

Планиметр – это механический прибор, состоящий из полюсного рычага 1 с грузиком 3. Грузик содержит в центре иглу для закрепления его в устойчивом положении на столе. На другом конце полюсного рычага имеется сферическая шарнирная головка, которая свободно вставляется в гнездо 5 обводного рычага 2. На обводном рычаге имеется обводной штырь (игла) 4 и счетный механизм 6. Счетный механизм имеет дисковую шкалу 7 счета оборотов, счетное колесо 8, один оборот которого соответствует одному делению дисковой шкалы. Внешний ободок счетного колеса скользит по бумаге и за счет трения проворачивается и приводит в движение через червячную передачу дисковую шкалу. Со шкалой счетного колеса сопряжена шкала нониуса 9, по которой берут отсчет дробной части наименьшего деления шкалы счетного колеса.

Рис. 2.30. Планиметр 1- полюсный рычаг; 2 – обводной рычаг; 3 – груз; 4 – игла; 5 – гнездо; 6 – счетный

механизм; 7 – дисковая шкала; 8 – счетное колесо; 9 – нониус.

Полный отсчет (рис. 2.30) содержит четыре значащих цифры: 1-я – отсчет по шкале диска (3); 2-я – подписанное число на дисковой шкале до нулевого индекса нониуса (5); 3-я – число полных наименьших делений от ближайшей по возрастанию подписанной цифры счетного колеса до нулевого индекса нониуса (8); 4-я – ближайшее от нулевого индекса нониуса деление, совпа-дающее с делением шкалы счетного колеса (2). Таким образом, отсчет равен 3582.

Последовательность измерения площади фигуры.

1. Установить планиметр на карте таким образом, чтобы при обводе фигуры угол между полюсным и обводным рычагом не был меньше 30о и больше 150о. При этом колесо счетного механизма обязательно должно перемещаться по поверхности бумаги. Если фигура большая, т.е. не обеспе-

64

чивается поставленное выше условие, то ее следует измерять по частям. После подбора установки планиметра закрепить полюс нажатием на грузик и

вдальнейшем при измерениях не смещать.

2.Установить обводную иглу в точку фигуры, имеющей известную площадь и находящейся примерно в том же месте, что и измеряемая площадь. Такой фигурой может быть один, два или несколько квадратов километровой сетки системы прямоугольных координат карты. Если на картографическом материале отсутствуют фигуры известной площади, то можно их построить. Например, окружность известного радиуса, треугольник, квадрат и т.п. Взять начальный отсчет Ао по шкалам счетного устройства (например, Ао = 5783).

3.Аккуратно обвести фигуру с известной площадью с возвращением в начальную точку. Взять отсчет Во (например, Во = 5648).

4.Установить обводную иглу в точку фигуры с неизвестной площадью и взять начальный отсчет А (например, А = 4277).

5.Аккуратно обвести фигуру с неизвестной площадью с возвращением в начальную точку. Взять отсчет В (например, В = 4203).

6.Вычислить разности отсчетов

Со=Ао— Во и С = А – В: Со = 5783 – 5648 = 135; С = 4277 – 4203 = 74.

7. Вычислить площадь фигуры. Предположим, что известная площадь Sо

2

æ

SO C

ö

(Sо = 4 км ), тогда

S

=

ç

ç

CO

.

è

ø

В приведенном примере: S = (4 км2 · 74) : 135 = 2,193 км2.

Отношение Sо

/ Со = μ называется ценой деления планиметра. Таким

образом, S = μС.

Для повышения точности измерений площадь определяют несколько раз по схеме, приведенной выше. Целесообразно обвод площадей (известной и неизвестной) выполнять по часовой и против часовой стрелки, т.е. один полный прием измерения площади будет заключаться в двойном измерении. Обычно достаточно двух полных приемов. Окончательное значение площади находят как среднее арифметическое из результатов полных приемов измерений.

Если планиметр содержит два отсчетных устройства, то достаточно выполнить один полный прием, но при использовании во всех случаях двух отсчетных устройств, т.е. по каждой из точек брать по два отсчета, например,

Ао1, Ао2, Во1, Во2, А1, А2 и т.д.

До начала работы с планиметром необходимо выполнить его поверки в соответствии с указаниями, приводящимися в инструкции по пользованию, либо в другой соответствующей литературе.

При решении различных задач требования к точности определения площадей различные. В связи с этим в каждом случае требуется выбирать и способ определения площади.

В настоящее время выпускаются планиметры различных конструкций, в том числе и электронные планиметры, выдающие результаты измерений на механическое или электронное табло. На рынке геодезических приборов

65

Содержание

  1. Cпособы определения площадей в геодезии
  2. Основы геодезии
  3. О геодезии и разный полезный материал для геодезистов.
  4. Геометрический способ
  5. Геометрический способ
  6. Способы определения площадей земельных участков
  7. СПОСОБЫ ОПРЕДЕЛЕНИЯ ПЛОЩАДЕЙ
  8. ЗЕМЕЛЬНЫХ УЧАСТКОВ
  9. А 674
  10. А 674

Cпособы определения площадей в геодезии

Определение площадей земельных участков является одним из важнейших видов геодезических работ для целей земельного кадастра.

В зависимости от хозяйственной значимости земельных участков, наличия планово-топографического материала, топографических условий местности и требуемой точности применяют различные способы определения площадей.

1. Аналитический, когда площадь вычисляется по результатам измерений линий на местности, по результатам измерений линий и углов на местности или по их функциям (координатам вершин фигур).

2. Графический, когда площадь вычисляется по результатам измерений линий или координат на плане (карте). Графические способы. Участок на плане разбивают на простые геометрические фигуры (обычно – треугольники), элементы которых измеряют с помощью измерителя и поперечного масштаба, а площади вычисляют по известным формулам и суммируют.

3. Механический, когда площадь определяется по плану с помощью специальных приборов (планиметров) или приспособлений (палеток). Иногда эти способы применяют комбинированно, например, часть линейных величин для вычисления площади определяют по плану, а часть берут из результатов измерений на местности.

Площади можно также определить на ЭВМ по цифровой модели местности по специальной программе.

При аналитическом способе определения площадей применяются формулы геометрии, тригонометрии и аналитической геометрии. При определении площадей небольших участков (для учета площадей, занятых строениями, усадьбами, площадей вспашки, посева) участки разбиваются на простейшие геометрические фигуры, преимущественно треугольники, прямоугольники, реже трапеции. В этом случае площади участков определяются как суммы площадей отдельных фигур, вычисляемых по линейным элементам — высотам и основаниям.


Рис. 23.1. Геометрические фигуры для определения площадей участков (а, б)

Если по границам участка выполнены геодезические измерения, то площадь всего участка или его части можно вычислить по формулам, приведенным применительно к следующим фигурам участков (рис. 23.1).

Треугольник (рис. 23.1, а). Площадь треугольника определяется по сторонам l1 и l2, углу β2, заключенному между ними, по формуле

Четырехугольник (рис. 23.1, б). В зависимости от элементов, известных в четырехугольнике, могут быть использованы различные формулы для расчета, в связи с чем приведем пример, характеризующий это многообразие. Пусть в четырехугольнике измерены все стороны и один угол при вершине 2. В таком случае площадь треугольника 1 — 2 — 3 может быть вычислена по формуле (23.1). При этом полезно вычислить длину l1-3, используя теорему косинусов

Площадь треугольника 1 — 3 — 4 может быть вычислена по формуле

где S — полупериметр, равный

Общая площадь четырехугольника будет равна:

Источник

Основы геодезии

О геодезии и разный полезный материал для геодезистов.

Геометрический способ

Существует три способа определения площади участков: геометрический, аналитический и механический. На местности применяют два первых способа, на картах и планах – все три способа.

Геометрический способ – это вычисление площади геометрических фигур по длинам сторон и углам между ними, значения которых можно получить только из измерений.

Сначала рассмотрим простейшую фигуру – треугольник.

Формулы для вычисления площади треугольника известны:

P = 0.5 * a * b * Sin(C) (6.2)

в этих формулах:
a, b, c – длины сторон треугольника,
A, B, C – углы при вершинах против соответствующих сторон,
h – высота, проведенная из вершины A на сторону a,
p – полупериметр, p=0.5*(a + b + c).

Для решения любого n-угольника нужно знать (2*n – 3) его элементов, причем количество известных углов не должно быть больше (n-1), так как один угол всегда может быть вычислен, если остальные углы известны, на основании формулы:

β = 180 * ( n – 2 ) (6.4)

При расчете ошибки определения площади следует учитывать ошибки всех (2n-3) измеряемых элементов.

В треугольнике нужно знать (измерить) три элемента. Формула (6.1) содержит всего два элемента; это значит, что прямой угол между основанием и высотой нужно отдельно обеспечить с необходимой точностью, что равнозначно одному измерению.

Примем относительную ошибку площади mp/P = 1/1000, тогда для применения формулы (6.1) на основании принципа равных влияний необходимо выполнить условия:

где ma,mb,β – ср.кв. ошибки сторон a, b и прямого угла между основанием и высотой.

Для формулы (6.2) на основании принципа равных влияний можно написать:

Считая попрежнему mp/P=1/1000, получим:

Источник

Геометрический способ

Существует три способа определения площади участков: геометрический, аналитический и механический. На местности применяют два первых способа, на картах и планах — все три способа.

Геометрический способ — это вычисление площади геометрических фигур по длинам сторон и углам между ними, значения которых можно получить только из измерений.

Сначала рассмотрим простейшую фигуру — треугольник.

Формулы для вычисления площади треугольника известны:

P = 0.5 * a * b * Sin(C) (6.2)

(6.3)

в этих формулах:
a, b, c — длины сторон треугольника,
A, B, C — углы при вершинах против соответствующих сторон,
h — высота, проведенная из вершины A на сторону a,
p — полупериметр, p=0.5*(a + b + c).

Для решения любого n-угольника нужно знать (2*n — 3) его элементов, причем количество известных углов не должно быть больше (n-1), так как один угол всегда может быть вычислен, если остальные углы известны, на основании формулы:

β = 180o * ( n — 2 ) (6.4)

При расчете ошибки определения площади следует учитывать ошибки всех (2n-3) измеряемых элементов.

В треугольнике нужно знать (измерить) три элемента. Формула (6.1) содержит всего два элемента; это значит, что прямой угол между основанием и высотой нужно отдельно обеспечить с необходимой точностью, что равнозначно одному измерению.

Примем относительную ошибку площади mp/P = 1/1000, тогда для применения формулы (6.1) на основании принципа равных влияний необходимо выполнить условия:

где ma,mb,β — ср.кв. ошибки сторон a, b и прямого угла между основанием и высотой.

Для формулы (6.2) на основании принципа равных влияний можно написать:

(6.5)

Считая попрежнему mp/P=1/1000, получим:

где a — длина стороны квадрата,
M — знаменатель масштаба карты,
n — количество квадратов на участке.

Применение палеток с параллельными линиями описано в [23].

Источник

Способы определения площадей земельных участков

ГОУ ВПО «Дальневосточный государственный университет

Кафедра «Изыскания и проектирование железных дорог»

СПОСОБЫ ОПРЕДЕЛЕНИЯ ПЛОЩАДЕЙ

ЗЕМЕЛЬНЫХ УЧАСТКОВ

Методические указания по выполнению

УКД 528.48.068.03: 625

А 674

, . Способы определения площадей земельных участков. Методические указания по выполнению лабораторной работы. – Хабаровск: ДВГУПС, 2010. – 18 с.

Методические указания соответствуют требованиям ГОС ВПО по направлениям подготовки дипломированного специалиста 653600 «Транспортное строительство» и 653500 «Строительство».

Указания разработаны в соответствии с программой курса инженерной геодезии для строительных специальностей и предназначено студентам всех форм обучения, изучающих дисциплину ‘‘Инженерная геодезия’’.

В методических указаниях изложена методика выполнения лабораторной работы по способам определения площадей, приведены примеры вычислений и образцы оформления работы.

А 674

Ó ГОУ ВПО  «Дальневосточный государственный университет путей сообщения» (ДВГУПС), 2010

Изучение «Инженерной геодезии» складывается из лекционных, лабораторных, практических работ и полевой практики. Использованию методического указания должно предшествовать изучение соответствующих разделов учебника. Это требование должно обязательно выполняться студентами.

Наличие в методическом указании краткого описания основных понятий и формул для вычислений обусловлено необходимостью обратить внимание студентов на существо вопроса перед переходом к закреплению материала путем выполнения лабораторной работы. Выполнение лабораторной работы рассчитано на два часа занятий.

Настоящее методическое указание к лабораторной работе имеет своей целью дать студентам первого курса строительных специальностей знания по методам и приемам определения площадей с учётом погрешностей всех геодезических измерений. В методическом указании приведены методы и приемы определения площадей, рассмотрены вопросы точности определения площадей с учетом погрешностей всех геодезических измерений.

Для закрепления теоретических знаний и практических навыков в методическом указании приведены контрольные вопросы для самоконтроля.

1. ОПРЕДЕЛЕНИЕ ПЛОЩАДЕЙ

Составление различного рода проектов, связанных с использованием земельной территории, изучение её природных богатств, учет и инвентаризация земель требует определения площадей. При проведении этих работ определяются площади небольших участков или больших земельных массивов, суммы площадей нескольких несмежных участков, обладающих одними и теми же природными или хозяйственными признаками.

К таким площадям могут относиться различные сельскохозяйственные территории (луга, пашни, огороды), лесонасаждения, площади под планировку и застройку. А также территории осушения (болота), площади бассейнов водотоков (рек и оврагов), границы затоплений, водные пространства (озера, пруды, водохранилища), площади насыпей и выемок для подсчета объемов земляных дорог и других сооружений [3].

В одних случаях достаточно ограничиться общими сведениями о площади участков и массивов, а в других случаях необходимы более точные способы определения площадей и погрешность даже в несколько десятых долей процента считается недопустимой. Поэтому наряду с определением площади очень часто требуется знать и точность её определения. При определении площадей по результатам измерений на местности точность зависит от качества этих измерений, в то время как при измерении площади по плану (или карте) на точность площади влияет качество измерений на местности, по которым составляется план или карта, графических построений участка на плане и определения площади по плану.

В зависимости от хозяйственной значимости участков и массивов, их размеров, конфигурации и вытянутости, наличия планово – топографического материала, топографических условий местности применяют следующие способы определения площадей:

1. Аналитический способ — когда площадь вычисляется по результатам измерений линий на местности или по их функциям (координатам вершин участка);

2. Графический способ — когда площадь вычисляется по результатам измерений линий на плане (карте);

3. Механический способ — когда площадь определяется по плану при помощи специальных приборов (планиметров).

Иногда эти способы применяются комбинированно. Например, общая площадь определяется аналитическим способом (по координатам вершин), а площади внутренних контуров – графическим или механическим способом. Далее в методическом указании будет более подробно рассмотрен каждый из выше перечисленных способов определения площадей.

1.1 Аналитический способ определения площадей

Цель: ознакомиться и получить навык определения площадей аналитическим способом.

Вычисление площади этим способом производится по формулам геометрии, тригонометрии и аналитической геометрии. Исходными данными для вычисления служат измеренные в натуре углы или их функции – координаты.

Если участок представляет собой простейшую геометрическую фигуру (треугольник, трапецию и др.), то площадь его вычисляют по общеизвестным формулам геометрии или тригонометрии [4,5]. Площади многоугольников вычисляют обычно по координатам вершин (рис. 1).

Рис. 1. Вычисление площади многоугольника по координатам.

Площадь замкнутого контура () в этом случае определяется по формулам [5]:

, (1)

(2)

где i — это порядковый номер вершин контура от 1 до n; n — число вершин полигона; x, y — координаты вершин контура.

При подстановке i = 1 получим в первой формуле x0 x2, а второй y2 y0, где вместо x0 и y0 необходимо подставить xn и yn; если при подстановке i = n получим в первой формуле xn-1 xn+1, во второй yn+1 yn-1, где вместо xn+1, yn+1 необходимо подставить x1 и y1 (так как нулевая точка предшествует первой, а в данном случае первой вершине предшествует вершина n; точка n + 1 следует за точкой n, а в данном случае за вершиной n следует первая вершина) [4,5]. Вычисление площади производиться для контроля по обеим формулам.

В таблице 1 приведен пример расчета площади при помощи аналитического способа. В соответствие с рисунком 1 в графах 1 и 2 таблицы 1 заданы прямоугольные координаты каждой вершины замкнутого полигона.

Разности координат xi-1 xi+1 и yi+1 yi-1 с соответствующим знаком запишем в графы 3 и 4. Например, для вершины 1 разность будет складываться из координаты последующей вершины 2 (Х2 = 209,43) и координаты предыдущей вершины 6 (Х6 = 209,43). Результат перемножения соответственно граф 2 и 3, а также 1 и 4 запишем в графы 5 и 6.

Таким образом, площадь участка составляет 0998 м2 или 14,1 га. Вычисление разностей координат контролируется тем, что алгебраическая сумма, как разностей координат X, так и разностей координат Y должна равняться нулю, либо при составлении разностей каждая координата входит как со знаком плюс, так и со знаком минус. Совпадение сумм произведений в обоих случаях указывает на отсутствие ошибок вычислений.

Сумма произведений соответствует удвоенной площади полигона в квадратных метрах, так как координаты даны в метрах.

Точность аналитического способа 1/1000. При определении площади этим способом на точность влияют только погрешности измерений на местности.

Источник

Существует три способа определения площади участков: геометрический, аналитический и механический. На местности применяют два первых способа, на картах и планах – все три способа.

Геометрический способ – это вычисление площади геометрических фигур по длинам сторон и углам между ними, значения которых можно получить только из измерений.

Геометрический способ

Сначала рассмотрим простейшую фигуру – треугольник.

Формулы для вычисления площади треугольника известны:

P = 0.5 * a * h;                       (6.1)

P = 0.5 * a * b * Sin(C)                           (6.2)

(6.3) (6.3)

в этих формулах:
a, b, c – длины сторон треугольника,
A, B, C – углы при вершинах против соответствующих сторон,
h – высота, проведенная из вершины A на сторону a,
p – полупериметр, p=0.5*(a + b + c).

Для решения любого n-угольника нужно знать (2*n – 3) его элементов, причем количество известных углов не должно быть больше (n-1), так как один угол всегда может быть вычислен, если остальные углы известны, на основании формулы:

Геометрический способβ = 180 * ( n – 2 )                          (6.4)

При расчете ошибки определения площади следует учитывать ошибки всех (2n-3) измеряемых элементов.

В треугольнике нужно знать (измерить) три элемента. Формула (6.1) содержит всего два элемента; это значит, что прямой угол между основанием и высотой нужно отдельно обеспечить с необходимой точностью, что равнозначно одному измерению.

Примем относительную ошибку площади mp/P = 1/1000, тогда для применения формулы (6.1) на основании принципа равных влияний необходимо выполнить условия:

Геометрический способ

и Геометрический способ

где ma,mb,β – ср.кв. ошибки сторон a, b и прямого угла между основанием и высотой.

Для формулы (6.2) на основании принципа равных влияний можно написать:

(6.5) (6.5)

Считая попрежнему mp/P=1/1000, получим: Геометрический способ

и  mβ= 3.4′ при < C = 60,
mβ= 2.0′ при < C = 45,
mβ= 1.0′ при < C = 26.

Если в треугольнике измерять три стороны с относительной ошибкой mS/S и для вычисления площади применять формулу (6.3), то для равностороннего треугольника получим:

(6.6) (6.6)

что при mp/P=1/1000 дает ms/S=1/1500.

Таким образом, вариант с измерением трех сторон треугольника оказывается самым эффективным, так как в нем не требуется измерять углы.

Четырехугольник, как геометрическая фигура, может быть параллелограммом, ромбом, трапецией, прямоугольником, квадратом; но как участок местности его следует считать фигурой произвольной формы, так как обеспечение геометрических свойств той или иной фигуры на местности требует дополнительных измерений.

В четырехугольнике (n=4) нужно измерить пять элементов: три угла и две стороны или два угла и три стороны или один угол и четыре стороны или четыре стороны и одну диагональ. Последний вариант является наиболее предпочтительным, так как, во-первых, в нем не нужно измерять углы, и, во-вторых, согласно формуле:

(6.7) (6.7)

относительная ошибка площади примерно равна относительной ошибке измерения сторон. Во всех остальных вариантах при оценке точности площади нужно учитывать как ошибки измерения сторон, так и ошибки измерения углов.

Применение геометрического способа на местности требует разбиения участка на простые геометрические фигуры, что возможно лишь при наличии видимости внутри участка (рис.6.1.)

Геометрический способ

При определении площади участков на топографических планах и картах стороны и высоты треугольников, стороны и диагонали четырехугольников нужно измерять с помощью поперечного масштаба.

Для определения площади на карте или плане геометрическим способом часто используют палетку – лист прозрачной бумаги, на котором нанесена сетка квадратов или параллельных линий. Палетку с квадратами накладывают на участок и подсчитывают, сколько квадратов содержится в данном участке; неполные квадраты считают отдельно, переводя затем их сумму в полные квадраты. Площадь участка вычисляют по формуле:

P=n*(a*M)2,                        (6.8)

где a – длина стороны квадрата,
M – знаменатель масштаба карты,
n – количество квадратов на участке.

Рис.6.1

Рис.6.1

Понравилась статья? Поделить с друзьями:
  • Как найти работа в северном кипре
  • Как найти углы параллелограмма через векторы
  • Я таких как ты вагон найду
  • Как найти айди в контакте в телефоне
  • Арифметическая прогрессия как найти а15